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Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.

Abstract

What can you do with a million images? In this paper we present a
new image completion algorithm powered by a huge database of
photographs gathered from the Web. The algorithm patches up
holes in images by finding similar image regions in the database
that are not only seamless but also semantically valid. Our chief
insight is that while the space of images is effectively infinite, the
space of semantically differentiable scenes is actually not that large.
For many image completion tasks we are able to find similar scenes
which contain image fragments that will convincingly complete the
image. Our algorithm is entirely data-driven, requiring no anno-
tations or labelling by the user. Unlike existing image completion
methods, our algorithm can generate a diverse set of results for each
input image and we allow users to select among them. We demon-
strate the superiority of our algorithm over existing image comple-
tion approaches.

Keywords: Image Completion, Image Database, Image Com-
positing, Inpainting, Hole Filling

1 Introduction

Every once in a while, we all wish we could erase something from
our old photographs. A garbage truck right in the middle of a
charming Italian piazza, an ex-boyfriend in a family photo, a politi-
cal ally in a group portrait who has fallen out of favor [King 1997].
Other times, there is simply missing data in some areas of the im-
age. An aged corner of an old photograph, a hole in an image-based
3D reconstruction due to occlusion, a dead bug on the camera lens.
Image completion (also called inpainting or hole-filling) is the task
of filling in or replacing an image region with new image data such
that the modification can not be detected.
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There are two fundamentally different strategies for image com-
pletion. The first aims to reconstruct, as accurately as possible,
the data that should have been there, but somehow got occluded
or corrupted. Methods attempting an accurate reconstruction have
to use some other source of data in addition to the input image,
such as video (using various background stabilization techniques,
e.g. [Irani et al. 1995]) or multiple photographs of the same physi-
cal scene [Agarwala et al. 2004; Snavely et al. 2006].

The alternative is to try finding a plausible way to fill in the miss-
ing pixels, hallucinating data that could have been there. This is a
much less easily quantifiable endeavor, relying instead on the stud-
ies of human visual perception. The most successful existing meth-
ods [Criminisi et al. 2003; Drori et al. 2003; Wexler et al. 2004;
Wilczkowiak et al. 2005; Komodakis 2006] operate by extending
adjacent textures and contours into the unknown region. This idea
is derived from example-based texture synthesis [Efros and Leung
1999; Efros and Freeman 2001; Kwatra et al. 2003; Kwatra et al.
2005], sometimes with additional constraints to explicitly preserve
Gestalt cues such as good continuation [Wertheimer 1938], either
automatically [Criminisi et al. 2003] or by hand [Sun et al. 2005].
Importantly, all of the existing image completion methods operate
by filling in the unknown region with content from the known parts
of the input source image.

Searching the source image for usable texture makes a lot of
sense. The source image often has textures at just the right scale,
orientation, and illumination as needed to seamlessly fill in the un-
known region. Some methods [Drori et al. 2003; Wilczkowiak et al.
2005] search additional scales and orientations to gain additional
source texture samples. However, viewing image completion as
constrained texture synthesis limits the type of completion tasks
that can be tackled. The assumption present in all of these meth-
ods is that all the necessary image data to fill in an unknown re-
gion is located somewhere else in that same image. We believe
this assumption is flawed and that the source image simply doesn’t
provide enough data except for trivial image completion tasks.

Typical demonstrations of previously published algorithms are
object removal tasks such as removing people, signs, horses, or cars
from relatively simple backgrounds. The results tend to be fairly
sterile images because the algorithms are only reusing visual con-
tent that appeared somewhere else in the same image. For situations
in which the incomplete region is not bounded by texture regions,
or when there is too little useful texture, existing algorithms have
trouble completing scenes (Figure 2).
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Figure 2: Results from various image completion algorithms including Microsoft Digital Image Pro Smart Erase.

2 Overview

In this paper we perform image completion by leveraging a massive
database of images. There are two compelling reasons to expand
the search for image content beyond the source image. 1) In many
cases, a region will be impossible to fill plausibly using only image
data from the source image. For instance, if the roof of a house is
missing or the entire sky is masked out. 2) Even if there is suitable
content in the source image, reusing that content would often leave
obvious duplications in the final image, e.g. replacing a missing
building with another building in the image. By performing hole
filling with content from other images, entirely novel objects and
textures can be inserted.

However, there are several challenges with drawing content from
other images. The first challenge is computational. Even in the
single image case, some existing methods report running times in
the hours [Efros and Leung 1999; Drori et al. 2003] because of
the slow texture search. Texture synthesis-based image comple-
tion methods are difficult to accelerate with exact or approximate
nearest-neighbor methods because of the high dimensionality of
the features being searched and because the valid dimensions of
the feature being matched will change depending on the shape of
the unknown region at each iteration.

The second challenge is that as the search space increases, there
is higher chance of a synthesis algorithm finding locally matching
but semantically invalid image fragments. Existing image com-
pletion methods might produce sterile images but they don’t risk
putting an elephant in someone’s back yard or a submarine in a
parking lot.

The third challenge is that content from other images is much
less likely to have the right color and illumination to seamlessly
fill an unknown region compared to content from the same image.
Therefore, we need a robust seam-finding and blending method to
make our image completions look plausible.

In this work we alleviate both the computational and semantic
challenges with a two-stage search. We first try to find images
depicting semantically similar scenes and then use only the best
matching scenes to find patches which match the context surround-
ing the missing region. Scene matching reduces our search from
a database of over two million images to a manageable number of
best matching scenes (200 in our case) which are used for image
completion. We use a low dimensional scene descriptor [Oliva and
Torralba 2006] so it is relatively fast to find the nearest scenes, even
in a large database. Our approach is purely data-driven, requiring
no labelling or supervision.

In order to seamlessly combine image regions we employ Pois-
son blending [Perez et al. 2003]. To avoid blending artifacts, we
first perform a graph cut segmentation to find the boundary for the
Poisson blending that has the minimum image gradient magnitude.
This is in contrast to minimizing the intensity domain difference
along a boundary [Wilczkowiak et al. 2005] or other heuristics to
encourage a constant intensity offset for the blending boundary [Jia

et al. 2006]. In section 4 we explain why minimizing the seam gra-
dient gives the most perceptually convincing compositing results.

The image completion work most closely resembling our own,
Wilczkowiak et al. [2005], also demonstrates the search of multi-
ple images. However, in their case it was only a few images that
were hand selected to offer potentially useful image regions. Also
related are methods which synthesize semantically valid images ei-
ther from text or image constraints using image databases with la-
belled regions [Diakopoulos et al. 2004; Johnson et al. 2006]. How-
ever, the database labelling process must be supervised [Diakopou-
los et al. 2004] or semi-supervised [Johnson et al. 2006].

3 Semantic Scene Matching

Since we do not employ user-provided semantic constraints or a la-
belled database, we need to acquire our semantic knowledge from
the data directly. This requires us to sample the set of visual im-
ages as broadly as possible. We constructed our image collection
by downloading all of the photographs in thirty Flickr.com groups
that focus on landscape, travel, or city photography. Typical group
names are “lonelyplanet,” “urban-fragments,” and “ruraldecay.” We
also downloaded images based on keyword searches such as “out-
doors,” “vacation,” and “river.” We discarded duplicate images, as
well as images that are too small. All images were down-sampled,
if necessary, such that their maximum dimension was 1024 pix-
els. Our database downloading, pre-processing, and scene match-
ing were all distributed among a cluster of 15 machines. In total, we
acquired about 2.3 million unique images (396 gigabytes of JPEG
compressed data).

In order to successfully complete images we need to find im-
age regions in our database that are not just seamless and properly
textured but also semantically valid. We do not want to complete
hillsides with car roofs or have ducks swimming in city pavement
which locally resembles a lake. To help avoid such situations we
first look for scenes which are most likely to be semantically equiv-
alent to the image requiring completion. The use of scene matching
is the most important element of our image completion method.
Without it, our search would not be computationally feasible and
our image completion results would rarely be semantically valid.
Our scene matching, in combination with our large database, allows
us to do image completion without resorting to explicit semantic
constraints as in previous photo synthesis work [Diakopoulos et al.
2004; Johnson et al. 2006].

We use the gist scene descriptor [Torralba et al. 2003; Oliva and
Torralba 2006] which has been shown to perform well at grouping
semantically similar scenes (eg. city, tall buildings, office, fields,
forest, beach) and for place recognition. It must be noted that a
low-level scene descriptor in and of itself cannot encode high-level
semantic information. Scenes can only be trusted to be semantically
similar if the distance between them is very small. The way we ad-
dress this issue is by collecting a huge dataset of images, making
it more likely that a very similar scene to the one being searched
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Figure 3: The 164 closest scenes to the incomplete image in the center. Most of the scenes are semantically and structurally similar; many
are even from the same city (London).

is available in the dataset. Indeed, our initial experiments with the
gist descriptor on a dataset of ten thousand images were very dis-
couraging. However, increasing the image collection to two million
yielded a qualitative leap in performance (see Figure 3 for a typical
scene matching result). Independently, Torralba et al. [2007] have
observed a similar effect with a dataset of up to 70 million tiny
(32x32) images.

The gist descriptor aggregates oriented edge responses at multi-
ple scales into very coarse spatial bins. We found a gist descriptor
built from 6 oriented edge responses at 5 scales aggregated to a
4x4 spatial resolution to be most effective. We augment the scene
descriptor with the color information of the query image down-
sampled to the spatial resolution of the gist.

Searching for similar scenes first rather than directly looking for
similar patches speeds up our search dramatically. Instead of look-
ing for image patches in all two million images at multiple offsets
and scales we can instead eliminate 99.99% of the database quickly
by finding the nearest neighbor scenes based on the relatively low-
dimensional scene descriptor.

Given an input image to be hole-filled, we first compute its gist
descriptor with the missing regions excluded. This is done by creat-
ing a mask which weights each spatial bin in the gist in proportion
to how many valid pixels are in that bin. We calculate the SSD be-
tween the the gist of the query image and every gist in the database,
weighted by the mask. The color difference is computed in the
L*a*b* color space. The differences are weighted such that the gist
contributes roughly twice as much as the color information to the
final distance calculation.

Because we match scenes using arbitrary dimensions of the de-
scriptor (depending on which regions of a query image are miss-
ing), we can not use PCA dimensionality reduction as suggested
in [Oliva and Torralba 2006]. For the same reason we do not use
any approximate nearest-neighbor scheme since they tend to incur
large relative errors when matching on arbitrary dimensions of de-
scriptors with hundreds of dimensions. However, the descriptors
are small enough to exhaustively search in a few minutes using a
cluster of 15 machines.

4 Local Context Matching

Having constrained our search to semantically similar scenes we
can use traditional template matching to more precisely align those
matching scenes to the local image context around the missing re-
gion. We define the local context to be all pixels within an 80 pixel
radius of the hole’s boundary. This context is compared against the
200 best matching scenes across all valid translations and 3 scales
(.81, .90, 1) using pixel-wise SSD error in L*a*b* color space.
Only placements (translations and scales) for which the context is

fully contained in the matching scene are considered. Since we ex-
pect our matching scenes to already be roughly aligned with the
query image, we discourage distant matches by multiplying the er-
ror at each placement by the magnitude of its translational offset.
The translation and scale with the minimum weighted SSD error is
chosen as the best placement for each matching scene. In addition
to the pixel-wise alignment score, we also compute a texture simi-
larity score to measure coarse compatibility of the proposed fill-in
region to the source image within the local context. A simple tex-
ture descriptor is computed as a 5x5 median filter of image gradient
magnitude at each pixel, and the descriptors of the two images are
compared via SSD.

We composite each matching scene into the incomplete image at
its best placement using a form of graph cut seam finding [Kwatra
et al. 2003] and standard poisson blending [Perez et al. 2003]. Us-
ing a seam finding operation to composite the images is arguably
undesirable for hole filling since a user might want to preserve all
of the image data in the input image. Past image completion al-
gorithms [Criminisi et al. 2003] have treated the remaining valid
pixels in an image as hard constraints which are not changed. We
relax this, as in [Wilczkowiak et al. 2005], and allow the seam-
finding operation to remove valid pixels from the query image but
we discourage the cutting of too many pixels by adding a small
cost for removing each pixel in the query image which increases
with distance from the hole (Equation 2).

When performing a seam-finding operation and gradient domain
fusion in sequence it makes sense to optimize the seam such that it
will minimize the artifacts left behind by the gradient domain fu-
sion. Jia et al. [2006] use dynamic programming to find a seam
which has minimum intensity difference between the two images
after allowing some constant intensity offset. The intuition is that
humans are not sensitive to relatively large shifts in color and inten-
sity as long as the shifts are seamless and low frequency.

We argue that it is better to minimize the gradient of the image
difference along the seam instead of intensity differences. While
the heuristic in [Jia et al. 2006] will indeed minimize the seam gra-
dient if it succeeds in finding a constant color offset seam, that is
impossible in many compositing situations (Figure 4). Minimiz-
ing intensity domain differences (even after optimizing for the best
global color offset) can cause the seam to pass through many high
frequency edges which will leave obvious blending artifacts after
Poisson blending (Figure 4a). If we instead minimize the gradi-
ent of the image difference along the seam (Figure 4c), the seam
tends to pass through regions of the images which either match
(and thus have low absolute difference and thus low difference gra-
dient) or are both constant colored (in which case poisson blending
will hopefully do a good job of hiding the color difference at low

3



ACM SIGGRAPH 2007, San Diego, CA, August, 5–9, 2007

Original Input Alternative Completions
Figure 5: The algorithm presents to the user a set of alternative image completions for each input. Here we show three such alternatives.

Figure 4: In this synthetic compositing example, we are placing the
barn from Image 1 into the field of Image 2. (a) shows the optimal
seam which minimizes intensity differences (even after some best,
constant color shift). (c) shows the optimal seam which minimizes
the gradient of the image difference. (b) and (d) are the Poisson
blending results from (a) and (c) respectively.

frequencies). We find the seam by minimizing the following cost
function:

C(L) = ∑
p

Cd(p,L(p))+∑
p,q

Ci(p,q,L(p),L(q)) (1)

Where Cd(p,L(p)) are the unary costs of assigning any pixel, p,
to a specific label L(p), and Ci(p,q,L(p),L(q)) is the higher-order
cost for two pixels p and q taking labels L(p) and L(q) respectively.
The label of each pixel, L(p), has two values patch and exist corre-
sponding to a pixel being taken from the scene match or the incom-
plete image. For missing regions of the existing image, Cd(p,exist)
is a very large number. For regions of the image not covered by the
scene match, Cd(p, patch) is very large. For all other pixels,

Cd(p, patch) = (k ∗Dist(p,hole))3 (2)

This small penalty assigns a cost to each pixel taken from the
scene match which increases with a pixel’s distance from the hole,
Dist(p,hole). We use an empirically found k = .002. Wilczkowiak
et al. [2005] use a similar penalty.

Ci(p,q,L(p),L(q)) is non-zero only for immediately adjacent,
four-way connected pixels. When neighbors p and q share the same
label, L(p) = L(q), the cost is also zero. Along the seams, when
L(p) 6= L(q), Ci(p,q,L(p),L(q)) = ∇di f f (p,q) where ∇di f f (p,q)

is the magnitude of the gradient of the SSD between the existing
image and the scene match at pixels p and q.

Using this cost function has the added advantage that it can be
globally minimized quickly using a graph cut [Boykov et al. 2001]
unlike the heuristic in [Jia et al. 2006] which has to iterate until
convergence while estimating the best color offset. A very similar
metric was also mentioned but not demonstrated in [Agarwala et al.
2004]. Like them, we allow the Poisson blending to operate on
the entire image domain instead of correcting just the composited
region. We use the poisson solver of [Agrawal et al. 2006].

Finally we assign each composite a score which is the sum of
the scene matching distance, the local context matching distance,
the local texture similarity distance, and the cost of the graph cut.
All four components of the score are scaled to contribute roughly
equally. We present the user with the 20 composites with the lowest
scores.

5 Results and Comparison

Image completion is an inherently under-constrained problem.
There are many viable ways to fill a hole in an image. Previous
approaches, which operate by reusing texture from the input image
can offer relatively few alternative completions (perhaps by chang-
ing parameters such as the patch size). While some such results
might look slightly better than others, the semantic interpretation
of the image is unlikely to change. On the other hand, our algo-
rithm can offer a variety of semantically valid image completions
for a given query image (e.g. Figure 5). After compositing the best-
matching patches we present a user with the 20 top image comple-
tions (roughly equivalent to one page of image search results). In
some cases, many of these completions are of acceptable quality
and the user can select the one(s) they find most compelling. In
other cases, only a few or none of the results are acceptable. The
quality of our results benefits from this very simple user interac-
tion and it is difficult for conventional image completion methods
to offer an analogous selection of results.

Some of our image completions are shown in Figure 6. The
4th result from the top is interesting because the scaffolding on the
cathedral that was masked out has been replaced with another im-
age patch of the same cathedral. The database happened to contain
an image of the same cathedral from a similar view. It is not our
goal to complete scenes and objects with their true selves in the
database, but with the availability of increasingly large photo col-
lections such fortuitous events do occur.

When our algorithm is successful, the completion is semanti-
cally valid, although there might be slight low-level artifacts such
as resolution mismatch, blurring from Poisson blending, or fine-
scale texture differences between the image and the inserted patch.
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Original Image Input Output Original Input Output

Figure 6: Example results. The input and the matching scenes are composited together to create the outputs. The matching scene used to
produce each output is highlighted in red. Note that the algorithm can handle a large range of scenes and missing regions. On rare occasions,
the algorithm is lucky enough to find another image from the same physical location (4th result from the top).
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Figure 7: Typical failure cases. Some results exhibit pronounced texture seams (left). Others are failures of scene matching (center). The last
failure mode (right), shared with traditional image completion algorithms, is a failure to adhere to high-level semantics (e.g. entire people).

Input Criminisi et al. Our Algorithm

Figure 8: Cases where existing image completion algorithms per-
form better than our algorithm.

For failure cases, these low-level artifacts are often much more pro-
nounced (Figure 7, left). Another cause of failure is a lack of good
scene matches which happens more often for atypical scenes (Fig-
ure 7, center). Semantic violations (e.g. half-objects) account for
another set of failures (Figure 7, right). The latter is not surprising
since the algorithm has no object recognition capabilities and thus
no notion of object boundaries.

For uniformly textured backgrounds (Figure 8, top), existing im-
age completion algorithms perform well. However, our algorithm
struggles since our scene matching is unlikely to find the exact same
texture in another photograph. Furthermore, image completion al-
gorithms such as Criminisi et al. [2003] have explicit structure prop-
agation which helps in some scenes (Figure 8, bottom).

Our algorithm requires over an hour to process one input image
on a single CPU (50 min for scene matching, 20 min for local con-
text matching, and 4 min for compositing). However, by paralleliz-
ing the processing across 15 CPUs, we are able to bring the running
time down to about 5 minutes in our Matlab implementation.

5.1 Quantitative Evaluation

It is difficult to rigorously define success or failure for an image
completion algorithm because so much of it depends on human
perception. While previous approaches demonstrate performance
qualitatively by displaying a few results, we believe that it is very
important to also provide a quantitative measure of the algorithm’s
success. Therefore, to evaluate our method, we performed an IRB-
approved perceptual study to see how well naive viewers could dis-
tinguish our results, as well as those of a previous approach [Crim-
inisi et al. 2003], from real photographs.

The study was performed on a set of 51 test images that were de-
fined a priori and spanning different types of completions. All test
images came from either the LabelMe database [Russell et al. 2005]
or our own personal photo collections, none of which are contained
in the downloaded database. We were careful not to include any
potentially recognizable scenes or introduce bias that would favor
a particular algorithm. The regions we removed all had semantic
meaning such as unwanted objects, storefronts, walls with graffiti,
roads, etc. The test set is freely available on our website.

We generated three versions of each image – the original (un-
altered) photograph, the result from Criminisi et al., and the result

from our algorithm. Each of our 20 participants viewed a sequence
of images and classified them as either real or manipulated. Of
the 51 images each participant examined, 17 were randomly cho-
sen from each source, but such that multiple versions of the same
image did not appear. The order of presentation was also random-
ized. The participants were told that some of the images would be
real, but not the ratio of real vs. manipulated images. We also told
the participants that we were timing their responses for each image
but that they should try to be accurate rather than fast. Overall the
participants classified 80% of the images correctly. No effort was
made to normalize for the differences in individual aptitude (which
were small).

With unlimited viewing time, the participants classified our al-
gorithm’s outputs as real 37% of the time compared with 10% for
Criminisi et al. Note that real images were identified as such only
87% of the time. Apparently, participants scrutinized the images so
carefully that they frequently convinced themselves that real images
were fake. It is interesting to examine the responses of participants
as a function of maximum response time. In Figure 9 we show the
proportion of images from each algorithm that have been marked as
fake after t seconds of viewing. We claim that if a participant who
has been specifically tasked with finding fake images cannot be sure
that an image is fake within ten seconds, it is unlikely that an un-
suspecting, casual observer would notice anything wrong with the
image. After ten seconds of examination, participants have marked
our algorithm’s results as fake only 34% of the time (the other 66%
are either undecided or have marked the image as real already). For
Criminisi et al. participants have marked 69% of the images as fake
by ten seconds. For real photographs, 3% have been marked as fake.
All pairwise differences are statistically significant (p < 0.001).

6 Discussion

This paper approaches image completion from an entirely new
direction – orthogonal and complementary to the existing work.
While previous algorithms [Efros and Leung 1999; Criminisi et al.
2003; Drori et al. 2003; Wilczkowiak et al. 2005] suggest clever
ways to reuse visual data within the source image, we demonstrate
the benefits of utilizing semantically valid data from a large, un-
ordered collection of unlabelled images. Our approach successfully
fills in missing regions where prior methods, or even expert users
with the Clone brush, would have no chance of succeeding because
there is simply no appropriate image data in the source image to fill
the hole. Likewise, expert users would have trouble leveraging such
a large image collection – it would take a month just to view it with
one second spent on each image. Additionally, this is the first paper
in the field of image completion to undertake a full perceptual user
study and report success rates on a large test set. While the results
suggest substantial improvement over previous work, image com-
pletion is extremely difficult and is far from solved. Given the com-
plimentary strengths of our method and single-image techniques, a
hybrid approach is likely to be rewarding.

It takes a large amount of data for our method to succeed. We
saw dramatic improvement when moving from ten thousand to two
million images. But two million is still a tiny fraction of the high
quality photographs available on sites like Picasa or Flickr (which
has approximately 500 million photos). The number of photos on
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Figure 9: Cumulative percentage of images marked as fake by hu-
man subjects as function of response time.

the entire Internet is surely orders of magnitude larger still. There-
fore, our approach would be an attractive web-based application. A
user would submit an incomplete photo and a remote service would
search a massive database, in parallel, and return results.

Beyond the particular graphics application, the deeper question
for all appearance-based data-driven methods is this: would it be
possible to ever have enough data to represent the entire visual
world? Clearly, attempting to gather all possible images of the
world is a futile task, but what about collecting the set of all seman-
tically differentiable scenes? That is, given any input image can
we find a scene that is “similar enough” under some metric? The
truly exciting (and surprising!) result of our work is that not only
does it seem possible, but the number of required images might
not be astronomically large. This paper, along with work by Tor-
ralba et al. [2007], suggest the feasibility of sampling from the en-
tire space of scenes as a way of exhaustively modelling our visual
world. This, in turn, might allow us to “brute force” many currently
unsolvable vision and graphics problems!
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