
Scene Illuminant Estimation: Past, Present and Future

S. D. Hordley

School of Computing Sciences

University of East Anglia

Norwich, NR4 7TJ

UK

Abstract

This paper addresses the problem of colour constancy: how a visual system is able to ensure that the

colours it perceives remain stable, regardless of the prevailing scene illuminant. Our aim is firstly to summarise

and review the most important theoretical advances that have been made in this field. Second, we present a

comparative analysis of algorithm performance which we use as the basis of a discussion of the current state

of colour constancy research and of the important issues which future research in this field should address.

Finally, we highlight some areas of recent research which we believe are important in the context of further

improving the performance of colour constancy algorithms.

1 Introduction

The phenomenon of colour constancy: how a visual system is able to ensure that the colours it perceives re-

main stable, regardless of the prevailing illumination, has received considerable attention in the context of both

human and computer vision. A visual system might achieve colour constancy by a variety of means and it is

useful to classify approaches into colour invariant, or illuminant estimation procedures. In illuminant estimation



procedures (e.g. [47, 16, 53, 45, 56, 30, 2, 14, 25] ), colour constancy is achieved by first obtaining an estimate

of the illuminant in a scene from the image data recorded for that scene. Once the scene illuminant is known,

the recorded image data is corrected to discount the colour of the scene light and thus render the image colour

constant. Colour invariant approaches (e.g. [35, 33, 24, 34, 54, 8, 26]) on the other hand, achieve constancy

without explicitly estimating the scene illuminant. Instead they derive, by algebraic manipulation of the image

data, quantities which are invariant to the colour of the scene illumination. In some cases the algebraic procedure

preserves the spatial structure of the image, so that at each pixel we obtain a correlate of the underlying object’s

reflectance characteristics. In other cases, image structure is lost and the image is summarised by just a few

invariant quantities.

In this paper we focus on the illuminant estimation approach to colour constancy and moreover, we concentrate

on estimation algorithms which might be employed in the context of a machine vision system or as part of a digital

camera’s processing pipeline. The extent to which our own visual system is colour constant and the mechanisms

by which this constancy might be achieved are not the subject of this paper. However, the algorithms we discuss

may be of interest in the context of human colour constancy in so far as they represent possible computational

solutions to the problem. Our aims in this paper are threefold. First, we summarise and review the most important

theoretical advances that have been made in illuminant estimation. Second, we present a summary of the relative

performance of a number of different estimation algorithms. Finally, we discuss the strengths and weaknesses of

existing solutions to the problem as well highlighting some shortcomings in algorithm evaluation. And, in the

light of this discussion we suggest some directions for future research. In particular we briefly describe some

recent research which addresses some of the issues raised in this work.



1.1 A Formal Statement of the Problem

The problem of colour constancy is most simply understood by considering a physical model of image formation.

It is convenient to adopt a simple model in which the “colour” of an object is controlled by the interaction of

light, surface and sensor. Throughout the paper, and in common with most previous literature, we assume that a

scene is illuminated by a single light source with a spectral power distribution (SPD)E(λ) which determines how

much energy the source emits at each wavelength (λ) of the electromagnetic spectrum. A surface is characterised

by its spectral reflectance functionS(λ) which defines the proportion of light incident upon it that it reflects,

again on a per-wavelength basis. The light reflected from a given surface enters an imaging device to produce a

colour responseρk which is defined as

ρk =
∫

E(λ)S(λ)Qk(λ) dλ. (1)

In Equation (1),Qk(λ) characterises the spectral response function of a given class of light sensor on the imaging

plane of the device: it determines the proportion of the colour signal the sensor absorbs on a per-wavelength

basis. In most imaging devices there are 3 distinct classes of sensor, so that the response to light at a given pixel

is defined by a triplet of responsesρ = (ρ1, ρ2, ρ3)t. Throughout the paper we assume a trichromatic imaging

system and we will refer to the response of such a device to light from a given scene point either byρ or using

the notationRGB, as is common in much of the previous literature.

An inspection of Equation (1) makes the colour constancy problem apparent. The colour responseρ of a

device to a given surface depends on both the reflectance properties of the surface, and the SPD of the prevailing

scene illuminant. So, when illumination changes, so too do the colours recorded in an image. From a computer

vision perspective this illumination dependence is problematic since ideally, the colours recorded by a device

would tell us something about the intrinsic properties of the imaged surfaces. That this is not true, implies that

using colour as a cue to help solve fundamental vision tasks such as scene segmentation, object recognition and

tracking might run into problems if the scene illumination is changing. Solving for colour constancy is also an



important step in a digital camera’s processing pipeline [48] since it is well established, that if image colours are

not corrected to account for the scene illuminant colour, the image will look quite different to how an observer

remembers the scene. This is a consequence of the fact that to some degree, our own visual system is itself

colour constant. We note in passing, that the conditions under which our own visual system is colour constant

(and the degree of constancy achieved) is as yet not clearly defined, and is the subject of much research (see for

example [1, 9, 57, 11]).

If we pose the colour constancy problem as the problem of explicitly estimating the illuminant in a given

scene, then in a theoretical sense, the problem can be formulated as how we invert Equation (1) to recover the

scene illuminant SPDE(λ). For a single surface we have only three measurements (the elements ofρ), and

bothE(λ) andS(λ) are unknown. This implies that the problem is, in a strict sense, under-constrained, since

both light and surface are continuous functions of wavelength. If we assume thatE(λ) is constant throughout an

imaged scene, adding more surfaces provides us with additional constraints on the illuminant. However, it also

introduces further unknowns: the reflectance functions of the additional surfaces. Thus, we cannot in this way

equalise the mismatch between knowns and unknowns. Typically, light, surface and sensor are represented by

their values at a discrete set of sample points so that the image formation equation becomes:

ρk =
n∑

j=1

E(λj)S(λj)Qk(λj)∆λ (2)

where∆λ andn denote the fixed sampling interval and the number of sample points respectively. Note that

n is typically much larger than 3 so that even in its discrete form, the image formation equation is under-

constrained: there are fewer knowns (measurements) than unknowns. Given that the problem is fundamentally

under-constrained, all progress towards its solution is founded on enforcing one or more additional constraints.

In many practical applications, an estimate of the SPD of the scene illuminant is not required. Rather, we

are interested only in determining the mapping which transforms RGB responses of a device to surfaces viewed

under an illuminanto, to the corresponding response under a second lightc. That is, we seek the mappingF(·)



such that:

ρc = F(ρo). (3)

In this case, before we can design a colour constancy algorithm, we must specify the form that the mappingF

takes. Most algorithms which have found practical application adopt (either implicitly or explicitly) adiagonal

modelof illumination change. Here RGB responsesρo andρc of a device to the same surface viewed under two

different lights are related by a mappingF(·) which has the form of a diagonal matrix:
ρc
1

ρc
2

ρc
3


=


d1 0 0

0 d2 0

0 0 d3




ρo
1

ρo
2

ρo
3


(4)

Equation (4) is strictly valid only for restricted classes of lights and sensors [27]. For example, it is exactly true

if either lights or sensors are narrow-band (emit power, or are sensitive at only a single wavelength). In general,

neither condition is true and for real lights and sensors Equation (4) holds only approximately. For broad-band

sensors which have significant overlap, the approximation can be quite poor. It has been shown however, that if

we allow the generalisation that sensor responses can be transformed by a fixed3 × 3 linear transform prior to

application of the model, then for most devices, capturing images under typical viewing illuminants, Equation (4)

holds to a good approximation [28]. In this case we have a generalised diagonal model of illumination change:

ρc = T−1
s DTsρ

o (5)

whereTs is the3×3 linear transform (often referred to as asharpeningtransform) which is designed in effect, to

make the underlying sensor sensitivity functions closer to ideal narrow-band sensors.D is the diagonal transform

which accounts for the change of illumination.

In the next section we consider algorithms which, implicitly or explicitly, are founded on a diagonal model of

illumination change. That is, they recover (at most) a 3-parameter estimate of the scene illuminant. However,

before we consider specific algorithms, it is important to understand that even when we adopt this simplified



model of illumination change, the illuminant estimation problem is under-constrained. Implicitly, this model

assumes that light and surface can both be described by 3 parameters. Thus, if we assume an image withm

surfaces viewed under a single illuminant we still have fewer knowns (3m pixel values) than unknowns (3m+3)

so that further constraints are required to obtain a unique solution. We discuss in the next section the various

constraints that have been proposed.

2 Illuminant Estimation Algorithms

Early solutions to the problem [47, 16, 17] focused on attempting to reduce the discrepancy between the number

of knowns and unknowns in Equation (1) by adopting linear model representations [46] of lights and surfaces.

These approaches set out the theoretical conditions under which the colour constancy problem can be solved

uniquely. Unfortunately, for the case of a trichromatic device, the required conditions on lights and surfaces are

not satisfied in most typical images and so, this avenue does not lead to practically applicable algorithms. In

general, estimation algorithms can be broadly classified as being eitherstatisticalor physics-based. We classify

as statistical, those approaches which obtain an estimate of the scene illuminant based on some kind of statistical

assumption about the distribution of colours in a scene: for example theGrey-Worldalgorithm (see below)

assumes that the average of all surface reflectances in an image is grey. By contrast, physics-based approaches

are those that obtain an illuminant estimate by exploiting some artefact of the underlying physics of image

formation. For example, it is well known that specular reflections often have the colour of the scene illuminant

and this observation is exploited in a number of algorithms (also discussed below) to obtain an estimate of the

scene illuminant. Of course, all algorithms are, to a certain extent, physics-based, since they are all founded

on some kind of model of image formation. Similarly, physics-based approaches can also exploit statistical

information. Nevertheless, the classification is useful, at least in as much as it gives a convenient way to order a

discussion of previous works.



2.1 Simple statistical methods

If we adopt the diagonal model of illumination change characterised by Equation (4) above, solving the colour

constancy problem amounts to estimating the RGB response of a device to a white surface. We call this thewhite

point of the scene light and denote itρ
w

. We denote bŷρ
w

an estimate of this quantity. Two simple algorithms

which are sometimes used in practice are theMax RGB[44] andGrey-World[12] methods. In the first case an

estimate of the scene illuminant is calculated:

ρ̂
w

=

[
max
{i}

(ρ1,i), max
{i}

(ρ2,i), max
{i}

(ρ3,i)

]
(6)

where{i} is a labelling of all pixels in the image. This method will be successful providing that a scene con-

tains either a single surface which is maximally reflective throughout the range of the sensitivity of the imaging

device(i.e. a white surface), or a number of surfaces which are maximally reflective throughout the range of each

of the three imaging sensors individually.

TheGrey-worldapproach is founded on a similar constraint. In this case it is assumed that the average of all

surface reflectances in a scene is a neutral (grey) reflectance so that an estimate of the scene illuminant can be

found by calculating the mean sensor response in an image:

ρ̂
w

=

[
1
n

∑
i

ρ1,i,
1
n

∑
i

ρ2,i,
1
n

∑
i

ρ3,i

]
(7)

A variation of this method is the so calledDatabase Grey-world[5] method. Here, it is assumed that the scene

illuminant white point is the mean of the image RGBs, multiplied by a triplet of independent scale factors:

ρ̂
w

=

[
α

n

∑
i

ρ1,i,
β

n

∑
i

ρ2,i,
γ

n

∑
i

ρ3,i

]
(8)

It is assumed in this case, that the scalarsα, β andγ are determined based on some prior knowledge about the

average of all reflectances which might be observed in the world.

It is easy to think of situations in which all three of these methods will fail. For example both variants of

the grey-world method will fail on any image whose colour distribution is significantly different to the assumed



average: e.g. an image of a natural scene consisting largely of different shades of green will probably have

an average reflectance quite different to the average calculated over all images. On the other hand, theMax

RGB method can fail simply because there is no white surface in the scene. Nevertheless, in practice these

methods can often give reasonable performance and this, combined with their simplicity, means that they are

often used in practice and so are worthy of consideration in the algorithm evaluation which follows in the next

section. More successful algorithms can be designed by adopting better founded statistical assumptions about

images. There are three broad classes of statistical algorithms which are worthy of study:Gamut Mapping

methods [30, 20, 40, 2, 29],Bayesianmethods [18, 10, 50, 25, 7, 55, 49], andNeural Networks[14].

2.2 Neural Networks

In the Neural Network solution [14] it is attempted to learn the relationship between observed image data and

the scene illuminant by training a network on a large set of images for which the scene illuminant is known. The

trained network can be seen as a representation of information about the statistical structure of images. Funtet

al [14] trained a network usingchromaticityinformation rather than image RGBs. Chromaticity co-ordinates

provide an intensity independent representation of an image RGB and are calculated thus:

c = [c1, c2] =
[

ρ1

ρ1 + ρ2 + ρ3
,

ρ2

ρ1 + ρ2 + ρ3

]
(9)

Given a trained network, an estimate of the scene illuminant chromaticity is calculated:

ĉw = network({ci | i = 1, . . . m}) (10)

where network(·) represents the trained network which takes as input them image chromaticities. Provided that

the information encoded in a network accurately reflects the statistical structure of images that are encountered

in practice, then a neural network ought to be a good solution to the problem. Unfortunately, it is difficult to train

a neural network such that it generalises well: i.e. so that it is able to accurately predict the scene illuminant in



previously unseen images and for this reason (as is shown in Section 3) neural networks do not provide as good

illuminant estimation as we might expect.

2.3 Gamut Mapping

The approaches we have discussed so far deliver a single estimate of the scene illuminant, either by placing

additional constraints on images (e.g. requiring the presence of a white surface, or making the assumption that

surface reflectances average to grey) or, in the Neural network example, by selecting the “most likely” colour of

the scene illuminant based on the image data, where “most likely” is determined with respect to a set of training

examples. By contrast, Gamut Mapping solutions (first proposed by Forsyth [30]) place no additional constraints

on the problem but rather accept the fact that because the problem is under-constrained, the solution will not in

general be unique. That is, there are typically many illuminants consistent with a given set of image data.

Gamut mapping algorithms proceed in two stages. First, the set of all illuminants consistent with a given set

of image data is recovered and then a single illuminant is selected from this set as the scene illuminant estimate.

In gamut mapping algorithms a diagonal model of illumination change (Equation (4)) is adopted so that an

illuminanto with white pointρo
w

can be characterised by a diagonal matrix,Do that maps sensor responses under

illuminanto to their corresponding responses under a reference, or canonical illuminantc. Importantly, it can be

shown [30] that the set of all RGB sensor responses observable under this reference illuminant is a closed convex

subset of sensor RGB space. This set (denotedΓ) is referred to as thecanonical gamut.

Given a set of image data: a collection of RGB responsesI, imaged under an arbitrary unknown illuminant,

the aim is to find plausible scene illuminants. A given illuminanta is said to be plausible if its corresponding

diagonal transformDa maps all the observed sensor responses somewhere within the canonical gamut. That is,

if:

Daρo ∈ Γ ∀ ρo ∈ I. (11)



For any given set of image data, there will in general be many matricesDa that satisfy Equation (11) and Forsyth

proposed a method for determining this set of feasible illuminantsD. Once this set has been determined, an es-

timate of the scene illuminant is selected from it according to some selection criterion. For example, Forsyth [30]

suggested choosing the diagonal matrixD ∈ D whose trace is maximum whilst other authors have suggested

using the mean [2] or the median [40] of the feasible set.

The gamut mapping solution is one of the most well founded solutions to the colour constancy problem and

can give good practical performance. Its weaknesses are the fact that it is founded on the diagonal model of

illumination change: a model which doesn’t always hold in practice, and the fact that algorithm implementation

is non-trivial and not always robust to real image data. Both of these problems sometimes result in the failure

of the algorithm to give any estimate of the scene illuminant. For example if an image does not fully satisfy

the diagonal model, the algorithm can sometimes return an empty feasible set of illuminants. Barnard [4] has

proposed a method that somewhat ameliorates the problem of diagonal model failure, essentially by increasing

the volume of the canonical gamut. Alternatively, the solution can be re-formulated in a convex programming

framework [29] which addresses some of the implementation difficulties. However, the lack of robustness to

diagonal model failure remains.

2.4 Probabilistic methods

The final class of statistical algorithms we consider are so called Bayesian or Probabilistic algorithms [18, 10,

50, 25, 7, 55, 49]. These approaches share in common the fact that they attempt to capture information about

the likelihood of observing a given RGB response under possible scene lights in the form of a statistical prior.

Then, given an RGB image whose illuminant is to be classified, they calculate a measure of the likelihood that

each possible scene illuminant was the illuminant in the given image. Typically, the illuminant with the highest

likelihood is selected as the estimate of the scene illuminant.



The most simple implementation of a Bayesian approach to colour constancy is the so-calledColor By Cor-

relation method [25]. In this algorithm, prior information about plausible scene lights is encoded by restricting

scene illuminants to one of a discrete finite set of possible lights,Ic. Each of these possible scene lights can be

assigned an arbitrary probability of being observed, though in practice, all lights are usually assigned an equal

probability. Prior information about surfaces is encoded by defining a distribution of image chromaticities for

each of the possible scene lights. This chromaticity distribution can either capture information about the gamut

of possible surfaces (by declaring that a given chromaticity either is or is not observable under a given light) or it

can encode a measure defining how likely it is that a given chromaticity value will occur under each light. In the

first case, the algorithm is quite similar to a gamut mapping approach but with the addition of a restriction on the

set of possible scene lights. In the second, more general case, we obtain a measure of the likelihood that each of

the plausible illuminantsρ
w

is the scene illuminant:

L
(
ρ

w

)
∝

n∑
i=1

Pr
(
ρ

i
| ρ

w

)
(12)

The estimated scene illuminant is the light whose likelihood value is maximum:

ρ̂
w

= argmaxρ
x
∈Ic

[
L(ρ

x
)
]

(13)

All Bayesian approaches operate according to the same underlying principle but they differ both in terms of

how they encode prior knowledge about lights and surfaces, and also in terms of their implementation details

and complexity. The strength of Bayesian methods is the fact that they incorporate as much prior knowledge

as possible into the problem formulation and this knowledge is employed in a statistically well founded way.

A potential weakness of the Color By Correlation algorithm is the fact that it assumes that the probability of

observing a given RGB in an image is independent of the other observed RGBs. This may not be true in practice

and so the algorithm might be improved by accounting for any dependency. Another weakness of Bayesian

methods is that, like the neural network approach discussed earlier, their success is limited by the degree to



which real image data conforms to the statistical priors encoded by the algorithms. We leave further discussion

of this point to the empirical evaluation of algorithm performance in Section 3.

2.5 Physics-based methods

Physics-basedapproaches (e.g. [31, 43, 56, 45]) usually adopt a more general model of image formation than

Equation (1) and seek to estimate the scene illuminant by exploiting knowledge about the physical interaction

between light and surfaces. For example, it is known that for many surfaces, light is not reflected according to the

Lambertian model of Equation (1), but rather it is better modelled using thedichromaticmodel. In this model,

light reflected from a surface is assumed to be composed of two parts: a body reflection, modelled according

to Equation (1), and a specular reflection which is independent of the surface and depends only on the scene

illuminant. We can write the sensor response for a general dichromatic surface as:

ρk = Cb

∫
E(λ)S(λ)Qk(λ)dλ + Cs

∫
E(λ)Qk(λ)dλ (14)

whereCb andCs are independent scale factors which model the relative amounts of body and specular reflectance

contributing to the overall light reflected from a given point in a scene. A simple approach to estimating the scene

illuminant under the dichromatic assumption is to locate pixel values for whichCb = 0 since these correspond

to points in the scene where the reflected light is purely specular. That is, it has the colour of the prevailing

scene illuminant. In practice specular reflections are typically much brighter than body reflections, thus if present

in an image, they will be located by theMax RGBalgorithm defined in Equation (6). Unfortunately, pixel

values corresponding to specularities are very often clipped in real images, and moreover, in many images purely

specular reflections do not exist, thus such a naı̈ve algorithm will rarely produce good results.

Better founded approaches have been proposed by a number of authors [56, 45, 38], and at their heart is the

observation that the sensor responses from different points on a given surface will all fall on a plane in sensor

RGB space. That is, for a fixed surfaceS(λ) and illuminantE(λ), responses defined according to Equation (14)



are constrained to a two-dimensional subspace (a dichromatic plane) of 3-d RGB space. It follows that two

planes, defined by surfaces with different reflectance functionsS(λ), will intersect in a line determined by the

prevailing scene illuminantρ
w

. So, if V andW are two3 × 2 matrices whose columns span the dichromatic

planes for two distinct surfaces, then an estimate of the scene illuminant can be determined by solving:

V υ = Wω (15)

for υ andω. So, the estimate of the scene illuminant white point is:

ρ̂
w

= V υ (16)

In theory, Equations (15) and (16) define an elegant solution to the illuminant estimation problem, however,

it has proven difficult to make the approach work in practice. One major difficulty with this approach is the

fact that there is an implicit assumption that an image can be reliably segmented into regions corresponding to

the underlying surfaces, since without such a segmentation, determining the dichromatic planes is problematic.

Moreover, even if dichromatic planes can be determined, intersecting them to obtain a reliable estimate of the

illuminant white point is often difficult in practice. In general, these and other difficulties have restricted the

practical application of physics-based algorithms. More recently however, a robust physics based approach

has been proposed [19] which delivers good performance on real images. We discuss this algorithm further in

Section 5.

This review of estimation algorithms is by no means exhaustive, it does however, provide a summary of all

the major theoretical approaches to the problem that have been set forth in the literature. In the next section we

examine the relative performance of these different approaches to estimation.



3 Algorithm Evaluation

The experimental procedure for evaluating algorithm performance is straightforward. We take an image whose

scene illuminant is known and use this image data to obtain an estimate of the scene illuminant using the algorithm

we wish to evaluate. Then, we compare the recovered scene illuminant estimate to the actual scene illuminant to

obtain a measure of accuracy. In practice, the performance of all algorithms is image dependent so that to obtain

a meaningful measure of algorithm accuracy we must look at the “average” performance over a representative set

of images. It follows that there are three important factors which must be addressed if we are to obtain a reliable

measure of algorithm performance. First, we must choose an appropriate set of test images. Second, we must

define suitable error measures for comparing an algorithm’s estimate of the scene light to the actual scene light.

Third, we must consider how best to summarise these errors over the set of test images.

Algorithms are typically evaluated (see e.g. [5, 6, 41]) using both synthetic and real images. Synthetic images

are essentially a collection of RGB values rendered according to a model of image formation such as that in

Equation (2) and using sets of measured reflectances and illuminants. Testing on synthetic images means that al-

gorithm performance can be evaluated over many thousands of images and makes it easy to investigate algorithm

performance as a function of image complexity (i.e. as a function of the number of distinct RGB values in an

image). In addition, testing on synthetic images ensures that the statistical information encoded by the various

algorithms precisely matches the statistics of the test images. In this sense, synthetic image testing gives a best

case measure of algorithm performance. Testing on real images gives a more realistic view of an algorithm’s

typical performance as well as enabling an evaluation of how robust an algorithm is to noise, and perhaps most

importantly, to a mismatch between its training data and the image data it is tested on. However, obtaining real

images suitable for algorithm evaluation is non-trivial since it requires that the scene illumination is known and

controllable and in addition, it requires access to a well calibrated imaging device or access to raw image data, to

which no processing has been applied.



Algorithm performance is most commonly measured using anangular error:

eAng = acos

(
ρ

w
tρ̂

w

‖ρ
w
‖‖ρ̂

w
‖

)
(17)

that is, the angle between the actual white point of the scene illuminantρ
w

and an algorithm’s estimate of that

white pointρ̂
w

. This error measure is independent of the intensity of the scene illuminant and can thus be used

to evaluate algorithms which estimate only the scene illuminant chromaticity. The accuracy of a given algorithm

is typically expressed in terms of an “average” angular error over a set of test images.

Figure 1 summarises the performance of the six statistical algorithms discussed in Section 2 over a set of

synthetic images. These results were obtained following the experimental procedure defined by Barnardet al [5]

in which images are synthesised according to the model of image formation defined by Equation (2) by selecting

surface reflectance functions from a set of 1995 measured reflectances and a single scene illuminant from a set of

287 lights (87 measured illuminants together with another 200 illuminants synthesised by interpolating between

the measured illuminants). We used a convex programming implementation of the Gamut Mapping algorithm

as described in [29]. The Bayesian algorithm is theColor By Correlationapproach described in [25] and the

Neural Network was designed and trained following (as far as possible) the procedure defined in [14]. Where an

algorithm required training data, we used the same 1995 surface reflectance functions from which the test images

were constructed and 87 illuminants (the 87 measured lights used to synthesis image data).

Figure 1 shows algorithm performance as a function of the number of surfaces in an image. Performance is

measured over 6000 different images with between 2 and 64 surfaces and two different summary statistics are

used to summarise performance: Root Mean Square (RMS) (left-hand plot) and median angular error (right-

hand plot) . This figure highlights a number of important points about algorithm performance. First, as might

be expected, all algorithms (except for Grey-World) tend towards very good performance as we increase the

number of surfaces in an image. However, algorithm performance is on average quite poor for scenes with low

colour complexity. Second, the results support the theory that incorporating more (and more realistic) statistical
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Figure 1: Root Mean Square (left) and Median (right) angular error as a function of the number of surfaces in an

image.

information about image content leads to better algorithm performance. So, for example, the Bayesian algorithm

gives the most accurate performance, with the Neural Network and Gamut Mapping methods also performing

reasonably well. It is also noticeable that the Bayesian approach significantly out performs all other methods

for images with few surfaces. Finally, the figures highlight an important point about algorithm evaluation: the

relative performance of algorithms is dependent on the choice of summary statistic. While the overall trends are

similar regardless of whether we judge algorithms according to RMS or median angular error, looking at these

two error measures for a fixed number of surfaces per image leads to quite different conclusions about the relative

performance of algorithms.

This point is clearly highlighted in Table 1 where algorithms are ranked according to their average performance

over all 6000 test images using a variety of different summary statistics. Each of the summary statistics leads to

different conclusions about the relative performance of algorithms. It is shown in [41] that the error distributions

of colour constancy algorithms tend to be strongly skewed so that measures such as the mean and RMS error

are less appropriate than the median statistic when comparing relative algorithm performance. That work also

makes the point that it is important to consider the statistical significance of the differences in errors for each



Table 1: Rankings over all test images, regardless of the number of surfaces, (a total of 6000 images) according

to a variety of different summary statistics.

RMS Median Mean Sign Test

MxRGB 6 5 5 5

GW 5 6 6 6

DB GW 2 3 2 2

LP GM 4 2 3 2

CbyC 1 1 1 1

NN 3 4 4 4

algorithm. Again, care must be taken to choose the appropriate statistical test and, given that the underlying error

distribution cannot be well approximated by (for example) a Normal distribution, non-parametric tests such as

the Sign Test [39] are the most reliable. In essence, the Sign Test tests the null hypothesis that the median of

the difference in errors for two algorithms is zero against the alternative hypothesis the difference is non-zero.

The last column of Table 1 ranks the six algorithms according to this test. We note that a potential weakness

of the error analysis we have presented here (in common with other analyses presented elsewhere [41, 5]) is

the fact that the “cost” of an error is considered to be directly proportional to its magnitude which might not

be appropriate in some applications. For example in digital photography it is likely that an illuminant estimate

which has an accuracy less than some threshold value is “good enough” so that the actual magnitude of an error

within this threshold is unimportant. Similarly, once an error is sufficiently high that it is unacceptable for a

given application, the actual magnitude of the error becomes unimportant. However, if we consider algorithm

errors independently of a particular application, it is difficult to determine error costs thus, we assume that cost

is proportional to error magnitude.



Table 2: RMS, median, and mean angular error together with Algorithm Ranking according to the Sign Test over

the 321 real images.

RMS Error Median Error Mean Error Sign Test Rank

MxRGB 8.88 4.05 6.38 3

GW 14.52 8.94 11.48 6

DB GW 12.44 6.85 9.44 4

LP GM 6.85 3.71 5.00 1

CbyC 10.09 3.19 6.56 1

NN 11.04 7.78 9.18 4

Real image performance of algorithms is most usefully evaluated using the set of 321 real images gathered at

Simon Fraser University [6]. Thirty different scenes were captured under up to 11 different lights using a well

calibrated digital camera. The performance of the same six algorithms on this test set is summarised in Table 2.

For the most part the trend of the real image results follows that for the synthetic images: algorithm performance

is correlated with the level of statistical information incorporated into each method. There are some notable

exceptions however. First, the Bayesian approach is no longer the best performing algorithm: judged using the

Sign Test, its performance is equivalent to Gamut Mapping. Second, theMax-RGBalgorithm performs better

on real images than it does in synthetic image tests. Finally, there is again variation in the ranking of algorithm

performance according to the choice of summary statistic. Indeed, this variation is more pronounced for the real

images. For example, judged according to RMS error the Bayesian approach is ranked only third, while when the

median error is used, it is the best performing algorithm. This suggests that while the algorithm performs well on

average, there are some images in the test set for which it performs quite poorly. An inspection of the errors on an

image-by-image basis reveals that there are indeed some images for which error is quite large however, there is



no obvious characteristic shared by such images. We further discuss the implication of these experimental results

in the next section.

4 Discussion

The synthetic image results presented above provide useful information as to the best case performance of the

tested algorithms and they suggest, as would be expected, that best performance is achieved by incorporating

as much prior knowledge as possible of the statistical distribution of lights and surfaces in the world. The real

image results follow a similar trend though performance of some algorithms (notably the Neural Network and

Bayesian approaches) is somewhat degraded. However, the experimental evaluation suffers from a number of

shortcomings. One important issue is the fact that while the results allow us to judge the relative performance

of the tested algorithms, they provide little information as to the absolute performance of any given algorithm

and thus it is difficult to determine whether or not the performance of any algorithm is “good enough”. In

fact this problem is difficult to answer since “good enough” colour constancy depends on the context in which

the illuminant corrected images are to be applied. For example, in computer vision, illuminant estimation can

be considered sufficiently accurate provided that subsequent visual tasks such as object recognition or tracking

can be performed effectively. Unfortunately, there is no simple relationship between the ability to successfully

perform these tasks and a particular value of illuminant estimation error.

A number of studies [32, 36, 2] have been conducted to investigate whether or not colour constancy algorithms

are sufficiently accurate to enable colour based object recognition. The general conclusion from these studies is

that the answer to this question is no. However, these studies, as well as the real image experiments reported

in the previous section, are weak in the sense that they are based on quite small image sets. For example,

in the real image experiments reported above, algorithms are tested on just 30 different scenes. Moreover, it

is unclear whether the scenes are representative of the type of scenes which will be encountered in practical



applications: all the scenes consist of a small number of objects captured in an indoor environment. Thus,

there are no images of people, no landscape scenes etc. As a result, it is difficult to say whether the test images

represent an easy or difficult test for the algorithms. It has also been shown [6] that algorithm performance can be

significantly changed by varying the processing applied to an image prior to estimating the illuminant and also,

by changing the training regimes of the different algorithms. Another study [3] has tested illuminant estimation

algorithms, in the context of an object recognition task, on a much larger set of images. However, in this case

only two algorithms are tested (Grey-world and Max-RGB) and while illuminant estimation is shown to improve

recognition performance, it is difficult to determine whether the level of performance achieved is “good enough”.

Another shortcoming of the algorithm evaluation we have presented is the fact that the angular error measure

we have used is a non-intuitive measure. That is, it is not immediately obvious, whether an angular error of

3 degrees represents good or bad illuminant estimation. In Figure 2, we provide an informal visualisation of

different angular errors. To synthesise the images in this figure, we began by assuming that the true illuminant

white point is the RGB triplet[1, 1, 1]. Next we generated new RGB triplets which are on averagek degrees from

the true illuminant white point. We then formed an image of square patches, such that each patch is assigned

one of the generated RGB values. Figure 2 shows images for values ofk = 9, 7, 5, 3 and2. It is clear from

this figure that an angular error of nine degrees represents quite poor illuminant estimation performance while an

angular error of 2 degrees might be considered good enough. We also calculated the averageCIE − Lab [42]

error between our assumed actual white (the RGB triplet[1, 1, 1]) and the estimated RGB triplets with a given

angular error. CIE − Lab error provides an approximately perceptually uniform measure of the difference

between two colours. The average LAB errors we calculate for the case of9, 7, 5, 3 and2 degrees angular error

are20.5, 15.9, 11.3, 6.8 and4.5. An LAB error of 1 corresponds to a just noticeable difference between two

colours when they are viewed side by side in isolation. However, it has been suggested thatCIE − Lab errors

of up to6 are acceptable in complex images. This lends further support to the suggestion that an angular error



of 2 degrees represents “good enough” colour constancy performance. However, this informal analysis is by no

means conclusive. Referring to Table 2, we see that the best performing algorithm has a median angular error of

3.17 degrees. So that, accepting the analysis above, even the best performing algorithm will produce significant

visual errors for at least 50% of images.

Figure 2: Patchwork images such that image patches are on averagek degrees from an RGB of[1, 1, 1]. From

left to rightk = 9, 7, 5, 3 and 2 respectively.

The visualisation in Figure 2 provides some useful intuition as to the meaning of a given level of angular

error, but the relationship between angular error and perceived colour accuracy is of course much more complex

than this. For example. the perceptibility of a given angular error will depend on the particular colour being

observed (RGB space is not perceptually uniform). Currently, the only reliable way to determine whether colour

constancy algorithms afford good enough estimation accuracy to facilitate pleasing digital photographs is to use

psycho-physical techniques.

In summary, we conclude that further testing on larger data sets is required to properly determine the absolute

level of performance of existing algorithms and we should also bear in mind that “good enough” colour constancy

depends on the purpose for which the illuminant corrected images will subsequently be used. It is important to

understand that algorithms such as Gamut Mapping, Bayesian and Neural Network approaches do a good job,

at least in a theoretical sense, of exploiting the statistical information available in images. Thus it is unlikely

that further progress towards a solution will be made using statistical methods. This is not to say that further

theoretical advances are not possible, and in the next section we discuss some possible directions in which such



advances might occur.

5 Future Research Directions

We briefly review two recent theoretical advances in algorithm development. The first is the so calledChro-

magenic Colour Constancyalgorithm which obtains additional information about the scene illuminant by mak-

ing additional measurements at each scene point. The second approach combines illuminant estimates from two

different algorithms to produce a new, more robust estimate.

5.1 Chromagenic Colour Constancy

The so-calledChromagenic∗ Camera[21, 23] adopts a conventional RGB imaging paradigm except that two

images of each scene are captured. The first is just a conventional RGB image, whilst the second is an RGB image,

optically pre-filtered using a special chromagenic filter. An estimate of the scene illuminant is found by exploiting

the fact that filtered and unfiltered image RGBs are related in a well defined way, which depends on the (fixed)

known chromagenic filter and also on the scene illuminant which it is wished to determine. More specifically,

it is assumed that filtered and unfiltered RGBs are related by an (illuminant dependent)3 × 3 linear transform.

An estimate of the scene illuminant is obtained by defininga priori a set of possible scene illuminants each

of which is characterised by the transform mapping filtered RGBs under that light to corresponding unfiltered

RGBs. Given a pair of chromagenic images whose scene illuminant it is wished to estimate, each illuminant

transform is tried in turn and the illuminant whose transform best maps between the image pair is chosen as

the scene illuminant. In general, there are two stages to the chromagenic algorithm: a pre-processing stage,

performed once for a given chromagenic device, and an operation stage applied once for each image.

∗The word chromagenic comes from the termchromagena proprietary term for coloured contact lenses used in the treatment of colour

deficient observers [37].



Pre-processing

We choosea priori, a set ofN plausible scene illuminantsEi(λ). In addition we select a set ofM surface

reflectancesSj(λ) representative of the surfaces which occur in the world. Now, for theith illuminant we define

anM × 3 matrixQi whosejth row contains(Rij , Gij , Bij): the sensor response to thejth surface imaged under

the ith illuminant. Similarly we defineQF
i , also anM × 3 matrix whosejth row contains(RF

ij , G
F
ij , B

F
ij), the

sensor response to thejth surface imaged under theith illuminant and filtered by a chromagenic filterF (λ).

Then for each plausible illuminant we define a3× 3 transform matrix:

Ti = QF
i Q+

i (18)

where+ denotes pseudo-inverse.Ti is the transform which best maps unfiltered sensor responses to filtered

sensor responses, in a least-squares sense. The set{Ti} characterises the possible scene illuminants. Note

that it is not necessarily the case thatTi for a given illuminant is a perfect mapping from unfiltered to filtered

responses. Indeed, in practice it is rarely the case. However, this is not important provided that the relationship

is approximately true. What is more important is that the transformTi for a given illuminant is a better mapping

than is obtained using another transformTj for an arbitrary illuminantj. Of course, if a linear transform is a very

poor model of the change in RGB introduced by a filter, then the algorithm is likely to perform badly.

Operation

Given a chromagenic image pair, each consisting ofp pixels, letQ andQF denote thep×3 matrices of unfiltered

and filtered sensor responses respectively. For each plausible scene illuminant we calculate a fitting errorei =

‖TiQi−QF
i ‖ under the assumption thatEi(λ) is the scene illuminant. Then our estimate of the scene illuminant

is Eest(λ) where

est = min
i

(erri) (i = 1, 2, · · · ,m). (19)



To be successful the algorithm requires that the transformsTi for each illuminant be different from one another

and the degree to which this is the case is controlled in part by the choice of chromagenic filter. Good illuminant

estimation performance can be obtained using a range of common photographic transmittance filters [23]. For

example Figure 3 compares the performance of the chromagenic algorithm using a standard transmittance filter,

to that of the Bayesian algorithm described in Section 2. The figure shows the median angular error performance

of the two methods as a function of the number of surfaces per image based on the synthetic image experiment

described in Section 3.
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Figure 3: Median angular error as a function of the number of surfaces per image for the Bayesian algorithm

(solid line) and the Chromagenic algorithm (dashed line).

It is clear that the algorithm out performs the Bayesian method (the best performing algorithm of those tested

in Section 3) and the improvement is particularly pronounced for images with just a few surfaces. A further

significant improvement in performance can be obtained by careful filter design [22]. These results suggest that

the chromagenic camera is a promising area of future research: in the short-term, testing of the algorithm on real

image data is required to investigate algorithm robustness to artefacts such as image noise. In addition, the major

drawback of the Chromagenic approach is the fact that it requires a significant change in camera design.

Finally, it is worth noting that the method has some similarity to the work reported in [15] where an estimate of



the illuminant in a scene is also determined by considering two images of the scene. Here, the two images differ

in the fact that one of the pair is captured in a conventional manner using only the ambient scene illumination

while the second image is captured under a combination of scene illumination and camera flash. Since the flash is

a known illuminant it is possible to derive a scheme to discover the scene illuminant given the image pair. While

this method is similar to the chromagenic approach in the sense that it is based on a pair of images differently

illuminated, it is important to understand that the illumination change exploited in the two algorithms is quite

different. In the work of DiCarloet al the image captured using flash is illuminated by the sum of two distinct

illuminants: the flash and the ambient scene illuminant. In the chromagenic case, the filtered scene is effectively

captured by a filtered version of the scene illuminant (a multiplicative change to the scene illuminant spectrum).

This implies that the two methods are fundamentally different in terms of how they estimate the scene illuminant

given an image pair. In addition, the flash based approach is somewhat limited in terms of the scenes to which it

can be applied since it relies on scene objects reflecting the camera flash illumination back to the camera. This

will not be the case in, for example, landscape images.

5.2 Combining Illuminant Estimates

An alternative approach to improving estimation accuracy is to combine illuminant estimates from different

algorithms to produce a new, hopefully more robust estimate. One example of such an approach is the work of

Funtet al [13] where estimates from the Max-RGB, Grey-World and Neural Network algorithms are combined

in a variety of ways, leading to improved estimation performance. Clearly, such an approach will only lead to

improved performance if the errors for individual algorithms are uncorrelated. That is, if two algorithms perform

equally well or badly on a given image, combining them is unlikely to improve performance. One promising

approach which has recently been proposed [52] is to combine the estimates of a statistical algorithm and a

physics-based method. In this case, the two algorithms exploit quite different scene information so that there



is a good chance that their errors are uncorrelated. The statistical algorithm employed in this work is the Color

By Correlation approach, described in Section 2, while the physics-based method estimates the scene illuminant

using image specularities. Full details of the physics-based approach can be found in [51] but in essence the

method is founded on the idea of intersecting dichromatic planes discussed in Section 2. The algorithm first

identifies possible dichromatic planes based on a naı̈ve segmentation of the image data. Then, each pair of

dichromatic planes is intersected producing a set of illuminant estimates. Each of these illuminant estimates then

“votes” for one of a set of possible candidate scene illuminants which are defined in advance. An illuminant

estimate “votes” for the candidate light it is closest to. This results in a likelihood measure for each of the

candidate lights which we denoteLSpec(ρi
). Similarly, the statistical algorithm provides a likelihood measure

LStat(ρi
) for each candidate light. These likelihood measures are then combined to produce a single measure of

likelihood for each light:

L(ρ
i
) = αLStat(ρi

) + (1− α)LSpec(ρi
) (20)

whereα is a weighting parameter whose value is determined empirically. The candidate light with maximum

likelihood is then chosen as the estimate of the scene illuminant.

Table 3: Median and RMS error over the set of 321 real images for the statistical, physics-based and combined

algorithms.

RMS Error Median Error

Statistical 10.09 3.19

Physics-Based 9.70 3.00

Combined Algorithm 5.20 2.20

Table 3 summarises the performance of the statistical, physics-based and combined algorithms on the set of

321 real images used in the experiments in Section 3. Individually the statistical and physics-based approaches



provide a similar level of performance but by combining them a significant improvement is obtained. Most

notably, the number of images with very high illuminant error is reduced (as evidenced by the fact that the RMS

error is significantly smaller for the combined algorithm) and the median performance of the combined approach

is close to the angular error value of 2 degrees which, the visualisation presented in the previous section suggests

may be representative of “good enough” colour constancy performance. However, these results can only be

considered preliminary, since as was discussed in the previous section, the set of test images is quite restricted.

In addition, future work in this area ought to consider alternative ways of combining the estimates of the different

algorithms, as well as investigating the effect of combining evidence from other statistical and physics-based

algorithms.

6 Conclusions

We have presented in this paper a review of the most important theoretical contributions towards a solution of

the colour constancy problem. An empirical evaluation of these algorithms showed that, while some of these

algorithms are often capable of providing good colour constancy performance, the available evidence suggests

that no algorithm can be considered to afford “good enough” performance in all cases. Thus we conclude that

further work is required, both in terms of algorithm evaluation and training on real image data, and in terms of

delivering further theoretical insights into the problem. We highlighted two possible directions in which these

insights might be made: first, by making additional measurements at the time of image capture, and second by

combining estimates from two or more different algorithms.
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