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Abstract

This work proposes a method to interpret a scene by as-

signing a semantic label at every pixel and inferring the

spatial extent of individual object instances together with

their occlusion relationships. Starting with an initial pixel

labeling and a set of candidate object masks for a given test

image, we select a subset of objects that explain the image

well and have valid overlap relationships and occlusion or-

dering. This is done by minimizing an integer quadratic

program either using a greedy method or a standard solver.

Then we alternate between using the object predictions to

refine the pixel labels and vice versa. The proposed system

obtains promising results on two challenging subsets of the

LabelMe and SUN datasets, the largest of which contains

45,676 images and 232 classes.

1. Introduction
Many state-of-the-art image parsing or semantic seg-

mentation methods attempt to compute a labeling of every

pixel or segmentation region in an image [2, 4, 7, 14, 15, 19,

20]. Despite their rapidly increasing accuracy, these meth-

ods have several limitations. First, they have no notion of

object instances – given an image with multiple nearby or

overlapping cars, these methods are likely to produce a blob

of “car” labels instead of separately delineated instances

(Figure 1(a)). In addition, pixel labeling methods tend to be

more accurate for “stuff” classes that are characterized by

local appearance rather than overall shape – classes such as

road, sky, tree, and building. To do better on “thing” classes

such as car, cat, person, and vase – as well as to gain the

ability to represent object instances – it becomes necessary

to incorporate detectors that model the overall object shape.

A growing number of scene interpretation methods com-

bine pixel labeling and object detection [7, 8, 14, 11, 20,

22]. Ladický et al. [14] use the output of detectors to in-

crease parsing accuracy for “thing” classes. However, they

do not explicitly infer object instances. Kim et al. [11] and

Yao et al. [22] jointly predict object bounding boxes and

pixel labels. By doing so they improve the performance of

both tasks. However, they rely on rather complex condi-

tional random field (CRF) inference and apply their meth-

ods only to small datasets [6, 19] that contain hundreds of

images and tens of classes. By contrast, we want to scale

parsing to datasets consisting of tens of thousands of im-

ages and hundreds of classes.

In this work we interpret a scene in terms of both dense

pixel labels and object instances defined by segmentation

masks rather than just bounding boxes. Additionally, we or-

der objects according to their predicted occlusion relation-

ships. We start with our earlier region- and detector-based

parsing system [20] to produce an initial pixel labeling and

a set of candidate object instances for hundreds of object

classes. Then we select a subset of instances that explain

the image well and respect overlap and occlusion ordering

constraints learned from the training data. For example, we

may learn that headlights occur in front of cars with 100%

overlap,1 while cars usually overlap other cars by at most

50%. Afterwards, we alternate between using the instance

predictions to refine the pixel labels and vice versa. Figure

1 illustrates the steps of our method.

Our method is related to that of Guo and Hoiem [7],

who infer background classes (e.g., building, road) at every

pixel, even in regions where they are not visible. They learn

the relationships between occluders and background classes

(e.g., cars are found on the road and in front of buildings)

to boost the accuracy of background prediction. We go fur-

ther, inferring not only the occluded background, but all the

classes and their relationships, and use a much larger num-

ber of labels. The recent approach of Isola and Liu [10] is

even closer to ours both in terms of its task and its output

representation. This approach parses the scene by finding a

configuration or “collage” of ground truth objects from the

training set that match the visual appearance of the query

image. The transferred objects can be translated and scaled

to match the scene and have an inferred depth order. How-

ever, as the experiments of Section 3.2 demonstrate, our

system considerably outperforms that of [10] in terms of

pixel-level accuracy on the LMO dataset [15].

1Technically, headlights are attached to cars, but we do not make a

distinction between attachment and occlusion in this work.
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Figure 1. Overview of the proposed approach. We start with our parsing system from [20] to produce semantic labels for each pixel (a) and a set of

candidate object masks (not shown). Next, we select a subset of these masks to cover the image (b). We alternate between refining the pixel labels and

the object predictions until we obtain the final pixel labeling (c) and object predictions (d). On this image, our initial pixel labeling contains two “car”

blobs, each representing three cars, but the object predictions separate these blobs into individual car instances. We also infer an occlusion ordering (e),

which places the road behind the cars, and puts the three nearly overlapping cars on the left side in the correct depth order. Note that our instance-level

inference formulation does not require the image to be completely covered. Thus, while our pixel labeling erroneously infers two large “building” areas in

the mid-section of the image, these labels do not have enough confidence, so no corresponding “building” object instances get selected.

2. Inference Formulation

Given a test image, we wish to infer a semantic label at

each pixel, a set of object instance masks to cover the image

(possibly incompletely), as well as the occlusion ordering

of these masks. We begin in Section 2.1 by describing our

pixel label inference, which is largely based on our earlier

work [20]. As a by-product of this inference, we generate

a set of candidate instance masks (Section 2.2). Each can-

didate receives a score indicating its “quality” or degree of

agreement with the pixel labeling, and we also define over-

lap constraints between pairs of candidates based on train-

ing set statistics (Section 2.3). We then solve a quadratic

integer program to select a subset of instances that produce

the highest total score while maintaining valid overlap rela-

tionships (Section 2.4). Next, we use a simple graph-based

algorithm to recover an occlusion ordering for the selected

instances. Finally, we define an object potential that can be

used to recompute a pixel labeling that better agrees with

the selected instances (Section 2.5).

2.1. Pixel­level Inference

We obtain an initial pixel-level labeling using our pre-

viously published parsing system [20]. Given a query or

test image, this system first finds a retrieval set of globally

similar training images. Then it computes two pixel-level

potentials: a region-based data term, based on a nonpara-

metric voting score for similar regions in the retrieval set;

and a detector-based data term, obtained from responses of

per-exemplar detectors [16] corresponding to instances in

the retrieval set. The two data terms are combined using

a one-vs-all SVM (as in [20], we use a nonlinear feature

embedding to approximate the RBF kernel for higher accu-

racy). The output of this SVM for a pixel pi and class ci,
denoted ESVM(pi, ci), gives us a unary CRF potential:

ψu(pi, ci) = − log σ(ESVM(pi, ci)) , (1)

where σ(t) = 1/(1 + e−t) is the sigmoid function turning

the raw SVM output into a probability-like score.

We infer a field of pixel labels c by minimizing the fol-

lowing CRF objective function:

E(c) =
∑

i

ψu(pi, ci)
︸ ︷︷ ︸

unary (eq.1)

+
∑

i

ψo(pi, ci,x)
︸ ︷︷ ︸

object potential

+
∑

i<j

ψsm(ci, cj)
︸ ︷︷ ︸

smoothing

.

(2)

The object potential ψo is not part of [20] and will be dis-

cussed in Section 2.5. It is based on the currently selected

object masks, as encoded by the indicator vector x each of

whose entries xm is set to 1 if the corresponding candidate

mask is selected and 0 otherwise. For the initial pixel label

prediction, x is set to all zeros and ψo has no effect. The

pairwise spatial smoothing term ψsm is the same one used

in our previous work (eq. (4) in [20]). The minimization of

eq. (2) is done using α-expansion [1, 13].

2.2. Candidate Instance Generation

This section explains how we generate object instance

hypotheses. First, it is worth pointing out the different

nature of hypotheses for “thing” and “stuff” classes. For

“things” like cars, people, and fire hydrants, instances are

discrete and well-defined. It is highly desirable to cor-

rectly separate multiple “thing” instances even when (or es-

pecially when) they are close together or overlapping. On

the other hand, for “stuff” classes such as building, roads,

trees, and sky, the notion of instances is a lot looser. In

some cases, it may be possible to identify separate instances

of buildings and trees, but most of the time we are content

to treat areas occupied by these classes as undifferentiated

masses. Accordingly, we manually separate all classes in

our datasets into “things” and “stuff” and use different pro-

cedures to generate candidates for each.

For “things,” we get candidates from per-exemplar

masks transferred during the computation of the detector-
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Figure 2. Candidate instance masks obtained from per-exemplar detec-

tions. There are many good “car” masks but no good “building” ones.

Accordingly, we take the per-exemplar masks as our candidate “thing” in-

stances but use a different procedure for “stuff” (see text).
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Figure 3. “Stuff” parsing using both exclusive and non-exclusive SVMs.

The exclusive SVM generates good “tree” candidates, while the non-

exclusive one generates a “building” candidate without holes. The con-

nected components of both parses give us our “stuff” hypotheses (see text).

based data term for pixel-level labeling. In that stage, the

system of [20] scans the test image with per-exemplar de-

tectors associated with every instance from the retrieval set,

and for each positive detection, it transfers the correspond-

ing exemplar’s ground-truth segmentation mask into the de-

tected location. As shown in Figure 2, these masks make

fairly good candidates for “things” such as cars, but for

“stuff” such as buildings, they tend to be overly fragmented

and poorly localized.

To get “stuff” hypotheses that better fit the boundaries in

the image, one might think of simply taking the connected

components of the corresponding class labels from the ini-

tial pixel-level parse. However, the resulting masks may

have artifacts due to occlusions. For example, a scene may

have a building with trees in front of it (Figure 3), and if we

simply pick out the “building” pixels from the initial parse,

we will end up with a hypothesis that has tree-shaped holes.

Instead, we would like to compute a layered representation

of the image reflecting that both “building” and “tree” coex-

ist in the same location, with the latter being in front. Fortu-

nately, our datasets come from LabelMe where the ground

truth consists of overlapping object polygons, and it allows

us to learn such relationships [17].

The initial pixel-level parse is determined primarily by

the combination SVM unary potentials (eq. 1). By de-

fault, the combination SVM is trained to assign to each pixel

only the visible or front-most object label. For example, if

a training pixel is contained within “headlight,” “car,” and

“building” ground-truth polygons, it is used as training data

only for the front-most “headlight” label. To generate better

“stuff” hypotheses, we want a high response to background

(occluded) classes as well. So we also train a second non-
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Figure 4. Exclusive vs. non-exclusive SVM output. The exclusive SVM

has a very low response for areas of the car that have attached objects, like

the wheels. This would penalize candidate object masks that include the

wheel pixels. By contrast, the non-exclusive SVM has a high response

for all parts of the car, and the resulting pixel labeling favors classes with

larger area, which typically correspond to background or occluded classes.

exclusive combination SVM where each pixel is considered

a positive example of every ground-truth polygon that con-

tains it. We denote the output of this combination SVM as

ENXSVM(pi, ci) and the output of the original exclusive one

as EXSVM(pi, ci). Figure 4 shows a comparison of the two.

We produce two pixel-level parses using EXSVM(pi, ci)
and ENXSVM(pi, ci) in the unary of eq. (1), respectively,

and restricting the labels to “stuff” (taking out the “things”

ensures that they do not occlude the “stuff” hypotheses).

The connected components of these parses give us our can-

didate “stuff” masks. The exclusive parse favors the fore-

ground “stuff” objects, while the non-exclusive one favors

the larger background “stuff” objects as the smaller occlud-

ing or attached objects tend to have equal or lower SVM

responses and hence get smoothed away.

2.3. Instance Scores and Overlap Constraints
In order to perform instance-level inference, we need

to assign a score to each candidate instance indicating its

“quality” or degree of agreement with the initial pixel la-

beling (with a higher score indicating better quality), as well

as to define overlap constraints between pairs of instances.

These components will be defined in the current section.

We have found a unified scoring scheme that works

equally well for for both “things” and “stuff.” First, given

instance m with class label cm and segmentation mask

Om, we define an unweighted score ŝm as the sum of non-

exclusive SVM scores for its class label and every pixel pi
inside its segmentation mask:

ŝm =
∑

pi∈Om

(1 + ENXSVM(pi, cm)) . (3)

Since any object with a negative score will be rejected by

the optimization framework of Section 2.4, we move the ef-

fective decision boundary of the SVM to the negative mar-

gin so that as many reasonable candidate objects are con-

sidered as possible. It is important to use the non-exclusive

SVM because we do not want to penalize an instance due to

other classes that may occlude it. In the example of Figure

4, if we were to use the exclusive SVM to score a candi-

date car mask, the wheel regions would be penalized and a



worse mask without the wheels would likely be preferred.

Note, however, that we will still need the exclusive SVM to

perform pixel-level inference, since the non-exclusive SVM

tends to prefer the larger and more common classes.

So far, the scores defined by eq. (3) depend only on the

SVM data term, which is computed once in the beginning

and never modified. To allow the selected instances to iter-

atively modify the pixel labeling and vice versa, the score

also needs to depend on the current labeling. To this end,

we weight each instance score ŝm by the percentage of pix-

els in the respective mask Om that have agreement with the

current pixel labels c. At each pixel pi inside the object

mask, this agreement is given by Vp(cm, ci), a flag whose

value is 1 if the instance label cm can appear behind the

pixel label ci and 0 otherwise. For example, a candidate

“car” instance is in agreement with “headlight,” “window,”

and “license plate” pixels because all these are often seen in

front of “car.” The matrix of Vp values is learned by tabulat-

ing label co-occurrences in the training dataset, normalizing

each count by the total count for the less common class, and

then thresholding with a very low value (0.001 in the imple-

mentation). Our final weighted instance scores are given by

sm = wmŝm , where wm =
1

|Om|

∑

pi∈Om

Vp(cm, ci) .

(4)

Our instance-level inference (Section 2.4) will attempt to

select a combination of instance hypotheses that maximize

the total score while requiring that every pair of selected

objects have a valid overlap relationship. Now we explain

how this relationship is defined. For any two instances with

classes cm and cn and masks Om and On, we first compute

an overlap score

osmn =
|Om ∩On|

min(|Om|, |On|)
. (5)

Note that we define our overlap score this way instead of

the more standard intersection-over-union (I/U) in order to

have a consistent score for attached objects. If we use I/U, a

large window hypothesis partially overlapping with a build-

ing can have the same score as a small window hypothesis

with full overlap.

Next, we encode the validity of the overlap relationship

between m and n using the flag Vo(m,n), which is defined

to be 1 if and only if it is possible for cm to appear either be-

hind or in front of cn with an overlap score similar to osmn,

as determined by dataset statistics. It is important to make

Vo depend on the overlap score, in addition to the pair of

labels, because we want to allow only certain kinds of over-

lap for certain label pairs. For example, cars must overlap

other cars by 50% or less, while headlights must overlap

cars by 90% or more. For all pairs of labels (c, c′), we use

the training set to build a histogram H(c, c′, os) giving the

probability for c to be behind c′ with overlap score of os
(quantized into ten bins). Given instancesm and n from the

test image, we then determine whether their relationship is

valid by thresholding the maximum of the histogram entries

corresponding to both orderings:

Vo(m,n) = 1{max(H(cm,cn,osmn),H(cn,cm,osmn))>t} . (6)

Again we set a fairly conservative threshold of t = 0.001.

2.4. Instance­level Inference

This section introduces our method for selecting a sub-

set of candidate instances that has the highest total score

while maintaining valid overlap relationships. Let x denote

a binary vector each of whose entries xm indicates whether

the mth candidate should be selected as part of our scene

interpretation. We infer x by maximizing

∑

m

smxm −
∑

n 6=m

smnxmxn1{cm=cn}

s.t. ∀(xm = 1, xn = 1, n 6= m) Vo(m,n) = 1 ,

(7)

where cm and cn are the class labels of m and n, sm is the

instance score from eq. (4), and smn is is defined for any

two overlapping objects of the same class in the same man-

ner as sm, but over the intersection of the respective object

masks. By subtracting the smn term for any two selected

objects of the same class, we avoid double-counting scores

and ensure that any selected instance has sufficient evidence

outside of regions overlapping with other instances. With-

out this term, we tend to get additional incorrect instances

selected around the borders of correct ones. Eq. (7) can be

rearranged into an integer quadratic program:

minimize M(x) =
1

2
x
TQx− sx s.t. Ax < b , (8)

where s is a vector of all object scores sm and Q(m,n) =
smn1{cm=cn}. The constraint matrix A is constructed by

adding a row for each zero entry Vo(m,n) (that is, each

pair of objects with invalid overlap). This row consists of

all zeros except for elements m and n which are set to 1.

Finally, b is a vector of ones with the same number of rows

as A. With this encoding, we cannot select two candidate

objects with invalid overlap, as it would result in a row of

Ax being larger than 1.

To infer the labels x we adopt two methods. The first is

greedy inference that works by adding one candidate object

at a time. In each round, it searches for the object whose

addition will produce the lowest energyM(x) (eq. 8) while

still respecting all overlap constraints. This continues until

each remaining object either increases the energy or vio-

lates a constraint. This method is very fast and works well.

The second method is to use the integer quadratic program-

ming solver CPlex [9]. Compared to the greedy method,



Greedy CPlex
window
building
car
crosswalk
person
road
sidewalk
sky

car
building
license plate
manhole
road
sky
taxi
wheel
windshield

Figure 5. A comparison of our two instance-level inference methods,

greedy and CPlex. In the first row, greedy inference combines six win-

dows into one. In the second row, CPlex over-segments the foreground

car, but greedy misses the two occluded cars in the background.

CPlex tends to find solutions composed of a larger number

of smaller instances. These solutions have lower energies

and give a slightly higher labeling accuracy overall. On the

other hand, CPlex is much slower than greedy and cannot

handle as many candidate objects. Figure 5 compares the

two solutions on fragments of two test images; all the sub-

sequent figures will show only the output of CPlex. Finally,

note that prior to running the instance-level inference, we

reject any instance less than 10% of whose pixels have the

same label as the current pixel parse c.

2.5. Occlusion Ordering

The instances selected by the above process are guaran-

teed to have valid overlaps, but for each overlapping pair we

do not yet know which one occludes the other. To determine

this ordering, we build a graph with a node for each selected

mask Om. For each pair of overlapping masks Om and On

we add a pair of edges: one from m to n with edge weight

equal toH(cm, cn, osmn) and one from n tom with weight

H(cn, cm, osmn). These edges represent the situation that

object m is behind object n and vice versa. For objects

from the same class we weight the edges by the object size

to favor larger objects to be in front of smaller ones.

To infer the occlusion order we now need to remove one

edge from each pair to generate a directed acyclic graph

with the highest edge weights possible. To do so, we re-

move the edge with the smaller weight for each pair, and

check whether there are cycles remaining. If there are, we

pick a random cycle and swap the edge pair with the small-

est difference in weight, and continue until there are no

more cycles. Finally, we perform a topological sort of the

resulting graph to assign a depth plane to each object, which

is useful for visualization, like in Figure 1(e).

The ordered object masks also help us to close the loop

between instance-level and pixel-level inference. Specifi-

cally, they are needed to define the object potentials in eq.

(2) as follows. We set ψo(pi, ci) to 0 if no selected instance

mask contains pixel pi, to − log(0.5 + β) if the front-most

instance containing pi is of class ci, and to − log(0.5 − β)
otherwise. The constant β determines the amount by which

the object potentials modulate the unaries, and it is set to 0.1

in our implementation. The form of our object potentials is

inspired by [12].

We alternate between inferring objects instances (eq. 7)

and pixel labels (eq. 2) until neither one changes. This

tends to converge in three rounds and after the first round

the results are already close to final. Figure 6 shows three

rounds of alternating inference for a fairly complex scene.

3. Evaluation

3.1. Datasets and Performance Measures

We perform our experiments on two subsets of La-

belMe [18] and one of its offshoots, SUN [21]. The first

subset, LabelMe Outdoor or LMO [15], consists exclu-

sively of outdoor scenes and has 2,488 training images, 200

test images, and 33 labels. The second one, LM+SUN [20],

consists of both outdoor and indoor scenes and has 45,176

training images, 500 test images, and 232 labels. Both of

these datasets have ground truth in the form of overlapping

object polygons, which are needed both to train our system

and to evaluate its performance for object inference.

For our pixel labeling, consistent with [20], we report the

number of pixels correctly classified (per-pixel rate) and the

average of per-class rates. The per-pixel rate indicates how

well the system is doing on the large common classes, while

the average per-class rate is more affected by the smaller,

less common classes.

We evaluate the performance of our object instance pre-

dictions in two ways. The first, referred to as Object P/R,

measures precision and recall of predicted instances. We

define a correctly predicted instance to be one that has an

I/U score greater than 0.5 with at least one ground truth

polygon of the same class. If two predicted objects both

have an I/U score over 0.5 with the same ground truth poly-

gon, only one is considered correct. This is similar to the

definition used in PASCAL [3] but relies on object masks

rather than bounding boxes. Then precision is computed

as the number of correctly predicted objects divided by the

total number of predicted objects, while recall is the num-

ber of correctly predicted objects divided by the number of

ground truth objects.

Our second measure, Pixel P/R, evaluates the pixel label-

ing generated by compositing the predicted instances back

to front; any pixels that are not contained within a predicted

object are considered unlabeled. Precision for this measure

is the number of correct pixel labels divided by the total

number of predicted pixels, and recall is the number of cor-

rect pixel labels divided by the total number of pixels in the

test images. Note that Pixel P/R is affected by occlusion or-

der inference, while Object P/R is not. Also, Pixel P/R tells



Iteration 1 Iteration 2 Iteration 3Query & Ground Truth

0.20 / 0.19

road

48.3%

0.20 / 0.19

53.0%

0.21 / 0.19

53.4%

building motorbike tree sky car trash can sidewalk bus path

Figure 6. Alternating pixel-level and instance-level inference. For pixel labeling (top row) we show the per-pixel rate underneath each image and for

instance predictions (bottom) we show Object P/R (Section 3.1). From iteration 1 to 2, we correct the pixel labeling of the trashcan on the right; from

iteration 2 to 3 minor details in the background get refined. Based on the initial pixel labeling, two bus instances get predicted, and these unfortunately stay.

LMO LM+SUN

Instances Object P/R Pixel P/R Pixel Parse Instances Object P/R Pixel P/R Pixel Parse

Initial Pixel Parse 78.6 (39.3) 61.8 (15.5)

NMS Detector 13734 3.1 / 21.4 58.0 / 50.5 77.8 (39.1) 146101 0.8 / 12.2 27.8 / 25.1 60.9 (15.1)

NMS SVM 3236 11.8 / 18.4 75.7 / 62.0 78.1 (38.8) 12839 9.3 / 12.9 53.3 / 52.8 61.8 (15.9)

Greedy 918 44.3 / 20.0 75.4 / 71.8 78.4 (38.5) 4909 24.5 / 13.1 60.9 / 59.8 62.1 (16.2)

CPlex QP 993 42.8 / 21.0 75.4 / 71.8 78.4 (38.6) 5435 22.3 / 13.3 60.9 / 59.9 62.1 (16.2)

Table 1. Comparison of our instance-level inference baselines (NMS Detector, NMS SVM) and proposed methods (Greedy, CPlex QP). The top row shows

our initial pixel labeling accuracy using the system of [20] with an approximate RBF kernel. The overall per-pixel rate is listed first and the average per-class

rate is in parentheses. As expected, these numbers are almost identical to those in [20]. Below, the results for the four instance-level inference methods are

reported after three iterations of alternating pixel and object inference. The Instances column gives the total number of instances selected in the test set by

each method. The Object P/R and Pixel P/R measures are defined in Section 3.1.

us how well our instance predictions can produce a pixel

parse without relying on dense CRF unaries or smoothing.

3.2. Experiments
The primary goal of our experiments is to validate our

chief contribution, the instance-level inference framework.

Since there are no existing methods capable of inferring ob-

ject masks and occlusion ordering for hundreds of classes,

we have implemented two baselines to compare against.

Both are used to replace the instance-level inference of Sec-

tion 2.4; all the other components of our system stay the

same, including the estimation of occlusion ordering for the

selected instances (Section 2.5), which is needed to com-

pute the Pixel P/R measures.

Our first baseline, named NMS Detector, minimizes the

reliance on the pixel parsing when inferring objects. It takes

per-exemplar detection masks as candidate instances for

both “things” and “stuff” and scores each candidate with the

detector responses. To prevent the output from being over-

run by false positives, we restrict the candidate instances to

classes that appear in the pixel labeling, but this is the only

way in which the pixel labeling is used. Simple greedy non-

maximal suppression is performed on each class individu-

ally with a threshold of 50% overlap in the same manner as

[5] to infer the final objects. Table 1 shows that this setup

produces far more object instance predictions and thus has

a far lower object precision. The object recall is fairly high

but if we look at the Pixel P/R scores we can see that it fails

to produce accurate pixel predictions.

For our second baseline, named NMS SVM, we use the

same candidate objects as in Section 2.2 and score them as

in Section 2.3. However, instead of the inter-class overlap

constraints used in Section 2.3 we again use greedy non-

maximal suppression. Thus, when compared to our pro-

posed inference method, this baseline shows the effective-

ness of overlap constraints. As can be seen in Table 1, NMS

SVM produces two to three times the number of instance

predictions over our proposed method, and has lower Ob-

ject P/R and Pixel P/R performance.

In addition to the two baselines, Table 1 also shows re-

sults using both greedy inference and the CPlex solver [9].
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Figure 7. LMO test example where instance-level inference ends up hurt-

ing the pixel-level labeling. The initial pixel labeling for the boat is fairly

good, but the water gets mislabeled as “road.” Since “boat” cannot overlap

“road,” a boat instance is never turned on, which in turn decreases the pixel

labeling performance.

The greedy inference tends to infer fewer object instances

than CPlex and has a higher object precision, but it does

miss some objects and thus has a lower object recall.

Somewhat disappointingly, instance-level inference does

not give us any significant gains in pixel accuracy over

our own previous system [20]. By comparing the initial

pixel parse numbers in the top row of Table 1 to the fi-

nal ones for the greedy and CPlex inference, we can see

that our overall and average per-class rates drop slightly

for the LMO dataset and increase slightly for LM+SUN.

As we have learned from our experiments, alternating be-

tween pixel-level and instance-level inference only tends to

improve performance in complex scenes where overlap re-

lationships can help correct errors (e.g., in Figure 6, some

wrong “building” labels get corrected to “trashcan”). Be-

cause most images in the LMO dataset are simplistic, with

few overlapping instances, our iterative method does not

produce any improvement. What is worse, in some cases,

enforcing sensible overlap constraints can actually hurt the

pixel-level accuracy. For example, in the LMO test image

shown in Figure 7, the water on the bottom initially gets in-

correctly but confidently labeled as “road.” Then, though

there is a decent initial “boat” labeling as well as good can-

didate “boat” masks, these masks cannot be selected as they

have an inconsistent overlap with “road.” Because there are

so few boats in the test images, this brings down the “boat”

class rate for the entire test set from 14.8% to 2.3%, and is

almost single-handedly responsible for the drop in average

per-class rate from the initial to the final pixel labeling ac-

curacy on LMO. As for LM+SUN, it has more complex and

varied scenes, and we do see small gains from initial to final

pixel labeling accuracy on that dataset.

Finally, it is interesting to compare our results to those of

Isola et al. [10], who also predict object instances by trans-

ferring ground truth masks from the training set. They re-

port a per-pixel performance of 70.0% on the LMO dataset.

If we just use our predicted objects to produce a pixel label-

ing we achieve a pixel accuracy of 71.8% (the recall from

our Pixel P/R measure in Table 1) and our pixel parsing re-

sult has an accuracy of 78.4%, clearly outperforming [10].

4. Discussion
We have demonstrated a system capable of predicting

object instances and their occlusion ordering in complex

scenes, thus expanding the representational capability of ex-

isting pixel-level scene parsing methods. To improve our

system, one key direction is generating better candidate in-

stances. Currently, we manually divide our label set into

“stuff” and “thing” classes and use different methods to

generate candidate objects for each. To an extent, this di-

vision is arbitrary, as many classes, such as trees, can some-

times appear as “things” with well-defined boundaries, and

sometimes as diffuse “stuff.” We would like to explore ways

of generating candidate object masks that would not rely on

a hard things-vs-stuff split. We also plan to further inves-

tigate the problem of using the inferred object instances to

update the pixel-level labeling so as to achieve more signif-

icant gains from alternating inference.
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