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Abstract. In order for assistive robots to collaborate effectively with
humans, they must be endowed with the ability to perceive scenes and
more importantly, recognize human intentions. These intentions are of-
ten inferred from observed physical actions and direct communication
from fully-functional individuals. For individuals with reduced capabil-
ities, it may be difficult or impossible to perform physical actions or
easily communicate. Therefore, their intentions must be inferred differ-
ently. To this end, we propose an intention recognition framework that
is appropriate for persons with limited physical capabilities. This frame-
work determines and learns human intentions based on scene objects,
the actions that can be performed on them, and past interaction history.
It is based on a Markov model formulation entitled Object-Action In-
tention Networks, which constitute the crux of a computer vision-based
human-robot collaborative system that reduces the necessary interac-
tions for communicating tasks to a robot. Evaluations were conducted
on multiple scenes comprised of multiple possible object categories and
actions. We achieve approximately 81% reduction in interactions overall
after learning, when compared to other intention recognition approaches.

Keywords: intention recognition, human robot interaction, intelligent
robots, robot vision systems

1 Introduction

Assistive robotic technologies can provide the elderly, persons with disabilities,
and injured veterans with opportunities to achieve higher levels of indepen-
dence and quality of life as they reduce dependence on caregivers and increase
self-sufficiency. However, there are many challenges to developing such robotic
technologies. Seeing a bottle, reaching for it, and picking it up to pour its con-
tents are relatively easy tasks for a fully-functional human; however, this task is
difficult for both individuals with reduced capabilities and robots. For a robot to
complete such tasks, it must possess the perceptive ability to effectively process
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Fig. 1. Configuration of human-robot interactive systems using intention recognition.
Circles with ‘H’ represent humans, ‘R’ represents robots, and ’E’ represents the envi-
ronment. For approaches grouped under (a), the human and robot both perform tasks
on the environment whereas for (b), the environment is acted on only by the robot.

the individual’s environment, namely the scene. This involves addressing key
computer vision problems such as object segmentation, object categorization,
and object pose estimation, along with manifold mechanical tasks. These issues
have been considerably addressed in the computer vision and robotics literatures
[13], [15], [4], [3], [16], [7] and in this work we leverage on recent advances to
present a computer vision-based human robot collaborative system.

Another challenge exists when there is a lack of full communication. It is
relatively easy for a fully-functional individual to directly express their intent,
yet for persons with reduced capabilities, this may prove to be quite difficult or
impossible depending on their communication ability. As a result, the problem
of recognizing one’s intention is brought to the forefront [19] as it is requisite for
successful communication and collaboration [20]. These intentions are inferred
from actions carried out or from changes in the environment [8], [19], [2]. In
order to build robots that are competent assistants, we must endow them with
this intelligent ability in order to understand the action that is to be performed
on the environment, e.g. pick up the red cup vs. throw away the brown box. In
so doing, we can reduce the need for direct human-robot interaction and thereby
maximize robotic task performance.

As an example, consider a robot that helps a person incapable of commu-
nicating physically, choose a task to perform at a breakfast table. The robot
is capable of scanning the table, and for every item that is found, a group of
possible tasks that can be performed with it is recorded in a list. Subsequently,
the robot asks the individual to indicate the task they want to perform. Suppose
there are n possible tasks on the list. For the extreme case where the user desires
the nth task, the robot would have had to prompt the user n times in order to
know what to do. With intention recognition, it is possible to reduce the length
of this list by only considering items the individual would most likely want per-
formed and thereby reduce the amount of time necessary for communicating
their intent.
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In the literature, intention recognition approaches can be classified according
to two main configurations hinged on human-robot interactions as depicted in
Figure 1:

1. Intention recognition via observation of the user’s physical actions and the

environment (Fig. 1a): the human and the robot may both perform tasks on
the environment and there is some form of interaction between them.

2. Intention recognition via observation of the user’s environment (Fig. 1b): the
human interacts with the robot that in turn interacts with the environment.

For the first configuration (Fig. 1 (a)), the human can act directly on the en-
vironment. Therefore, both the human and the environment can be observed
to infer intentions. Sensors are used to observe the user’s physical actions and
determine their intentions [10], [9], [22]. For example, Kelley et al. [10] presented
an approach that observed an individual using an RGB-D camera and with a
neural network-based method, they were able to predict their actions by an-
alyzing their hand positions in relation to objects in the scene. Consequently,
the main underlying goal of this category of approaches is to develop effective
socially-interactive robotic systems and the target population is usually able-
bodied individuals.

Conversely, for the second configuration, as depicted in Fig. 1 (b), the human
cannot act directly on the environment; they act on it via the robot. Sensors
are used to observe the environment and the robot interacts with the human
for determining their intentions [6], [21], [1]. For example, Demeester et al. [6]
presented a system that estimated the intent of a user using the sensor readings
of their environment and the user’s commands so as to take corrective action
during wheelchair maneuvering. The system in turn provided assistance that was
tailored to the user’s driving ability.

Our survey of the state of the art finds that the second category is not fully
explored. It is according to this configuration that our proposed work belongs
because it is more appropriate for dealing with persons with disabilities wherein
it may be quite difficult for them to perform activities on the environment.
The main goal of this category of approaches is to develop robotic systems that
function effectively in human environments in order to work collaboratively for
achieving common goals. In light of this, we present a novel intention recogni-
tion framework used within a computer vision-based human-robot collaborative
system that allows persons with disabilities to perform tasks with reduced robot
interaction.

2 Overview

An activity is primarily a sequence of steps involving objects and actions carried
out to accomplish a specific task. As depicted in the example of Figure 2, the
activity ‘Drink a soda’ consists of steps whereby a soda can (object) is picked up
(action) by a robotic arm and poured (action) into a cup (object) followed by
moving the cup to facilitate drinking. In this work, we focus on recognizing these
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Fig. 2. Scope of our work: we determine the object-action pair that represents a user’s
intention at a particular step of an activity and attempt to reduce the amount of
human-robot interaction necessary to accomplish this step.

Fig. 3. Schematic of our complete human-robot collaborative system. Object category
and pose information along with a user’s past decision history are incorporated in our
approach for intention recognition.

individual steps from captured visual data with minimum human interaction.

A schematic for our complete human-robot collaborative system is depicted
in Figure 3. The system is partitioned into vision processing and intention recog-
nition components. For vision processing, the robotic component first performs
object segmentation on the captured RGB-D data to extract objects, which are
represented as point cloud clusters. The position and orientation of these objects
as well as their category identities are then ascertained via pose estimation and
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object categorization respectively. This information is required as input to our
intention recognition component.

Our intention recognition problem is therefore cast as determining the object
and action pair that the user chooses but has not yet communicated for execution
by a robot for manipulation tasks. This is done using our object-action intention
networks which are probabilistic graphical models that capture prior object-
action knowledge with the capability of adapting to a user’s preferences. They
are based on: (1) a learned decision history of the human when queried by
our system, and (2) an analysis of the scene from the captured RGB-D data
such as which object categories are present, object properties (e.g. distance from
camera, color), and the relationships between objects and the actions that can
be performed with them (see Fig. 3).

3 Vision Processing

Our intention recognition framework is fully dependent on the scene content for
determining the user’s goal, therefore the scene must be processed accordingly.
This is accomplished via object segmentation, object categorization, and object
pose estimation.

3.1 Segmentation

Given an RGB-D point cloud of a scene, we first perform planar segmentation
using a RANSAC-based approach, then we extract candidate object point clus-
ters from the plane found with the largest candidate object footprint as outlined
by Rusu et al. in [18]. These resultant clusters are further processed as described
in subsequent sections.

3.2 RGBD Object Categorization

We employ a categorization method based on multiple cues: intensity, 2D contour
shape, and 3D shape. This allows us to keep a balance between discrimination
and generalization. From a 2D projection of an object point cloud, we extract
SIFT [12] and HOG [5] features for appearance and contour shape respectively.
The 3D shape properties are obtained by using Fast Point Feature Histograms
(FPFH) [17]. For the final object representation, the Bag-of-Words (BoW) model
is employed. For classification, we train Support Vector Machines (SVMs) on the
BoW features obtained. For cue integration, we adopt the ensemble of classifiers
paradigm whereby we train another SVM on the class confidence outputs pro-
vided by each feature classifier. The final classification decision is then made by
choosing the category with the strongest support. We use the aforementioned
methods in this work because they have demonstrated good performance for
categorization tasks [14].
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Fig. 4. An overview of our intention recognition approach which uses an object-action
intention network, a set of queries for interacting with the user, and a learning process
to improve predictions.

3.3 3D Object Pose Estimation using Superquadrics

We estimate the pose (location and orientation) of object point clusters using
the low latency method described by Duncan et al. in [7]. By employing su-
perquadrics, which are compact parametric shapes with tri-axis symmetry, this
method is able to determine object positions without a model base. It also re-
covers these superquadrics in a rapid manner by using an effective multi-scale
voxelization scheme.

4 Intention Recognition Framework

An overview of our intention recognition framework is shown in Figure 4. From
vision processing, object information is used as input for construction of our
object-action intention network. Based on the network, a set of queries is gen-
erated and proposed to the user. The form of this proposal can vary depending
on the type of human-robot interface used e.g. object bounding box for touch
screen, verbal questions for speech recognition. For generalization, a query is
simply a yes-or-no question. In an ideal situation, the first query proposed to
the user coincides with the user’s intention. If this does not occur, the query set
is modified and another query is presented until the user’s intention is communi-
cated as depicted by the query loop in Figure 4. The user’s selections are learned
via the learning loop in order to adapt to the user’s preferences. Notably, the
ability of our system to simultaneously infer a user’s intention and learn their
preferences over time differentiates it from the state of the art. With learning, we
are able to improve the intention predictions which in effect reduces the need for
many rounds of user interaction. The individual components of this framework
are unveiled in the following sections.
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4.1 Object-Action Intention Networks

We formulate our intention recognition problem by using probability theory as
follows. For each 3D scene that is captured and processed, there are n objects3.
These objects are represented by the binary random variables O = {O1, . . . , On}
where their values oi indicate whether the user wants to manipulate the object or
not. Associated with each object are binary action variables A = {A1, . . . , Am}
whose values aj indicate whether the user wants to perform the action on the
object or not. In addition to these object and action variables are object feature
variables F = {F1, . . . , Fcn}, which are also binary random variables representing
some intrinsic property of the object e.g distance from camera, color etc. There
can be c feature variables per object and they can potentially bias an object for
selection by the user, e.g. user’s preference for red objects.

Under this formulation, our task is to infer the most probable object that
the user wants to manipulate as well as the most probable action that the user
intends to perform on the object. Thus, our goal is to find the highest-probability
joint assignment of object and action variables of the form P (oi = yes, aj = yes),
which represents the intent of the user. With a joint distribution of these vari-
ables, we can answer questions about the observed scene ranging from the stan-
dard conditional probability query P (O = o,A = a |F = f), to finding the most
probable assignment to some subset of variables4. We are particularly interested
in determining the maximum a posteriori (MAP) probability, whereby the task
is to infer the most likely assignment to the variables in O and A given the
evidence F = f : argmax

o,a P (o,a | f).

We employ Markov Networks [11] as the foundation of our Object-Action In-
tention Networks so that we can model and encode the relationships between the
object and action variables as directional influence between them cannot be nat-
urally ascribed. These networks are undirected graphical models that efficiently
capture the joint distribution P over the set of random variables by exploiting
existing independence properties that exist between them. The set of object and
action variables comprise the corresponding set of object and action nodes in
the network. The edge links between an object and action node signifies that the
action can be performed on the object and that a direct probabilistic relation-
ship exists between them. The joint distribution is quantitatively parameterized
in the network using factors Φ, which are compatibility functions mapping the
values of a set of random variables d to positive real numbers R

+. Using the
joint distribution, we can acquire the Maximum A Posteriori probability (MAP)
as shown in Equation 1. We believe that the MAP is likely to reflect a user’s
preferences over time.

MAP (O,A | f) = argmax
o,a

P (o,a, f) (1)

3 In this work, we use the term objects to refer to instances of generic object categories.
4 We use capital letters, e.g. X, to denote random variables and small letters e.g. x to
denote values taken by X.
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(a) RGB-D Image (b) Object-Action Intention Network

Fig. 5. Automatically configured Object-Action Intention Network in (b) for a real 3D
scene as captured by an RGB-D camera shown in (a). The object category instances
present in the scene and their distances from the camera are used to automatically
generate the network along with the associated actions that can be performed on them.

In this work, we only utilize an object’s distance from the camera as a contribut-
ing object feature (i.e. c = 1) for reasoning and these variables indicate whether
an object is near or far from the camera based on a dynamically-determined
distance threshold. The dependencies of these object, action, and feature vari-
ables are captured by the network with the overall joint probability distribution
P (o1, . . . , on, a1, . . . , am, f1, . . . , fcn). Objects in the scene are resolved via object
categorization and the object distances from the camera are calculated via object
pose estimation as described earlier. An example of an object-action intention
network is shown in Figure 5 (b) for the scene shown in Figure 5 (a). The rep-
resentational complexity of these networks is O(nm), where n is the number of
objects and m is the number of possible actions. The computational complexity
is proportional to maximum size of the cliques in these networks.

Query Selection The user is prompted with a series of queries based on the
marginal probabilities of variables and factors in the network. A query in its
most generic form is a yes-or-no question involving an object variable, an ac-
tion variable, or a combination of both5. For every network that is constructed,
there is a set of s generated queries Q = {Q1, ..., Qs} sorted according to their
probabilities. The goal is to get the first query Q1 of Q to match the intent of
the human. For this to be achieved, the user’s selections must be learned and
this is described in a subsequent section. Moreover, an individual query Qt may
represent an attempt to determine if the user wants to manipulate an object
Qt = {Oi}, perform an action Qt = {Aj}, or perform an action on a specific
object Qt = {Oi, Aj}. The user’s response leads to a modification of the set Q,
eventually resulting in one that only contains the query corresponding to the
user’s intention. Feedback from the user is treated as observations or evidence
in the network and the network is updated accordingly (see Figure 4).

5 A query can be mapped to different types of human-robot interfaces that vary in
terms of communication bandwidth e.g. touch screen (more queries) vs. brain com-
puter interface (BCI) (less queries).
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4.2 Incremental Intention Learning

To implement the modification of the probability distribution over all object-
action pairs in response to user’s preference, we cast our learning framework as
a form of Recursive Bayesian Incremental Learning described as follows - Let θ
represent the collection of multinomial parameter vectors for the network fac-
tors defined over all object and action variables, hence θi = φi, where φi is the
ith factor in a network. Furthermore, let Dk = {x1,x2, . . . ,xk} explicitly rep-
resent k observed user choices where xi = {No,No, . . . , oi = Y es, . . . , No, aj =
Y es, . . . , No} indicating a user’s selection of the ith object and the jth action
as captured via our object action intention network (the No’s coincide with the
objects and actions that were not selected). Our aim is to determine the most
likely object-action pair based on information we have already acquired. There-
fore, by using Bayes formula, the posterior probability for the distribution over
all object and action variables satisfies the recursive relation given in Equation
2.

P (θ | Dk) ∝ P (xk |θ)P (θ | Dk−1) (2)

Equation 2 allows us to incrementally learn a user’s preferences as they repeat-
edly interact with our system and data are collected. Given that P (θ | D0) =
P (θ), we can use this equation repeatedly to produce the sequence of probabili-
ties P (θ), P (θ |x1), P (θ |x1,x2), and so on. The term P (xk |θ) in Eq. 2 is known
as the likelihood function and it represents the probability of the observed data
given the parameters values θ. Its value is given in Equation 3 whereby the prob-
ability of each datum xi given the parameters θ is proportional to the product
of the factors φi defined over the subset of random variable values di.

P (xk |θ) ∝

k∏

i=1

φi(di | θ) (3)

∝

k∏

i=1

s∏

j=1

θ
Nij

ij (4)

Each object-action factor φi has s values (in our case s = 4), therefore θij
represents the jth value of the ith factor as shown in Eq 4. Nij represents the
selection of the respective factor value which can be 1 or 0 in our case.

The term P (θ | Dk−1) in Equation 2 represents the prior probability distribu-
tion based on the set of previously observed data samples. The prior is updated
as data are collected, thereby producing the posterior distribution which then
serves as the prior for the subsequent observation. We assume that the distri-
butions under consideration are of the Dirichlet form [11]. This translates into
each factor φi defined over a subset of variable values di being Dirichlet. As
a result, the posterior distribution is also Dirichlet, which allows us to update
them using sufficient statistics from the data. What follows is that the maximum
a posteriori estimate for θ is given according to sufficient statistics as shown in
Eq. 5.

θ̂ij =
Nij + αij − 1∑s

j=1
Nij +

∑s

j=1
(αij − 1)

(5)
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Fig. 6. Experimental set up: RGB-D scenes of common household objects are captured
and processed. Objects are extracted, categorized, and their poses estimated and this
is used to determine the most likely object and action that an individual desires.

With equivalent αij ’s, we are left with the form shown in Eq. 6 which is our
learning equation.

θ̂ij =
λNij + 1∑s

j=1
λNij + s

(6)

The Dirichlet hyperparameter αij stores the prior count observed for the value
j of factor φi whereas Nij represents its current count and λ = 1

α−1
. Thus, the

parameters θ are updated as more information becomes available. As a result,
when the user selects an object to manipulate and an action to perform on that
object, the value of the corresponding parameter value θij is updated.

5 Experimental Validation

The experiments detailed in this section were performed on RGB-D scenes of
common household objects captured by an RGB-D sensor where all of the objects
are located on table-tops (see Figure 6). We outline the evaluation set up, outline
the baseline approaches used for comparison, then we present our results.

5.1 Evaluation Set Up

To determine the user’s desired intention, human-robot interaction must take
place and we refer to these rounds of interactions as sessions. Thus, at the end
of each session, the object the human wants to manipulate and the action they
want to perform on that object is determined. The main performance metric we
use for our evaluations is the number of human-robot interactions per session
for arriving at the correct intention. The ideal scenario occurs when this value
is 1, which indicates that the first query proposed to the user is their actual in-
tent. Experiments were conducted to ascertain this value over multiple sessions
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Table 1. Examples of scenes used for evaluation. The scenes differ by a combination
of different objects and varying object positions

Session 1 ⇒ Session 2 ⇒ Session i ⇒

using multiple instances of objects from 11 categories with at least 4 possible
actions per object. We evaluate the performance of our framework under signif-
icant scene changes between sessions and its response after being trained with a
predetermined group of intentions.

Baseline Intention Recognition Approaches To the best of our knowledge,
no algorithm exists in the state of the art with which a direct comparison can
be performed. Therefore we constructed 3 approaches for this purpose:

– Random: randomly selects an object-action pair from the set of all possible
configurations of objects and actions.

– Scene-Random: randomly selects an object-action pair from the set of pos-
sible configurations of objects and actions afforded by the scene.

– Scene-Probability : selects the highest probable object-action pair based on
the total number of object-action pairs possible in the scene.

5.2 Performance under significant scene changes

In this section, we demonstrate how our framework performs under considerable
scene changes. As an example, consider the differences between scenes capturing
a bathroom counter-top versus a kitchen counter-top. Our test scenarios involve
at most 10 randomly-selected and randomly-positioned objects. For each session,
each object is either placed in a different position or replaced with another. One
possible intention (object-action pair) is chosen for 20 consecutive sessions and
the number of interactions required to communicate this intention per session
is calculated. This results in a total of 340 test scenes (see Table 1 for some
examples) Consider Figure 7 which lists the top 5 queries of query sets generated
for the 1st, 10th, and 20th sessions for one of the runs of this experiment. The
goal intention for this run was Drink-from-Bottle. As time progressed, queries
involving the object and action comprising this intention are ranked higher as
the system learns and accomodates for the user’s selections. By the 20th session,
the first query proposed to the user actually coincides with the desired intention.
The aforementioned procedure is followed for all the intentions considered in this
work and the average number of interactions required per session is determined.
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Session 1

Q1. Do you want to grasp something?
Q2. Do you want to move something?
Q3. Do you want to use bottle1?
Q4. Do you want to grasp bottle1?
Q5. Do you want to move bottle1?

Session 10

Q1. Do you want to use bottle1?
Q2. Do you want to drink from something?
Q3. Do you want to drink from bottle1?
Q4. Do you want to grasp bottle1?
Q5. Do you want to grasp bottle1?

Session 20

Q1. Do you want to drink from bottle1?
Q2. Do you want to drink from something?
Q3. Do you want to use the bottle1?
Q4. Do you want to grasp bottle1?
Q5. Do you want to grasp something?

(a) Top 5 queries for the 1st, 10th, and
20th sessions.

(b) Session 1 scene after vision
processing

Fig. 7. Example run for the desired intention Drink-from-Bottle. Notice how queries
involving both drink and bottle are ranked higher than others over time

Figure 8 displays the result of the complete experiment and compares our re-
sults with those acquired for the baseline approaches6. The figure shows that de-
spite considerable modifications to the scene, our framework manages to reduce
the number of human-robot interactions over time and consistently outperforms
the other methods. By the 20th session, it takes approximately 1 interaction to
determine what the user desires and the number of interactions were reduced by
an average of 81%. We have discovered that as a result of our intention recogni-
tion formulation, placing objects closer to the camera increased their likelihood
for selection and vice versa. Therefore, by moving desired objects away from
the camera, the average number of interactions increased. This phenomenom is
usually observed in the first couple of sessions (see how the Scene-Probability
method outperforms our method for the 1st session in Figure 8). However, this
effect is significantly reduced after multiple sessions and is of negligible impact
as a result of learning.

6 It should be noted that for all of the experiments in this work, the object-action
pairs of the constructed networks are initialized with equivalent probabilities which
are then altered over time due to incremental learning. Also, multiple instances of
an object category can be present in the scene at the same time.
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Fig. 8. Intention recognition results for significant scene changes. Each session corre-
sponds to a different scene where the object composition of the scene varies. Notice
how over time our method consistently reduces the amount of human-robot interactions
required for communicating tasks to the robot.

5.3 Performance after intention group training

Consider the following scenario: a person wakes up, brushes their teeth, drinks a
cup of coffee, and eats a bowl of cereal before they head off to work. They repeat
this sequence of events every morning. For humans, it takes relatively no effort
to determine this person’s morning routine after some time. For instance, if the
individual’s spouse wants to help them get to work faster, all they have to do
is put toothpaste on the toothbrush, make coffee, and prepare the cereal ahead
of time because they are cognizant of their spouse’s routine. For this reason,
this section presents the results of training on a group of intentions over time
then determining the amount of interaction required to choose one of them from
the group. This is somewhat analogous to learning the person’s morning routine
as previously described. Ideally, the selection likelihood of the intentions in the
group should be higher than all other possible intentions, therefore the amount
of interaction required to select one of them should be small.

The experiment is performed on scenes where the objects and their positions
vary over the span of at least 50 sessions. Each intention in the group is selected at
most 10 times in no particular order given a conducive scene. At the conclusion
of this “training” period, one of these intentions is randomly chosen and the
average number of interactions required for choosing it is calculated. Figure 9
illustrates the results of this experiment. It shows that our framework reduces the
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Fig. 9. Group Training: a group of intentions are learned over time then the amount
of interaction required to choose one of them from the group is determined.

necessary amount of interaction for all intentions tested and that it consistently
outperforms the baseline methods. This behavior is desired because we want
our framework to be able to capture a user’s preferences over time in order to
simultaneously reduce human interaction and maximize robot task performance
but at that the same time be flexible enough to adapt to new information.

6 Conclusion

In this paper, we have presented a vision-based human-robot collaborative sys-
tem that enables the recognition and learning of human intentions. At the core
of this system is our object-action intention recognition framework that is only
dependent on scene information for inferring intentions rather than on the ob-
servation of human physical actions, which is the commonly-accepted approach.
This is our principal contribution to the state-of-the-art as it is appropriate for
assistive robotic systems for persons with limited physical capabilities. We have
demonstrated through our evaluations that our framework is capable of adapt-
ing to a user’s preferences and reduces the amount of interaction necessary for
communicating tasks to a robot.
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