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Scene Flow Estimation from Sparse Light Fields

Using a Local 4D Affine Model
Pierre David, Mikaël Le Pendu, and Christine Guillemot, Fellow, IEEE

Abstract—In this paper, we address the problem of scene flow
estimation from sparsely sampled video light fields. We first
propose a local 4D affine model to represent scene flows, taking
into account light field epipolar geometry. The model parameters
are estimated per cluster in the 4D ray space. They are derived
by fitting the model on initial motion and disparity estimates
obtained by using 2D dense optical flow estimation techniques.
We demonstrate that the model is very effective for estimating
scene flows from 2D optical flows. The model regularizes the
optical flows and disparity maps, and interpolates disparity
variation values in occluded regions. The proposed model allows
us to benefit from deep learning-based 2D optical flow estimation
methods while ensuring scene flow geometry consistency in the
4 dimensions of the light field.

Index Terms—Scene flow, Optical flow, Disparity estimation,
Light field.

I. INTRODUCTION

L IGHT fields, by capturing light rays emitted by a scene

along different orientations, enable a variety of computer

vision applications, and in particular 3D scene modeling.

While the problem of depth estimation for 3D scene modeling

has already been widely investigated [1]–[5], the possibility to

estimate the motion in a 3D scene from light fields remains

widely open, despite the numerous applications, e.g., for robot

navigation, human-computer interfaces, augmented and virtual

reality.

The measured displacement of each point in the 3D scene

is referred to as a dense scene flow, concept that has first been

defined in [6]. Considering a multi-view set-up, the scene flow

is estimated using an optical flow estimator for each view.

The 3D scene flow is then computed by fitting its projection

on each view to the estimated optical flows, hence is defined

by the real 3D motion (∆X,∆Y,∆Z) of each 3D point.

However, in the recent literature (e.g. [7]–[10]), the scene flow

is instead defined as a direct extension of the optical flow,

where the depth (or disparity) d and the depth variation ∆d of

objects along time is represented in addition to the apparent

2D motion (∆x,∆y).
The problem of scene flow analysis has first been addressed

for stereo video sequences. The authors in [7]–[9] estimate a

scene flow (∆x,∆y,∆d, d) assuming that the scene can be

decomposed into rigidly moving objects and using discrete-

continuous optimization techniques. Several methods based
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on RGB-D videos have also been developed [10]–[12]. The

first methods for scene flow analysis from light fields have

been proposed in [13] and [14], based on variational models.

The authors in [15] propose oriented light field windows

to estimate the scene flow from a dense light field. All

these methods rely on epipolar plane images hence are only

applicable to densely sampled light fields (as those captured

with plenoptic cameras). They are not suitable for sparse light

fields (i.e. with large baselines), as for example those captured

by rigs of cameras.

In this paper, we focus on the problem of scene flow analysis

from large baseline video light fields. This problem is made

difficult due to the large temporal and angular occlusions.

Recent work (detailed in Section II) has shown the important

benefits of using deep learning for estimating optical flows,

disparity maps or scene flows from stereo images or videos.

However, extending and training network architectures that

would take light fields as input are challenging. First, using

light fields as inputs would increase the complexity of the

architecture. Then, training a deep neural network typically

requires very large datasets, particularly for high dimensional

data such as light fields. Only a few video light field datasets

are available, which is insufficient for performing unsupervised

learning. Furthermore, none of these datasets contain ground

truth optical flows, disparity maps or scene flows which would

be necessary in the context of supervised learning.

To cope with the above difficulties, we propose a 4D local

affine model for scene flow estimation. The model is defined

in the ray space and incorporates epipolar constraints to ensure

consistency of the scene flow on all light field views. We show

how the proposed model can be used for regularizing initial

and independently computed optical flows and disparity maps

in order to derive a coherent scene flow. To estimate the model,

we first perform a 4D over-segmentation of the light field at

time t, then we compute initial optical flows, disparity maps

and disparity variation estimates between the light field at time

t and t+ 1. For each 4D cluster, the parameters of the affine

model are estimated by fitting the model on the initial optical

flow and disparity estimates. The approach is summarized in

Figure 1. The proposed method and the corresponding 4D

affine model allow us to benefit from state-of-the-art deep

learning-based optical flow estimation methods while ensuring

scene flow geometry consistency in the 4 dimensions of the

light field. Note that a simplified version of the model without

the geometrical constraints, has been presented in [16] within

the context of sparse-to-dense interpolation.

In order to validate the proposed model on sparse light

fields, we have created synthetic video light fields based on the

Sintel movie (used in the optical flow benchmark [17], [18]).
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Fig. 1. Block diagram of our method. The light field at time t is first partitioned into 4D clusters. Then, we build a weighted graph where a node, an edge
and the associated weight respectively represent a cluster, a connection between two adjacent clusters and the distance between their respective centroids.
Using the graph, for each cluster, we search for the closest neighbors. An initial scene flow estimation is simultaneously performed using the light field at t
and t+ 1. Finally, for each cluster, we fit an affine scene flow model, using the initial scene flow estimates contained inside the cluster and its neighbors.

The light field views are provided with the corresponding

ground truth scene flow (optical flow, disparity and disparity

variation).

Although the proposed scene flow method is designed for

sparse light fields, we also assess our method on a dense

light field video dataset provided by the authors of [19]. For

the sparse dataset, the obtained scene flows are compared

against those computed with the oriented window method in

[15], with the sparse-to-dense interpolation method in [16]

and with various stereo scene flow methods [7], [8]. We

also compared the estimated optical flow, disparity maps and

disparity variation with the one given by a state-of-the-art

optical flow estimation technique based on a deep learning

architecture called PWC-Net [20]. For the dense dataset, we

compared our results with the full view method in [19], with

the aforementioned stereo scene flow methods [7], [8] and with

various light field depth estimation methods like [3], [21], [22].

Our scene flow estimation outperforms any other tested

method in terms of accuracy of the estimated optical flow,

disparity, and disparity variation for the sparse dataset, and

achieves comparable results to state-of-the-art methods for the

dense dataset.

II. BACKGROUND AND RELATED WORK

Before reviewing prior work on scene flow estimation from

multi-view captures and from light fields, this section gives a

quick overview of recent methods proposed for solving two

strongly related problems, i.e., scene depth estimation from

light fields but also optical flow estimation from videos.

A. Scene depth estimation from light fields

With dense light fields with small baselines, pixels in the

different views corresponding to the same 3D point form a

line in the EPI, whose slope is proportional to the disparity

between the views [23]. This observation naturally led to

estimating scene depth (related to the disparity or parallax

between the views) by analyzing the Epipolar Plane Images

(EPI) of dense light fields. The authors in [1] use structure

tensors to locally estimate these slopes, this local estimation

being then placed in a global optimization framework using a

variational approach. The authors in [2] propose a spinning

parallelogram operator for disparity estimation from EPIs,

accompanied with a confidence measure to handle ambiguities

and occlusions.

While the above methods are well suited for dense light

fields, they fail in the case of light fields with large baselines

for which stereo matching and optical flow estimation tech-

niques yield more accurate estimates. To give a few examples,

the authors in [3] estimate disparity by computing a matching

cost volume between the central sub-aperture image and sub-

aperture images warped using the phase shift theorem. The ap-

proach in [5] consists in estimating disparities between the four

corner views, then propagating them to the target viewpoint.

The authors in [4] employ an empirical Bayesian framework

to estimate scene-dependent parameters for inferring scene

disparity.

We have recently seen the emergence of deep learning solu-

tions, using in particular convolutional network architectures,

for scene depth estimation from light fields. The architectures

proposed in [24], [25] operate on EPI, hence are well suited for

dense light fields only. A deep neural network, called Dispnet,

is proposed in [26] based on the optical flow estimation

network Flownet2 [27] but computing 1D correlation instead

of 2D correlation to be better suited for disparity estimation.

The authors in [28] propose a learning based depth estimation

framework suitable for both densely and sparsely sampled light

fields, that can learn depth maps for every viewpoint from any

subset of input views.

B. Optical flow estimation from videos

Optical flow estimation and stereo matching have been

prominent issues in computer vision for years. In order to

compare the different methods, benchmark data sets have been

proposed. The two most popular datasets are the MPI Sintel

Dataset [17] and the KITTI Benchmark [29]. The first one

consists in synthetic sequences taken from the movie Sintel.

The second one consists in video sequences captured from

a moving car, and is therefore better suited for autonomous

driving applications.

When looking at the top ranking optical flow estimation

methods with the two datasets, we can see that they are almost

exclusively using a deep learning approach. To only cite a few
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methods, FlowNet [30] was the first end-to-end neural network

to compute an optical flow from images. It is a trainable

encoder-decoder network. The authors in [27] further improve

the network by stacking multiple encoder-decoder networks.

However, the final network is much bigger than the original

one and needs to be trained sequentially for each encoder-

decoder part to avoid over-fitting. To reduce the size of the

network and make it easier to train, a coarse-to-fine strategy,

and the corresponding network called SpyNet, were proposed

in [31]. Finally, the authors in [20], as in [31], take advantage

of coarse-to-fine approaches, and add a partial cost volume

computation in their network, named PWC-Net. It is currently

one of the top ranking optical flow methods in the MPI Sintel

benchmark.

C. Scene flow estimation

The most common way of estimating scene flow is by

using stereo images. The authors in [7] propose a slanted-

plane scene flow model for objects in a 3D scene, within the

context of autonomous driving. They assume that the scene is

composed of a small number of rigidly moving objects and

perform a joint segmentation and scene flow estimation. In

order to estimate the scene flow model, a discrete-continuous

conditional random field is optimized with particle belief

propagation [32]. A scene flow model representing the scene

with piecewise planar and rigidly moving regions is proposed

in [8]. The authors in [9] propose a conditional random field

(CRF) based model for robust 3D scene flow estimation. The

approach estimates so called instance scene flows, i.e. scene

flows of 3D points that are geometrically and semantically

grouped into instances, using a CNN.

While the models used in these methods are not completely

specific for autonomous driving applications, they are however

optimized and tested on the KITTI Benchmark [29]. Using

any of these methods on other scenes than driving scenes may

require some changes in the parameters of the models.

Another way to estimate a scene flow is by using RGB-D

images. In [11], local and global constraints are combined in

a variational framework to estimate a scene flow, assuming

a locally rigid motion. The authors use the depth map to

regularize the final scene flow with an adaptive total variation

formulation. Similarly to [7], the authors in [10] jointly

perform segmentation and 3D motion estimation. The scene is

decomposed into depth layers to handle occlusions and a scene

flow model is computed for each layer. The method in [12] first

performs geometric segmentation and then jointly estimates

odometry and scene flow by isolating the static clusters.

Scene flow estimation from densely sampled light fields was

first tackled in [13]. The authors jointly estimate the disparity

and the optical flow assuming piecewise smoothness of the

scene flow. A preconditioned primal-dual algorithm is used to

solve a convex global energy functional, which also enforces

consistency between the multiple views. On the other hand,

the authors in [14], [15] and [33] first estimate the geometry

of the scene by computing a disparity map and then estimate

the apparent motion in the scene. In [14], the disparity value

in each point of the EPIs is derived by analyzing the structure

tensor. The optical flow is estimated by minimizing an energy

function that assumes spatio-angular smoothness and and takes

into account occlusions between objects in the scene. The

authors in [15] also use an EPI-based method [34] to compute

the disparity maps at time t and t+1. Then, they use oriented

light-field windows along with a coarse-to-fine strategy to

minimize an energy function derived from SimpleFlow [35].

A confidence measure is computed and used to regularize the

scene flow in the coarse-to-fine iterations. The authors in [33]

fist estimate a disparity map using [1] and then recover a 3D

scene flow solving a linear flow equation for each ray. This

equation, which relies on 4D light field gradients, is under-

constrained, so a global and a local approach are combined

in order to solve it. The local one is derived from Lucas-

Kanade [36] and the global one from Horn-Schunck [37]. The

authors in [38] estimate a scene flow to construct a 4D spatio-

temporally coherent representation of dynamic scenes from

sparse light fields. First, a 3D point cloud is estimated, then

every point is back-projected to a more densely sampled virtual

light field, and the resulting EPIs are used to compute the scene

flow using the oriented window approach [15]. Finally, the

authors in [19] use light field super-pixels and their slanted-

planes representation in 3D space to propagate and optimize

an optical flow and a disparity map from the central view to

every other view. The method is mostly fit for dense light fields

because accurately computing the normal of the 3D slanted-

plane for every super-pixels requires to have a dense set of

views.

Our method computes a dense scene flow for every ray of a

light field. It is based on views instead of EPIs and therefore

it is suitable for sparsely sampled light fields. Using a 4D

affine model to represent the scene flow in the light field, we

jointly estimate an optical flow, a disparity map and a disparity

variation map.

III. 4D AFFINE MODEL

Let us consider the 4D representation of Light Fields

proposed in [39] and [40] to describe the radiance along the

different light rays. This 4D function, at each time instant

t, is denoted LF t(u, v, x, y). The pairs (u, v) and (x, y)
respectively denote the angular and spatial coordinates of light

rays. A view (u, v) of a light field at t is written Lt
uv . In the

article, we assume that the vertical and horizontal baselines

are the same. The scene flow can be divided in the following

components:

• the optical flow: F =
(

∆x ∆y
)⊤

,

• the disparity at time t: d t,

• the disparity variation between t and t+ 1: ∆d.

In this paper, we propose a local 4D affine model to

represent a scene flow in a light field. The fundamental affine

model can be defined as follows:

∆x(u, v, x, y) = θ01u+ θ02v + θ03x+ θ04y + θ05, (1)

∆y(u, v, x, y) = θ06u+ θ07v + θ08x+ θ09y + θ010, (2)

d t(u, v, x, y) = θ011u+ θ012v + θ013x+ θ014y + θ015, (3)

∆d(u, v, x, y) = θ016u+ θ017v + θ018x+ θ019y + θ020, (4)
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where θ0 =
(

θ01 . . . θ020
)⊤

are the parameters of the model.

However, this model does not take into account epipolar

geometry of light fields, i.e. the fact that a 3D point in a

scene is projected on 1D lines in EPIs, the slope of these

lines being directly related to inter-view disparity. Hence, we

derive in this section the equations for a reduced affine model

that also satisfies the epipolar constraints.

A. Constraints on the Optical Flow

First, let us consider the vertical epipolar constraints. Given

a non-occluded point in the 3D scene, we denote by P0, P1,

P2 and P3 its respective projections on the views (u, v) and

(u, v +∆v) at the time instants t and t+ 1, as shown in Fig.

2.

(u
,v
)

(u
,v

+
∆
v
)

t t+ 1

Lt
uv

Lt
uv+∆v

Lt+1
uv

Lt+1
uv+∆v

P0

•

P1
•

P2

•

P3
•

Fig. 2. Projections of one 3D scene point on 2 views of the light field at
time instants t and t+ 1

The coordinates of the points P0, P1, P2 and P3 in the

4-dimensional space (u, v, x, y) are then related with the

following equation:



















P1 = P0 +∆v · ν(P0, t),

P2 = P0 + φ(P0),

P3 = P2 +∆v · ν(P2, t+ 1),

P3 = P1 + φ(P1),

(5)

where ν(P, t) and φ(P ) are 4-dimensional vectors repre-

senting respectively the orientation of the vertical epipolar line

passing by a point P at time t, and the optical flow of P from

time t to t+ 1. These vectors are expressed as:

ν(P, t) =









0
1
0

d t(P )









and φ(P ) =









0
0

∆x(P )
∆y(P )









. (6)

We can derive from Eq. (5) that the optical flow vectors

φ(P0) and φ(P1) must satisfy the following equality to be

angularly consistent:

φ(P1)− φ(P0) = ∆v · [ν(P2, t+ 1)− ν(P0, t)] . (7)

From the definition of ν and φ in Eq. (6), this equality can

be rewritten:
{

∆x(P1)−∆x(P0) = 0,

∆y(P1)−∆y(P0) = ∆v ·∆d(P0),
(8)

where we define ∆d(P0) = d t+1(P2)− d t(P0).
Let us now reintegrate these constraints into the affine

model. Knowing the relationship between the coordinates of

P0 and P1 in Eq. (5) and the expressions of ∆x and ∆y in

Eqs. (1) and (2), we can express the variation of optical flow

between P0 and P1 (i.e. along a vertical epipolar line) as a

function of the model’s parameters:
{

∆x(P1)−∆x(P0) = ∆v
(

θ02 + θ04 × d t(P0)
)

,

∆y(P1)−∆y(P0) = ∆v
(

θ07 + θ09 × d t(P0)
)

.
(9)

By combining Eqs. (8) and (9), we obtain the following

constraints on the model’s parameters:

θ02 + θ04 × d t(P0) = 0, (10)

θ07 + θ09 × d t(P0) = ∆d(P0). (11)

Similarly, horizontal epipolar constraints give:

θ01 + θ03 × d t(P0) = ∆d(P0), (12)

θ06 + θ08 × d t(P0) = 0. (13)

Note that one could directly replace d t(P0) and ∆d(P0)
by their expressions in Equations (3) and (4). However, the

model would lose its linearity and become more complex to

solve. Instead, we choose to approximate the disparity d t(P0)
by a pre-estimated disparity value d. The derivation of d is

detailed in Section IV (see Equation (43)). We also eliminate

∆d(P0) by taking the difference between Equations (11) and

(12). We can then simplify our model and reduce the number

of parameters as

θ02 = −θ04 × d,

θ07 = θ01 + θ03 × d− θ09 × d, (14)

θ06 = −θ08 × d.

So, the optical flow model becomes

∆x(P0) = θ01u+ θ03x+ θ04 × (y − dv) + θ05, (15)

∆y(P0) = θ01v + θ03dv + θ08(x− du) + θ09(y − dv) + θ010.

B. Constraints on the Disparity and Disparity Variation

Furthermore, we can also reduce the number of parame-

ters of the disparity and the disparity variation models. The

epipolar geometry of a light field requires that the disparity

remains constant along a vertical or horizontal epipolar line.

This constraint gives the following equations:

d t(P0 +∆v · ν(P0, t))− d t(P0) = 0,

d t(P0 +∆u · µ(P0, t))− d t(P0) = 0, (16)

∆d(P0 +∆v · ν(P0, t))−∆d(P0) = 0,

∆d(P0 +∆u · µ(P0, t))−∆d(P0) = 0.
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By replacing the terms in Equation (16) by the expression

of their model in Equations (3-4), we obtain the additional

constraints:

θ012 = −θ014 × d,

θ011 = −θ013 × d, (17)

θ017 = −θ019 × d,

θ016 = −θ018 × d.

Te disparity and disparity variation models thus become:

d t(P0) = θ013(x− du) + θ014(y − dv) + θ015, (18)

∆d(P0) = θ018(x− du) + θ019(y − dv) + θ020. (19)

This allows us to reduce again the number of parameters

from 17 to 13. We denote θ =
(

θ1 . . . θ13
)⊤

the new

parameters. The final scene flow model is the following:

∆x(P0) = θ1u+ θ2x+ θ3(y − dv) + θ4, (20)

∆y(P0) = θ1v + θ2dv + θ5(x− du) + θ6(y − dv) + θ7,

d t(P0) = θ8(x− du) + θ9(y − dv) + θ10,

∆d(P0) = θ11(x− du) + θ12(y − dv) + θ13.

IV. ESTIMATING THE MODEL PARAMETERS

A. Initializing the scene flow

Most recent methods to estimate optical flows or disparity

maps use deep neural networks. However, these methods re-

quire a huge amount of data to train the models. Because of the

limited number of video light field datasets with corresponding

ground truth scene flows, extending deep scene flow estimation

methods to light fields is very challenging.

Instead, in this paper, we propose to take advantage of 2D

optical flow methods and then use our model to regularize the

different flows in the 4D ray space in order to compute a scene

flow that would be consistent across all views. For each view

of the light field, we estimate an optical flow independently.

We also use the same optical flow method to estimate disparity

maps at t and t+1. For the experiments, we consider a state-of-

the-art technique based on a deep learning architecture called

PWC-Net [20]. The initial disparity variation is estimated in

regions where there is no temporal or angular occlusion by

computing the difference of disparity along the optical flow,

using the initial optical flow and disparity maps at t and t+1.

This approach requires to compute an occlusion mask

in order to know where we can estimate reliable disparity

variation. For that purpose, similarly to [5], we compute an

energy value for every point P (u, v, x, y) of LF t, as

E = Ec + λ1E∇c + λ2Ef + λ3E∇f . (21)

The terms Ec and E∇c are respectively color and color

gradient consistency terms computed between the view (u, v)
and the same projected view from t+ 1 to t, and are defined

as

Ec(P ) =
∥

∥Lt+1
uv (P + Finit(P ))− Lt

uv(P )
∥

∥

2
, (22)

LF t LF t+1

Disparity estimation (with PWC-Net)

Optical flow estimation (with PWC-Net)

Fig. 3. Initialization of the scene flow using a deep optical flow method
(PWC-Net [20] in our case).

E∇c(P ) =
∥

∥∇xL
t+1
uv (P + Finit(P ))−∇xL

t
uv(P )

∥

∥

2

+
∥

∥∇yL
t+1
uv (P + Finit(P ))−∇yL

t
uv(P )

∥

∥

2
.

(23)

The energy terms Ef and E∇f measure the consistency of the

forward optical flow Finit and the backward optical flow F b
init,

and are defined as

Ef (P ) =
∥

∥Finit(P ) + F b
init(P + Finit(P ))

∥

∥

2
, (24)

E∇f (P ) =
∥

∥∇xFinit(P ) +∇xF
b
init(P + Finit(P ))

∥

∥

2

+
∥

∥∇yFinit(P ) +∇yF
b
init(P + Finit(P ))

∥

∥

2

(25)

From this energy value, we can compute a confidence

measure C as

C(P ) = exp

(

−
E(P )

2σ2
c

)

(26)

where σc controls the “width” of the distribution. Finally, in

order to generate a binary mask B, we threshold the confidence

map as

B(P ) =

{

1 if C(P ) > 0.5

0 otherwise
(27)

For the experiments, we have chosen λ1 = 2, λ2 = 10,

λ3 = 20 and σc = 0.5.

Using this mask, we can compute an initial scene flow

Finit, d
t
init,∆dinit where the optical flow and the disparity map

at t are completely dense and where the disparity variation

is only available on non-occluded regions. We can then use

our model to regularize the optical flow and disparity and to

interpolate the disparity variation in occluded regions (while

also regularizing it in non-occluded regions).

B. Clustering the light field

The model previously described works under one assump-

tion: our model is affine, so the scene flow should not have

discontinuities. As a consequence, we can partition our light

field into clusters that respect the assumption and fit one model

for each cluster. If the clusters correspond to the same object

in the scene, the assumption will be valid. We therefore group

pixels of similar color across the views and corresponding to

the same scene area in 4D clusters, using the method proposed
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in [41]. The method is inspired by the SLIC algorithm [42].

Centroids are first initialised on a reference view. Their dispar-

ity is then estimated and used to project the centroids to all the

views. A k-means clustering is then simultaneously performed

on all views. Using the centroid disparity, all the rays assigned

to a cluster are projected back to the reference view to update

the centroids colors and spatial positions. The approach is fast,

free of any strong scene geometry prior and does not require a

dense depth map estimation. For these reasons, we chose this

method for our model.

To estimate the model parameters for each cluster, the model

is fitted to the initial optical flow and disparity estimates avail-

able in each cluster. The number of estimates may however

not be sufficient in some clusters. For this reason, we propose

to build a graph connecting the different clusters. This graph

enables us to look for the N nearest clusters of a given cluster,

adding more estimates in the computation of the scene flow

model of a given cluster.

C. Connecting the clusters with a weighted graph

In order to connect the different clusters, we build an

undirected weighted graph G = {V, E , w}. V is the set of

the K clusters computed in the clustering step (see Fig.1). A

vertex i is connected to another one j if their corresponding

clusters are adjacent to one another in at least one view of the

light field or if they are in the same range of disparity, that is

if

|d t(Ci)− d t(Cj)| < β

(

max
k∈V

d t(Ck)−min
k∈V

d t(Ck)

)

, (28)

when Ci and Cj denote the clusters centroids and β ∈ [0, 1]
a threshold coefficient. In the experiments, we fix β = 0.1.

The weight between two connected nodes i and j is defined

as

w(i, j) = min
(u,v)∈Ωij

exp [−αD (Puv(Ci),Puv(Cj))], (29)

where Ωij is the set of views where i and j are adjacent,

Puv(C) the projection of the centroid C on the view (u, v)
and α a parameter that we empirically fix to 0.2. The distance

D is based on spatial and color proximity and defined as in

[41]:

D =

√

dc
2 +

m2

S2
ds

2 (30)

where S =
√

H ×W/K with W and H the width and height

of a view. The parameter m has the same value as for the

clustering step, it is used in the clustering step to control the

compactness of the clusters. dc and ds are the color and spatial

distances respectively defined as euclidean distances in the

CIELAB colorspace and the [xy] space:

dc(Ci, Cj) =
√

(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 (31)

ds(Ci, Cj) =
√

(xi − xj)2 + (yi − yj)2 (32)

Once the graph is computed, we can look for the N nearest

neighbors of a given node i using Dijkstra’s algorithm [43].

In the search, we discard every vertex whose corresponding

cluster contains no scene flow estimate (which can happen

when the initial scene flow is sparse). The set of N neighbors

of i (including itself) is denoted Ni. It is used to have more

scene flow estimates than those inside the cluster and in

particular when the cluster i has no estimate inside itself.

D. Fitting a model with RANSAC

The approach we use to fit the model described in Section

III to the scene flow estimates that we have is inspired from

the RANSAC method [44]. The general idea is to choose m
scene flow estimates, to compute the parameters of the model

and then to evaluate the cost of the model.

Let SFi be the set of initial scene flow estimates contained

in the cluster i, we have

SFi =







u1 v1 x1 y1 ∆x1 ∆y1 d t
1 ∆d1

...
...

...
...

...
...

...
...

uni
vni

xni
yni

∆xni
∆yni

d t
ni

∆dni







(33)

The equation (20) is linear in θ so we build a block matrix

Ai and vector bi such that

∥

∥

∥Aiθ̂ − bi

∥

∥

∥

2
represents the fidelity

of a model θ̂ to the initial scene estimates SFi.

Ai =











Ax
i 0 0

Ay
i 0 0

0 Ad
i 0

0 0 A∆
i











(34)

where the sub-matrices Ax
i , Ay

i , Ad
i and A∆

i are defined as

Ax
i =







u1 x1 y1 − div1 1 0 0 0
...

...
...

...
...

...
...

uni
xni

yni
− divni

1 0 0 0






(35)

Ay
i =







v1 div1 0 0 x1 − diu1 y1 − div1 1
...

...
...

...
...

...
...

vni
divni

0 0 xni
− diuni

yni
− divni

1







(36)

Ad
i = A∆

i =







x1 − diu1 y1 − div1 1
...

...
...

xni
− diuni

yni
− divni

1






(37)

Let bi be the corresponding vector to Ai:

bi =
(

bxi byi bdi b∆i
)⊤

(38)

with:

bxi =
(

∆x1 · · ·∆xni

)

(39)

byi =
(

∆y1 · · ·∆yni

)

(40)

bdi =
(

dt1 · · · dtni

)

(41)

b∆i =
(

∆d1 · · · ∆dni

)

(42)
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In order to make our model linear, we approximate the

disparity in Equations (10), (11), (12) and (13) by a pre-

estimated disparity value. We compute one disparity estimate

per cluster di by averaging the disparity estimates contained

in the cluster i and in its neighbors as

di =

∑

j∈Ni

e−λw(i,j)
nj
∑

k=1

bdj,k
∑

j∈Ni

e−λw(i,j)nj

(43)

The parameter λ controls the weight of the neighboring

clusters in the average computation and bdj,k denotes the kth

element of vector bdj .

The more constant the disparity is in a cluster, the more

correct the approximation is. For each cluster i, we search for

the parameters θ of the model (20) that minimize the following

cost function:

Li(θ) =
∑

j∈Ni

e−λw(i,j) · fj(θ) (44)

where fj(θ) is the number of outliers produced by the model

θ among the estimates which are inside the cluster j, that can

be formally defined as:

fj(θ) =

4nj
∑

k=0

J|Aj,kθ − bj,k| > τK (45)

The symbols J·K denote the Iverson brackets, which return 1 if

the proposition inside the brackets is true and 0 otherwise. Aj,k

denotes the kth row of Aj . The hyperparameter τ is analogous

to the threshold defined in the classical RANSAC algorithm. It

is fixed to 5 in our experiments. As with RANSAC algorithm,

we generate an hypothesis θ̂ for our model, we compute its

cost function Li(θ̂) and compare it with the best candidate

θ̂min that we found so far (the one with the lowest cost

function). We iterate Niter times.

Before iterating, we initialize our model to a constant

model: we set every coordinate of θ̂ to 0 except for θ̂4, θ̂7, θ̂10
and θ̂13. This way, the scene flow inside a cluster is constant

and equal to the weighted average scene flow estimate.

θ̂4 = ∆xi =

∑

j∈Ni

e−λw(i,j)
nj
∑

k=1

bxj,k
∑

j∈Ni

e−λw(i,j)nj

θ̂7 = ∆yi =

∑

j∈Ni

e−λw(i,j)
nj
∑

k=1

byj,k
∑

j∈Ni

e−λw(i,j)nj

(46)

θ̂10 = di

θ̂13 = ∆di =

∑

j∈Ni

e−λw(i,j)
nj
∑

k=1

b∆j,k
∑

j∈Ni

e−λw(i,j)nj

What differs from classical RANSAC is the hypothesis gen-

eration. Classically, we would randomly choose 13 rows from

{Aj | j ∈ Ni} to form a matrix As and the corresponding

vector bs, and we would compute - if possible - θ̂ = A−1
s bs.

In our case, the process of selection of estimates is not

totally random. At every iteration, we want to generate stable

parameters θ̂. So, we need to form a matrix As with a low

condition number, which means with rows that are the most

linearly independent from one another.

Inspired by the work in [45], we propose to choose the

samples in a careful way in order to perform our hypothesis

generation step. More precisely, given a cluster i, we first build

the matrix and vector Ui and vi such that

Ui =
⊕

j∈Ni

Aj and vi =
⊕

j∈Ni

bj , (47)

where
⊕

k Xk denotes the vertical concatenation of the ma-

trices Xk.

Let M be the number of rows of Ui and vi. Our goal is

to find a set S of 13 linearly independent rows among the M
rows of Ui. The general idea is to iteratively add samples to

S taking into account the previous added samples.

We start with an empty set S . The first sample which is

added is randomly chosen. Then, for every iteration n from 2
to 13, we add a nth sample to the set S . To do so, we build the

matrix Ui(S, T ) with T being the range [1, n]. The resulting

matrix of size (n, n−1) is of rank n−1 because every row is

independent from one another. The nullspace of such matrix

gives us the unique vector z that is orthogonal to all rows

of this matrix. Then, in the normalized version of Ui(R, T )
(with R = [1,M ]), we search for the row that is the most

linearly dependent on the null vector, i.e. the most linearly

independent of the rows of Ui(S, T ). This constitutes the new

sample added to our set. We continue until we can reach our

13 samples. Once the set S is complete, we can build a matrix

and a vector As = Ui(S, T ) and bs = vi(S) with T = [1, 13].
We finally generate an hypothesis θ̂ = argminθ ‖Asθ − bs‖2.

The hypothesis generation is fully detailed in Algorithm 1.

Another change to the classic RANSAC algorithm is that

for each iteration and for each cluster, we also evaluate the

models given by the neighboring clusters. This allows us to

propagate correct models among the clusters and to make the

algorithm converge faster.

Input: Matrix Ui and its corresponding vector vi
Output: An hypothesis θ̂ for the cluster i

r0 ← selectRandomRow(Ui);
S ← {r0};
R ← [1,M ];
for n = 2→ 13 do

T ← [1, n];
z ← nullspace(Ui(S, T ));
normalizeRows(Ui(R, T ));
b← Ui(R, T )z;

r ← argmaxk∈R|bk|;
S ← S ∪ {r}

end

As ← Ui(S, T );
bs ← vi(S);

θ̂ ← argminθ ‖Asθ − bs‖2;

Algorithm 1: Hypothesis generation for cluster i
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V. EVALUATION

A. Scene Flow Datasets

In order to be able to compute objective performance

measures, we have generated a synthetic video Light Field

dataset with the corresponding ground truth scene flow1. For

that purpose, we have used the production files of the open

source movie Sintel [46] and have modified them in the

Blender 3D software [47] in order to render an array of

3x3 views. Similarly to the MPI Sintel flow dataset [17],

[18], we have modified the scenes to generate not only the

‘final’ render, but also a ‘clean’ render without lighting effects,

motion blur, or semi-transparent objects. Ground truth optical

flow and disparity maps were also generated for each view.

Since disparity variation maps could not be rendered within

Blender, we have computed them using the disparity map and

the optical flow. However, this process requires projecting

the disparity map of a frame to the next frame using the

optical flow, which results in unavailable disparity variation

information in areas of temporal occlusion. We have processed

two scenes of 3 × 3 views of 1024 × 436 pixels and 50
frames corresponding to the scenes ‘Bamboo2’ and ‘Temple1’

in [17]. The disparities (in pixels) between neighboring views

are in the range [−8,+52] for ‘Bamboo2’ and [−22,+9] for

‘Temple1’. We chose an angular configuration that is similar

to the one of real light fields captured by rigs of cameras,

such as e.g. in [48] and [49], which respectively provide 5×3
and 4 × 4 views. We also use the dataset of [48] to test our

method on a real light field sequence: ‘Bar’. Each frame is a

5 × 3 light field, in which each view has a spatial resolution

of 1920 × 1080 pixels. The horizontal and vertical baselines

of the camera setup are different, the ratio between the two

is 0.625 and the horizontal disparity ranges from 22 to 75

pixels. Finally, we assess our method on a dense synthetic

light field dataset provided by [19]. The light fields have an

angular resolution of 9 × 9 views and their spatial resolution

is either 1024× 720 or 412× 290, respectively referred to as

‘Big’ and ‘Small’ in the rest of the article. This configuration

simulates light fields captured with plenoptic cameras as in

[50] or captured with very dense camera arrays as in [51].

B. Influence of hyperparameters

We have various hyperparameters in our method: the most

critical ones are the number of clusters K, the number of

nearest neighbors N we select and the number of iterations to

compute an affine model Niter. For the experiments, we used

three metrics to assess the scene flow estimations: the End-

Point Error (EPE) for the optical flow, the Mean Absolute

Error (MAE) for the disparity map dt and the MAE for the

disparity variation ∆d. The latter is only computed for dis-

occluded pixels because there is no ground truth on occluded

pixels.

In order to search for the best combination of (N,K)
hyperparameters for the scene flow estimation, we perform

a grid search, using the aforementioned metrics for the whole

Sintel dataset. We have tested 4 different values of N = {1, 2,

1http://clim.inria.fr/Datasets/SyntheticVideoLF/index.html

5, 10} for 5 different values of K = {625, 1250, 2500, 5000,

10000}. The results of the grid search are shown in Figure 4.

From Figure 4, we notice that the optical flow and the

disparity grid search have approximately the same profile:

the errors decrease when the number of neighbors N and the

number of clusters K increase. We also notice that the optical

flow and disparity errors increase drastically when the number

of clusters is small. This is due to some underfitting of the

model: there are too many estimates and our affine model is

not complex enough to fit the data.

On the other hand, we see that the disparity variation

profile of the grid search behaves differently: the lowest error

is obtained when the number of neighbors N is high and

the number of clusters K is low. The difference with the

optical flow and disparity behaviour is caused by the way we

compute the initial disparity variation estimates: we compute

an occlusion mask to remove outliers. If there are inaccuracies

in the occlusion mask, outliers will be taken into account for

the model fitting. As a consequence, taking bigger clusters

and more neighbors helps reducing the errors by decreasing

the weight of an outlier among the estimates.

In our experiments, we choose K = 10000 and N = 10 as

it is the best combination for both optical flow and disparity

estimations.

After selecting the optimal combination of N and K, we

need to determine the number of iterations Niter that the model

needs to converge towards a stable solution. The evolution of

the cost function (written in Eq.(44)) is shown in Figure 5. In

the figure, we normalized with the initial cost, that is the cost

of the initial model as given in Eq.(46).

The convergence rate is high and from the third iteration, the

cost function is quasi-constant. So, we have taken Niter = 3
for the following evaluations.

C. Comparison with state-of-the-art methods

TABLE I
EPE OF ESTIMATED OPTICAL FLOW FOR ALL PIXELS

Bamboo2 Temple1

clean final clean final

Central

View

OSF [7] 1.943 1.901 6.400 4.797

PRSM [8] 1.203 1.287 1.285 1.671

OLFW [15] 1.421 1.462 2.061 2.374

PWC-Net [20] 0.946 1.018 1.032 1.284

SDSF [16] 1.007 1.102 1.042 1.383

Ours 0.883 0.946 0.959 1.242

All

Views

PWC-Net [20] 0.947 1.019 1.029 1.290

SDSF [16] 1.090 1.169 1.109 1.453

Ours 0.889 0.952 0.968 1.253

The proposed method is first assessed using our sparse

dataset. It is compared to the methods in [15], [16], respec-

tively referred to here as OLFW (Oriented Light Field Win-

dow) and SDSF (Sparse-to-Dense Scene Flow). The OLFW

method was designed for dense light fields captured with

plenoptic cameras and is hardly applicable when the baseline

is large. However, the optical flow searched via the oriented

http://clim.inria.fr/Datasets/SyntheticVideoLF/index.html
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Fig. 4. Grid search to find the optimal parameters N and K for the scene flow regularization. Each image is an average error map for a set of (K,N)
computed with the whole Sintel dataset. The combination of hyperparameters that gives the lowest errors is K = 10000 and N = 10.
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Fig. 5. Evolution of the cost in the RANSAC model fitting. The cost is
normalized by the cost of the initial model computed with Eq. (46). The cost
becomes almost constant from the third iteration.

TABLE II
MAE OF ESTIMATED DISPARITY FOR ALL PIXELS

Bamboo2 Temple1

clean final clean final

Central

View

OSF [7] 2.578 2.611 19.307 16.990

PRSM [8] 2.619 2.665 16.414 14.639

FDE [28] 1.598 1.663 0.250 1.090

PWC-Net [20] 1.888 1.985 0.384 0.689

Ours 1.738 1.819 0.332 0.674

All

Views

FDE [28] 2.067 2.137 0.419 1.391

PWC-Net [20] 1.972 2.055 0.378 0.710

Ours 1.868 1.932 0.338 0.682

window can be combined with disparity maps estimated with

methods suitable for sparse light fields. In the test reported

here, we have used ground truth disparity maps for this

method, thus showing the best results it can give for the

estimated scene flow. We also compare the disparity maps that

we estimate, as part of our scene flow model, with the ones

obtained with the deep learning based disparity estimation

method in [28], referred to here as FDE (Flexible Depth

Estimation).

Besides, our method is compared with the initial scene flow

estimated as in IV-A, using PWC-Net [20]. The optical flow

estimation technique [20] is used for separately estimating the

optical flow in each view as well as the disparity between

TABLE III
MAE OF ESTIMATED DISPARITY VARIATION FOR ALL UNOCCLUDED

PIXELS

Bamboo2 Temple1

clean final clean final

Central

View

OSF [7] 0.539 0.518 1.491 3.159

PRSM [8] 0.173 0.171 0.165 0.175

OLFW [15] 0.356 0.345 0.152 0.162

PWC-Net [20] 0.820 0.878 0.299 0.416

SDSF [16] 0.136 0.140 0.109 0.128

Ours 0.146 0.153 0.098 0.116

All

Views

PWC-Net [20] 0.869 0.938 0.295 0.418

SDSF [16] 0.140 0.142 0.111 0.131

Ours 0.150 0.157 0.105 0.127

views. In order to have a dense disparity variation for this

naive approach, we do not compute the occlusion mask. So,

the disparity variation in occluded or disoccluded areas will

never be consistent. Finally, we tested two stereo scene flow

methods: [7], [8], denoted as OSF (Object Scene Flow) and

PRSM (Piecewise Rigid Scene Model), using the central view

and its right neighbour as stereo pair.

The results are summarized in Tables I, II and III. For each

successive light field frame of the four sequences (Bamboo2

and Temple1, both rendered as clean and final), we compute

the optical flow EPE, the disparity and disparity variation

MAE on every ray of the light field (denoted 4D) and also

on the central view only (denoted 2D).

We can observe that our method always yields the most

accurate optical flows (see Table I), and disparity maps (see

Table II). Our method is only outperformed by the FDE

method [28] for the disparity of the central view on Bamboo2

clean & final and Temple1 clean. However, even for these light

fields, our method provides better average results than FDE

when considering the disparity maps of all the views, which

indicates a better consistency between views. Furthermore,

the FDE method only estimates disparity (and not optical

flow or disparity variation), while our approach computes

the full scene flow. Even though, we did not choose the

best combination of K and N parameters for the disparity

variation, the mean absolute error is the lowest for the Temple1

sequence and the second lowest among every tested method for

the Bamboo2 sequence (see Table III). It is only outperformed

by a small margin by our prior sparse-to-dense interpolation
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Fig. 6. Visual comparison of our method with [7], [8], [15], [20] on a frame of Bamboo2 clean. The optical flows are visualized with the Middlebury color
code, and the disparity maps and disparity variations are visualized using a gray-scale representation. The red pixels are the occlusion mask where there is
no ground truth disparity variation available.
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Fig. 7. Visual comparison of our method with [7], [8], [15], [20] on a frame of Temple1 final. The optical flows are visualized with the Middlebury color
code, and the disparity maps and disparity variations are visualized using a gray-scale representation. The red pixels are the occlusion mask where there is
no ground truth disparity variation available.

method (SDSF [16]). Note that the two stereo methods failed

to estimate an accurate disparity in the Temple1 sequence.

These methods were mainly developed in the context of

autonomous driving and their default parameters were fine-

tuned for urban scenes.

We also performed some qualitative assessment of the

methods on frames of Bamboo2 clean (Figure 6), Temple1

final (Figure 7) and of Bar (Figure 8). We can notice that our

method gives sharper optical flow and disparity maps than the

initial scene flow computed by [20], while correcting occlusion

errors.

Finally, we tested our method on a dense dataset provided

by [19]. In order to keep the complexity low, we estimated an

initial scene flow on a set of nine views (central view, corner

views and top, bottom, left and right views). Then, clustering

every views, we were able to fit a scene flow model, interpolate

and regularize the scene flow on every view of the light field.

For the disparity estimation, some light field depth estima-

tion methods were added to compare: globally consistent depth

labeling (GCDL) [21], phase-shift based depth estimation

(PSDE) [3] and occlusion-aware depth estimation (OADE)

[22]. Note that the metric used to compute the disparity

estimation is Root Mean Square Error (RMSE) as it was in the

original paper [19]. The results are given in Tables IV and V.

We see that, in terms of optical flow and disparity, our method

yields similar results to [19] for the central view, and that, in
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Fig. 8. Visual comparison of our methods with [20]. The optical flows are visualized with the Middlebury color code, and the disparity maps and disparity
variations are visualized using a gray-scale representation. The light field frames are taken from [48].

TABLE IV
EPE OF ESTIMATED OPTICAL FLOW FOR ALL PIXELS

NewSecretaire Mario Drawing Balls NewBalls

Small Big Small Big Small Big Small Big Small Big

Central

View

PRSM [8] 1.261 1.809 1.120 1.395 1.257 3.093 0.289 0.495 0.670 0.892

OSF [7] 0.877 1.513 2.749 6.239 - 4.355 0.744 1.613 0.547 0.794

LDOF [52] 3.780 3.174 2.136 4.524 1.129 1.766 0.440 0.587 1.259 1.883

OLFW [15] 2.265 4.441 4.893 7.166 2.495 5.005 1.167 6.073 1.206 13.713

FVOF [19] 0.781 1.393 0.826 1.012 0.928 1.324 0.284 0.481 0.496 0.693

Ours 0.771 0.851 1.065 0.865 1.146 1.661 0.390 0.430 0.602 0.708

All

Views

FVOF (4D) [19] 1.337 1.853 1.174 1.299 1.019 1.427 0.397 0.555 0.588 0.807

Ours (4D) 1.247 1.333 1.381 1.201 1.158 1.677 0.395 0.435 0.608 0.719

most scenes, it gives more accurate estimation when taking

every view into account. Both methods outperform every other

tested method based on light fields or stereo images.

D. Model validation

In order to validate the affine model, we used the ground

truth scene flow as initial estimation and then we performed

the clustering step as well as the fitting of the model with the

same hyperparameters as in Section V-B. This gives us the

minimum errors that can be obtained with our method, due

to the model approximation. The results of this experiment

for every scene and rendering are summarized in Table VI. In

comparison with state-of-the-art methods, the endpoint errors

for the optical flow and the mean absolute errors for the

disparity that we obtain are substantially lower by a factor

of 6. The mean absolute errors for the disparity variation also

decrease but less significantly, because they are already very

low.

Visual comparisons between the estimated scene flow and

the corresponding ground truth are also presented in Figures 9

and 10 for the light field frames that have the highest endpoint

errors in each scene rendered in final mode. We observe that,

although these frames are the worst frames in their respective

sequences, thin structures are well reconstructed. However, our

estimated optical flow is inaccurate for objects whose disparity

is so high that it disappears in other views of the light field,

making it very difficult to accurately cluster the object and fit

an accurate affine model. This is why the optical flow of the

butterfly on the bamboo frame in Figure 9 is visually different

from the ground truth. Inaccuracies are also observed when

small objects have colors that are very close to the background:

this leads to a weighted graph with strong edges between the

aforementioned object and the background clusters. This is the
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TABLE V
RMSE OF ESTIMATED DISPARITIES FOR ALL PIXELS

NewSecretaire Mario Drawing Balls NewBalls

Small Big Small Big Small Big Small Big Small Big

Central

View

GCDL [21] 0.134 0.123 0.176 0.273 0.084 0.067 0.277 0.211 0.092 0.069

PSDE [3] 0.350 0.136 0.543 0.092 0.115 0.119 0.595 0.111 0.148 0.077

OADE [22] 0.193 0.138 0.196 0.165 0.074 0.068 0.245 0.111 0.172 0.079

PRSM [8] 0.136 0.125 0.139 0.102 0.079 0.061 0.051 0.036 0.059 0.048

OSF [7] 0.131 0.120 0.216 0.103 - 0.141 0.062 0.053 0.068 0.061

OLFW [15] 0.147 0.126 0.188 0.123 0.097 0.067 0.094 0.064 0.077 0.057

FVOF [19] 0.110 0.080 0.136 0.073 0.058 0.039 0.068 0.036 0.051 0.041

Ours (2D) 0.113 0.084 0.084 0.058 0.061 0.053 0.049 0.033 0.053 0.039

All

Views

FVOF [19] 0.123 0.088 0.145 0.082 0.062 0.045 0.090 0.038 0.059 0.044

Ours 0.114 0.086 0.090 0.060 0.064 0.054 0.053 0.034 0.054 0.040

case for the optical flow of the dragons on the temple frame

in Figure 10.

TABLE VI
VALIDATION OF THE AFFINE MODEL ACCORDING TO THE SCENE

Bamboo2 Temple1

clean final clean final

EPE (∆x,∆y) 0.159 0.165 0.172 0.199

MAE dt 0.347 0.309 0.062 0.061

MAE ∆d 0.118 0.119 0.064 0.064

t
t
+
1

(∆
x
,∆

y
)

d
t

∆
d

Central view Ground Truth Ours

Fig. 9. Visual comparison of the ground truth scene flow and the one obtained
with our method using the ground truth scene flow as initialization, with a
Bamboo2 final frame.

In order to provide more insights on where our affine model

fails to accurately represent the ground truth, we measured

the influence of temporal occlusions, motion amplitude and

disparity with the Sintel dataset. In Table VII, we computed

errors on temporally non-occluded and occluded regions, re-

spectively referred to as NOC and OCC. The last row is the

ratio of each region for the whole dataset (e.g. there are 96%

pixels that are not occluded in the Sintel dataset). We can

t
t
+
1

(∆
x
,∆

y
)

d
t

∆
d

Central view Ground Truth Ours

Fig. 10. Visual comparison of the ground truth scene flow and the one
obtained with our method using the ground truth scene flow as initialization,
with a Temple1 final frame.

notice that the errors are much higher in occluded areas. Since

occlusions are typically located on objects boundaries, a bad

clustering that groups pixels from different objects will cause

errors during the model fitting step, thus giving a scene flow

with more errors in the occluded areas.

In Table VIII, the impact of motion amplitude is measured.

Let s =
√

∆x2 +∆y2 be the amplitude of motion of a pixel,

s10, s10-40, s40 respectively represent the regions where s <
10, s ∈ [10, 40] and s > 40. The results show that the error

of the model is larger for objects with a very large motion

(s > 40).

Finally, we evaluate the influence of disparity on the errors

in Table IX. Low disparity areas correspond to background

objects, which tend to have lower motion amplitude than

objects of the background whose disparities are higher. There-

fore, high disparity and large motion are inherently related in

the tested scenes, which explains why the areas with large

disparity have higher errors.
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TABLE VII
INFLUENCE OF OCCLUSIONS ON THE AFFINE MODEL

NOC OCC

EPE (∆x,∆y) 0.112 1.609

MAE dt 0.174 0.671

MAE ∆d 0.091 /

Ratio (%) 96 4

TABLE VIII
INFLUENCE OF THE MOTION AMPLITUDE ON THE AFFINE MODEL

s10 s10-40 s40

EPE (∆x,∆y) 0.096 0.647 4.505

MAE dt 0.202 0.084 0.475

MAE ∆d 0.080 0.088 0.957

Ratio (%) 91 8 1

E. Complexity

Using the optimal hyperparameters, the computation takes

one hour per light field frame on average for the sparse

dataset, with our laptop equipped with an Intel Core i7 -

6600U CPU and 16 GB RAM. Note that the aforementioned

duration is calculated with a non-optimal and fully sequential

implementation. However, most of the steps (i.e. scene flow

initialization, clustering, nearest neighbor search, model fit-

ting) could benefit from a parallel implementation. The authors

in [41] implements their clustering on a GPU. Then, once the

weighted graph is built, we can simultaneously search for the

nearest neighbors of each cluster. Finally, the model fitting

step can be performed independently on each cluster.

Let Ma × Ma and Ms × Ms be the angular and spatial

resolutions of our light field, K be the number of clusters, N
the number of neighbors, I the number of iterations and S
the number of initial scene flow estimates per cluster. Then,

the time complexity of fitting our model to every cluster is

O(13IKN2S), where 13 corresponds to the number of pa-

rameters of our model. Complexity changes quadratically with

the number of neighbors N due to the propagation step added

in the RANSAC algorithm. In the case where we estimate an

initial scene flow on every view, we have S = M2
aM

2
s /K and

the complexity becomes O(13IN2M2
aM

2
s ). However, if we

want to reduce the complexity of our method, we do not need

to have an initial scene flow estimate on every view. This is

what we did for the dense dataset, where we took 3×3 views

(instead of 9× 9 views) in the initialization step. In this case,

the complexity becomes O(117IN2M2
s ).

F. Limitations

We further test our method (with the PWC-Net [20] ini-

tialization) on dense synthetic datasets ray-traced using POV-

Ray, Apples and Snails provided by [13], that have very

narrow baselines. Their angular resolution is 9 × 9 with

a respective disparity range of [1.1, 1.7] and [0.3, 1.4]. The

scenes are photo-realistic with strong specular reflections,

strong shadows and non-lambertian surfaces. Therefore they

are very challenging light fields. We compare the mean square

TABLE IX
INFLUENCE OF THE DISPARITY ON THE AFFINE MODEL

dt < 10 dt > 10

EPE (∆x,∆y) 0.146 0.351

MAE dt 0.172 0.333

MAE ∆d 0.062 0.245

Ratio (%) 86 14

errors (MSE) produced by our estimations with those obtained

by the method proposed in [13] (denoted PPDA for Precon-

ditioned Primal-Dual Algorithm). The results are summarized

in Table X.

We can see that our method fails to accurately estimate

the scene flow on this dataset. This failure is mostly caused

by the initialization step which produces too many outliers

for the fitting of the model. The method we used, i.e. PWC-

Net [20], is indeed not very robust to strong specularity and

does not handle ambiguous situations, e.g. when a shadow is

moving, it is unclear whether the optical flow should represent

the apparent motion of the shadow or the motion of the surface

the shadow is projected on. The method in [13] operating on

epipolar plane images is on the contrary well suited for such

light fields with narrow baselines but cannot be used when the

disparity is large, the case we focus on in this paper.

TABLE X
MSE OF ESTIMATED OPTICAL FLOW AND DISPARITY

Apples Snails

MSE ∆x:
PPDA [13] 0.3114 0.0996
Ours 0.3283 0.2652

MSE ∆y:
PPDA [13] 0.0245 0.0406
Ours 0.0321 0.1095

MSE dt:
PPDA [13] 0.0025 0.0036
Ours 0.00023 0.0043

VI. CONCLUSION

In this paper, we have presented a new model of scene

flow that takes into account the epipolar structure of light

fields. Using the developed model, we proposed a method

to estimate scene flows from sparsely sampled video light

fields. This method is based on the three following steps:

first an initial scene flow estimation, then a 4D clustering

of the light field, and finally a fitting of the model for each

cluster. For the performance evaluation, we have generated a

synthetic dataset from the open source movie Sintel in order to

extend the popular MPI Sintel benchmark to sparsely sampled

light fields and scene flow. We also assessed our method on

a dense light field dataset. Some qualitative tests were finally

run on real light fields using the Fraunhofer dataset. For the

sparse dataset, our method had lower errors for the optical

flow, the disparity and the disparity variations than any other

state-of-the-art scene flow approaches. On the dense dataset,

our method gave comparable performances with the state-of-

the-art light field method regarding the horizontal and vertical

displacements (i.e. the optical flow) and disparity of the central
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view while yielding more accurate results on the whole 4D

light field. Using the ground truth scene flow as initialization,

we have shown that the ground truth locally conform to our

affine model. This model is also a light way of describing a

dense scene flow on the whole light field as it requires only

13 parameters per cluster. It could therefore be incorporated

in a light field coding scheme as it would provide a prediction

of every view of the light field at time t+1, only transmitting

the central view at t alongside with the scene flow parameters.
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