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Abstract

Weakly supervised discovery of common visual struc-

ture in highly variable, cluttered images is a key problem

in recognition. We address this problem using deformable

part-based models (DPM’s) with latent SVM training [6].

These models have been introduced for fully supervised

training of object detectors, but we demonstrate that they

are also capable of more open-ended learning of latent

structure for such tasks as scene recognition and weakly su-

pervised object localization. For scene recognition, DPM’s

can capture recurring visual elements and salient objects;

in combination with standard global image features, they

obtain state-of-the-art results on the MIT 67-category in-

door scene dataset. For weakly supervised object localiza-

tion, optimization over latent DPM parameters can discover

the spatial extent of objects in cluttered training images

without ground-truth bounding boxes. The resulting method

outperforms a recent state-of-the-art weakly supervised ob-

ject localization approach on the PASCAL-07 dataset.

1. Introduction

Weakly supervised discovery of common visual struc-

ture among a set of highly variable, cluttered images is one

of the key problems in recognition. Consider, for example,

the task of learning scene category models. While a few

scene types (“beach,” “mountain”) can be well described by

the statistics of low-level features, models for more complex

and subtle categories (“nursery,” “laundromat”) should cap-

ture the appearance and spatial configuration of key scene

elements – without being told what these elements might

be or where they might be located. Another example is

weakly supervised object localization, where we are given

a set of images containing instances from the same category

(“horse,” “bus”) and told to build a model for that category

without knowing exactly where these instances are.

In this paper, we propose to represent the latent common

structure of scenes and objects for the above tasks using de-

formable part-based models (DPM’s) and to learn this struc-

ture using the latent SVM (LSVM) formulation of Felzen-

szwalb et al. [6]. DPM’s currently constitute the state of

the art for sliding-window object detection. A DPM rep-

resents an object by a lower-resolution root filter and a set

of higher-resolution part filters arrenged in a flexible spatial

configuration. In the standard (fully supervised) framework

for training of an object detector, positive images are anno-

tated with the locations of object bounding boxes, but the

part locations are treated as latent information. The LSVM

learning procedure acquires part appearance and layout pa-

rameters by alternating between making assignments to la-

tent variables (part locations in training images) given the

model parameters, and re-optimizing the model parameters

given the latent variable assignments. This optimization

framework has been very successful at discovering useful

latent part structure in highly deformable categories with

large intra-class appearance variability. In this paper, we

push the limits of LSVM training by applying it to imagery

with even more clutter and visual variability, and a signifi-

cantly larger latent search space.

The first task we consider is scene recognition. Strictly

speaking, scene categories do not have “parts” as objects

do. However, as argued by Quattoni and Torralba [16], the

structure of a scene may be described by a constellation

model with a fixed “root” encompassing the entire image

and moveable “regions of interest” (ROI’s). The root cap-

tures the holistic perceptual properties of the entire scene,

while the ROI’s correspond to the most important objects.

DPM’s have exactly the right expressive power to imple-

ment this kind of model; moreover, the LSVM training

process can be used to discover the ROI’s automatically,

whereas the method of [16] relies on manual annotations.

The resulting scene representation, when combined with

standard global image features such as GIST [14] and spa-

tial pyramids [11] obtains state-of-the-art results on the MIT

67-category indoor scene dataset [16].

Our second target task is learning to localize objects

from images that are annotated with category labels, but

not with bounding boxes. In the fully supervised DPM

training setup, root filters are initialized based on ground

truth bounding boxes, though their locations are treated as



“partially latent” and allowed to move in a small neigh-

borhood of the initial position to compensate for noisy

annotation [6]. To deal with training images not having

ground truth bounding boxes, we make the root filter lo-

cations fully latent and harness LSVM optimization to con-

duct a multi-stage global search for possible object loca-

tions. The resulting approach outperforms a state-of-the-art

recent method [4] for weakly supervised object discovery

on the challenging PASCAL-07 dataset.

2. Model Description

This section summarizes the DPM framework of [6],

which we adapt to scene classification in Section 3 and

weakly supervised object localization in Section 4.1

An image is represented by a multiscale feature pyramid.

Specifically, a variation of histogram-of-gradient (HOG) [6]

features is used. In our experiments, we partition the im-

age at each pyramid level into cells of 8 × 8 pixels and use

nine orientation bins per HOG cell. We use pyramids of

eight and sixteen levels per octave for scene classification

and object localization, respectively.

A DPM consists of a root filter, a set of part filters, and

deformation parameters penalizing the deviation of the parts

from their default locations relative to the root. Each filter

defines a HOG window of a given size. The filter response

at a given location and scale in the image is given by the dot

product of the vector of filter weights and the HOG features

of the corresponding window in the feature pyramid. The

part filters are applied to features at twice the spatial resolu-

tion of the root. An object detection hypothesis x specifies

the location of the root in the feature pyramid, and the posi-

tions of the parts relative to it are treated as latent variables

z. The hypothesis is scored by the LSVM function

fβ(x) = max
z

β · Φ(x, z) , (1)

where β is the vector of DPM parameters, i.e., a concatena-

tion of all the filter and deformation weights, and Φ(x, z) is

the concatenation of the HOG features of the root and part

windows, as well as the part displacements. Note that it is

the maximization over the latent variables z that makes the

LSVM classifier response nonlinear. At detection time, the

model score (1) has to be evaluated at every location and

scale in the test image. To do this efficiently, the code of [6]

relies on dynamic programming and generalized distance

transforms [7, 8].

DPM’s can be further extended to a mixture of multi-

ple components. In this case, the component label of each

hypothesis becomes an additional latent variable, and the

model score is computed by maximizing over the scores of

all the components.

1We use the code made available by the authors of [6] at

http://people.cs.uchicago.edu/˜pff/latent-release3/.

During training of the object models, the part locations

and components are not labeled and hence are treated as la-

tent (hidden) variables. The latent SVM training procedure

alternates between two steps until convergence. In the first

step, the parameters β are fixed and maximization over the

latent variables of all the positive examples is carried out.

In the second step, the latent variables are fixed and maxi-

mization over β is carried out by solving the margin-based

SVM objective function.

Due to the presence of the latent variables, the LSVM

training objective is not convex, and the model needs to

have a good initialization in order to avoid local minima.

In the implementation of [6], components are initialized by

sorting ground-truth bounding boxes based on aspect ratio,

root filters are initialized by training a standard SVM on the

features inside the bounding boxes, and part filters are ini-

tialized by successively covering the highest-energy parts of

the root filter (see [6] for details).

3. Scene Classification

Scene recognition approaches based on low-level ap-

pearance information [11, 14, 18] work poorly on categories

that are characterized not by global perceptual character-

istics, but by the identities and composition of constituent

objects. To cope with such categories, Quattoni and Tor-

ralba [16] have proposed a representation composed of a

root node capturing global scene properties and a set of

ROI’s capturing more fine-grained object-level properties.

In this section, we use DPM’s to obtain a representation

with a similar expressive power but much higher perfor-

mance than that of [16]. Moreover, while the method of [16]

requires ground-truth ROI annotations to get the best perfor-

mance, ours is able to discover them automatically.

3.1. Our Approach

We wish to adapt DPM’s for multi-class scene classifi-

cation in a one-vs-all framework, where we train a binary

LSVM classifier for each class using images from all the

other classes as negative data. At test time, we label the test

image with the class getting the highest response.

At first glance, if we want the LSVM model to behave

like a global image classifier, it would not seem to make

sense to evaluate (1) at multiple location hypotheses per

image. The root filter, which represents global scene char-

acteristics, should be fixed to cover as much of the image

as possible, and only the part filters should be allowed to

move around to capture finer-scale deformable structure. In

this scheme, when training the LSVM model for each scene

type, each positive (resp. negative) image would generate a

single positive (resp. negative) hypothesis.

Perhaps surprisingly, we have found that scene models

trained in the above way do not perform well (they get only

17.6% accuracy), and that to get better results, we need to



Figure 1. Use of a two-component model to represent different aspects of the category cloister. Left column: visualization of the root and

part filters for both components. Right five columns: test images with “winning” root (resp. part) filter positions in red (resp. yellow).

allow the root filter to move around, albeit less freely than

in an object detector. Specifically, we use a square root filter

and restrict it to have at least 40% overlap with the image

(this means that for a square image, the root filter covers

over 60% of each dimension). In addition, we force the root

filter to stay completely inside the image boundaries (in [6],

the root filter can go outside to detect partially visible ob-

jects). At test time, we compute the classifier score for the

image by maximizing (1) over all possible root filter hy-

potheses. Likewise, during training, we fix latent variable

assignments in the positive images to the combination of

root and part positions giving the highest response for the

current model. We initialize the root filter weights by learn-

ing a standard linear SVM on the HOG features covering

the entire training images. Part filters and placements are

initialized using the same heuristics as in [6].

To get the best possible performance for scene classifi-

cation, we have also found it necessary to sample multiple

negative example windows from every negative training im-

age, just as is done for object detector training in [6]. We

sample all negative windows satisfying the same 40% over-

lap constraint as above. To make training with a large num-

ber of negative windows more efficient, the code of [6] takes

a “data mining” approach of learning the model on a small

subset of “hard” negatives. However, our negative window

selection scheme is much more restrictive than a full sam-

pling of windows in the HOG pyramid, so the overhead of

the data mining outweighs its potential benefit. Thus, we

turn off the data mining and use all the negative examples at

once, reducing the training time by at least a factor of two.

The next question is how many part filters to use. Table

1 lists classification performance on the MIT indoor scene

dataset [16] as the number of parts is varied from zero to

ten. When we go from zero to two parts, we get a big leap

in the classification performance from 15.00% to 25.37%,

confirming that having a multi-scale latent structure is in-

deed key to the success of DPM’s. We get the best perfor-

mance with eight parts, so we use that number in all the

subsequent experiments.

0 2 4 6 8 10

15.00 25.37 27.99 26.94 30.37 25.22

Table 1. Average classification rates (in %) for different numbers

of parts on the MIT indoor scene database.

The final implementation choice concerns the number of

mixture components in the model. We have found that two-

component models are better able to deal with intra-class

variability (see Figure 1 for an illustration). To initialize the

corresponding model components, we cluster the training

set into two groups based on GIST features [14]. During the

training, the images are adaptively re-grouped depending on

which component scores higher for that image. The two-

component model achieves an average classification rate of

30.37%, compared to 28.43% of a single-component model.

3.2. Experiments

In this section, we evaluate our approach on the 67-

category MIT indoor scene dataset [16] using the same

training/test split as in [16], where each scene category has

about 80 training and 20 test images.

Figure 2 shows the learned models for a few categories.

DPM’s do extremely well on categories with a stable global

structure, such as church inside, cloister, and corridor.

They also do well on categories that can be distinguished on

the basis of prominent objects. An obvious example of this

is movietheater, whose DPM is essentially a screen detec-

tor. More interestingly, the model for nursery detects cribs

with their characteristic vertical bars, the one for laundro-

mat detects the round portholes on the doors of washers and

dryers, the one for meeting room detects a large table, and

the one for buffet detects the curved edges of plates.

Table 2 compares our performance with a number of

baselines and state-of-the-art approaches [12, 16, 19, 22].

By themselves, DPM’s outperform a few recent approaches

such as [16, 22], are competitive with GIST features [14]

computed on the three color channels of the image, but do

not do as well as spatial pyramids (SP) [11]. However, over-

all classification rates do not tell the whole story, as DPM’s



(a) Corridor

(b) Church inside

(c) Movietheater

(d) Laundromat

(e) Nursery

(f) MeetingRoom

(g) Buffet

Figure 2. Scene models (only the dominant component) and example test images with the highest scoring filter positions. Detected root

filter is displayed in red, and part filters are shown in yellow.

appear to complement existing feature representations in in-

teresting ways. Table 3 lists the performance of our method,

GIST-color, and SP on each of the 67 categories. There

are quite a few classes such as florist, bookstore, classroom,

meeting room, laundromat, nursery, etc., where DPM’s de-

cisively outperform both SP and GIST-color, and for the

most part these are the DPM’s that also have the best qual-

itative structure. On the other hand, DPM’s are relatively

weaker on a few categories such as poolinside, grocerys-

tore, and winecellar, for which color or local texture is more

discriminative than global structure.

In order to benefit from the complementarity of DPM’s



HOG 22.8

GIST-grayscale 22.0

Baselines GIST-color 29.7

Spatial Pyramid (SP) 34.4

GIST-color + SP 38.5

ROI+gist [16] 26.5

MM-scene [22] 28.0
State of the art

CENTRIST [19]** 36.9

Object Bank [12] 37.6

DPM 30.4

DPM + GIST-color 39.0
This paper

DPM + SP 40.5

DPM + GIST-color + SP 43.1

Table 2. Average classification rates for MIT indoor scene dataset.

**CENTRIST result is averaged over five random train-test splits,

but all the other results use the split from [16]. For HOG, we

use the dimension-reduced variant from [6], which for a 9×9 grid

comes out to be 1395-dimensional. GIST-grayscale is a 320-

dimensional descriptor [14] computed on the grayscale image.

GIST-color is formed by concatenating the GIST descriptors of

RGB color channels. SVM with a Gaussian kernel is used for the

HOG and GIST baselines. For SP [11], we use vocabulary size 200

and three levels, and histogram intersection for the kernel. Multi-

ple features (as in GIST-color + SP) are combined by multiplying

softmax-transformed classifier outputs (see text).

and the other features, we use a very simple method to com-

bine their respective classifier scores. Specifically, each fea-

ture gives us a bank of n one-vs-all classifiers for each of

the n scene classes. If a test image gets scores (a1, . . . , an)
from one of these classifier banks, then the corresponding

“confidence” that the image belongs to category i is given

by the softmax transformation exp(ai)/(
∑n

k=1
exp(ak)).

To get the combined “confidence” for class i based on all

the available features, we multiply the respective softmax-

transformed scores. As shown in the last line of Table 2,

combining DPM, SP, and GIST-color in this way gives us

an average classification performance of 43.08%, which, to

our knowledge, is the best number on this dataset to date.

4. Weakly Supervised Object Localization

In this section, we present our approach for using DPM’s

to perform weakly supervised object localization. Most

existing weakly supervised localization techniques have

been applied to relatively simple datasets such as Cal-

tech04 [1, 3, 13, 15, 21] or Weizmann horses [20], or

one or two PASCAL-VOC categories [20, 21]. Fewer at-

tempts have been made to learn models for a larger number

of categories on more challenging datasets. Among these

are [17] on the LabelMe dataset, [2] and [10] on PASCAL-

VOC06, and [4] on PASCAL-VOC07. We compare our re-

sults to the state-of-the-art approach of [4], which has out-

performed [2, 17]. This approach incorporates a “generic

object model” that scores image windows according to their

likelihood of being object bounding boxes, and that has to

be learned from a set of “meta-training” images with ground

truth object annotations. By contrast, the method we present

does not use ground truth annotations at all.

4.1. Our Approach

The starting point for our method is the standard fully

supervised training procedure for DPM detectors, which at-

tempts to compensate for noisy or imprecise bounding box

annotations by treating root filter positions in training im-

ages as “partially latent.” Each root filter hypothesis in a

positive training image is initialized based on the corre-

sponding bounding box, but it is subsequently allowed to

slide around in the neighborhood of that box to maximize

the model score. In the weakly supervised scenario, we at-

tempt to turn the root filter placements into full-blown latent

variables and see if the LSVM optimization can success-

fully search the much larger latent space of potential object

locations in the positive training images.

In order to avoid bad local minima in that space, we

need to have a sensible starting point. In particular, we

have found it difficult to learn a good model without ini-

tially constraining the root filter size. In the absence of a

size constraint, the model tends to latch on to small regions

that do not correspond to objects at all. To obtain initial esti-

mates of object bounding boxes in positive training images

of a given class, we essentially use the scene recognition ap-

proach of Section 3. Specifically, we begin by learning root

filter weights from the HOG features of the entire training

images, then we constrain root filters to have at least 40%

overlap with the image and alternate between updating la-

tent variable assignments (root and part locations) and DPM

parameters that maximize the LSVM score.

Note that in Section 3 we only cared about root filter po-

sitioning to the extent that it improved the accuracy of scene

classification. For that purpose, square root filters worked

well. However, to achieve good performance for object lo-

calization, the estimated root filter positions have to closely

match the ground truth bounding boxes. According to the

PASCAL evaluation scheme, a localization is considered

correct if the area of the intersection of the estimated and

the ground truth bounding boxes divided by the area of their

union is at least 0.5 [5]. It is hard to do well according to

this criterion if the estimated root filter has the wrong as-

pect ratio. To date, we have not found a good method for

determining this ratio from weakly annotated training data,

so we simply initialize it to the average of the aspect ratios

of the positive images.

At the end of the initial training stage, the single highest-

scoring root filter placement in each positive image serves

as the initial bounding box estimate. The 40% overlap

threshold between the image and the root filter serves to

reduce the latent search space, but it also poses a limitation

for localizing smaller objects. In some cases, the poor lo-



DPM SP GC All DPM SP GC All DPM SP GC All DPM SP GC All

cloister 90 90 80 95 movietheater 45 50 25 55 dentaloffice 24 48 33 48 toystore 9 14 14 18

florist 79 63 63 89 closet 44 72 50 72 warehouse 24 14 24 29 children room 6 11 17 11

buffet 75 70 50 80 inside bus 43 57 48 57 computerroom 22 22 28 44 tv studio 6 44 33 50

pantry 75 40 40 75 hairsalon 43 29 29 52 gym 22 22 11 33 deli 5 0 16 5

meeting room 75 32 45 77 gameroom 40 20 10 35 livingroom 20 15 10 20 operating room 5 21 26 26

classroom 67 56 39 61 prisoncell 40 35 35 50 grocerystore 19 48 43 48 airport inside 5 10 5 10

concert hall 65 55 60 80 subway 38 38 38 62 locker room 19 38 5 38 artstudio 5 15 10 15

greenhouse 65 75 55 75 bowling 35 55 45 55 videostore 18 14 18 23 hospital room 5 25 15 20

church inside 63 68 74 79 stairscase 35 35 35 55 shoeshop 16 21 11 16 restaurant 5 25 0 10

inside subway 62 43 10 52 trainstation 35 60 55 70 kindergarden 15 25 25 40 bedroom 5 14 0 10

nursery 60 45 50 65 clothingstore 33 33 11 33 winecellar 14 38 43 38 waitingrom 5 14 14 33

corridor 57 52 48 67 casino 32 47 32 47 museum 13 22 4 17 jewelleryshop 5 5 5 5

garage 56 50 28 56 studiomusic 32 58 42 63 fastfood restaurant 12 12 18 24 laboratorywet 5 14 9 14

elevator 52 62 67 86 lobby 30 25 30 35 auditorium 11 44 22 33 restaurant kitchen 4 22 17 13

bathroom 50 39 33 56 kitchen 29 24 43 52 bar 11 39 11 33 library 0 45 35 35

laundromat 45 23 18 50 dining room 28 17 50 56 bakery 11 26 37 26 pool inside 0 15 55 45

bookstore 45 25 20 35 mall 25 15 20 20 office 10 10 10 10

Table 3. Per-class classification rates for our approach (DPM), spatial pyramid (SP), GIST-color (GC) and the combination of DPM + SP

+ GIST-color (All). The categories are listed in decreasing order of their DPM performance. All results in %.

calization is “obvious,” in that a large bounding box ends

up enclosing a mostly blank background region with a very

small object instance in the middle (Figure 3).

To improve the localization in such “easy” examples and

to obtain a more accurate estimate of the bounding box as-

pect ratio, we re-crop each bounding box by finding the

area enclosing 99.9% of its edge energy using a modifi-

cation of the technique from [9]. Briefly, we compute a

low-resolution gradient magnitude image over the bound-

ing box and set the values that are less the 10% of the max-

imum to zero. Starting from the centroid (center of mass)

of the magnitude image, we expand the bounding box in

four directions until the gradient magnitude inside it adds

up to 99.9% of the total. This simple technique crops out

plain background regions, allowing the bounding box to be

a tighter fit around the object. However, it does not help

for the images where the background is cluttred or textured.

Figure 3 shows the result of bounding box re-cropping on

a few images, and Table 4 shows the effect of this simple

procedure on the accuracy of object localization.

Clearly, any correct localizations we manage at this stage

are on the large, prominent, centered object instances – not

just because of the overlap constraint, but also because root

filter weights are initialized based on the HOG features of

the entire images. Nevertheless, we hope that the “signal”

in these instances overcomes the “noise” of the incorrect

localizations to give us a reasonable starting model that can

be subjected to iterative refinement. We re-train the model

using the standard fully-supervised scheme of [6] with “par-

tially latent” root filter positions. The only difference is that

in [6] object bounding boxes come from the ground truth,

while we use the re-cropped bounding box estimates from

the automatic initialization step. We allow the root filter po-

sitions to move as long as they maintain at least 40% overlap

with the input bounding box estimates. However, unlike the

initialization, the re-training does not impose any constraint

on the root filter size. In this manner, we can improve our

localization of smaller object instances.

We repeat the re-training step several times using the

bounding box estimates from the previous iteration as in-

put, and re-crop the bounding boxes each time. With better

bounding box estimates, the trained model improves fur-

ther, giving higher localization results. Table 4 shows the

localization performance at the end of each stage on two

PASCAL07 subsets (see next section for details). After

three rounds of re-training, the models converge to a stable

level of performance.

4.2. Experiments

We follow the protocol of [4] by evaluating localiza-

tion performance on two subsets from the training + val-

idation set (trainval) of PASCAL07: PASCAL07-6x2 and

PASCAL07-all [4]. The PASCAL07-6x2 subset consists of

images from 6 classes (aeroplane, bicycle, boat, bus, horse

and motorbike) for Left and Right aspects of each class,

resulting in a total of 12 class/aspect combinations. The

PASCAL07-all subset consists of 42 class/aspect combina-

tions covering 14 classes and 5 aspects (Left, Right, Frontal,

Rear, Unspecified). Just as in [4], for every class, the im-

ages labeled as either difficult and/or truncated were ex-

cluded from training and evaluation. To train a model for

each aspect/class combination, we use the images from that

aspect/class as positive training data, and images outside of

that class as negative training data. For these models, we

use only a single component, since separating the aspects

reduces the amount of intra-class variability as well as the

amount of positive training images.

Similarly to [4], we evaluate the accuracy of localizing

instances of the target class in the training images. Note

that our approach can localize multiple instances per im-

age by applying the learned DPM model to the image in

the usual sliding window fashion. However, the approach

of [4] is restricted to a single detection per image, so to

compare with them, we consider only the single highest-

scoring window per image. The perfomance is measured

as the percentage of training images in which an instance

was correctly localized according to the PASCAL criterion

(window-intersection-over-union ≥ 0.50). A breakdown

of the results for each training iteration is given in Table

4. Our average performance on the PASCAL07-6x2 and

PASCAL07-all subsets is 61.05% and 30.31% respectively,

versus 50% and 26% for [4]. One should note that [4] uses



Figure 3. Bounding box re-cropping. Boxes before (resp. after) re-cropping are shown in red (resp. yellow).

a set of 799 images with bounding box annotations as meta-

training data in order to learn the parameters of the generic

object model, while we do not use ground truth annotations

at all. On the other hand, once the generic object model is

trained, the formulation of [4] learns the model for each

class generatively (i.e., ignoring the images from all the

other classes), while our approach trains the DPM models

discriminatively (using the images outside the target class

as negative data).

PASCAL07-6x2 PASCAL07-all

Before After Before After

cropping cropping cropping cropping

Initialization 36.72 43.73 19.98 23.00

Refinement 1 51.63 53.11 25.11 26.38

Refinement 2 56.99 59.31 27.69 29.39

Refinement 3 59.32 61.05 28.98 30.31

Result from [4] 50.00 26.00

Table 4. Average localization results (in %) for every stage of our

iterative procedure.

Figure 4 visually compares the initial and final models

obtained by our method for three classes. Both Figure 4

and Table 4 confirm that iteratively re-training the models

and re-cropping the bounding boxes significantly improves

the model quality and localization performance.

We have also experimented with weakly supervised

learning of a model using as positive examples all the im-

ages of a given object regardless of their aspect. The im-

ages labeled as difficult and/or truncated are excluded in

this case as well. Since we now need to model a mixture

of viewpoints, we use a two-component model for this test.

The components are initialized by sorting the training im-

ages according to their aspect ratio. The average localiza-

tion performance of the resulting models for the fourteen

PASCAL07-all classes is 29.98%, which is almost the same

as that of the per-aspect models. Thus, the multi-component

LSVM formulation is strong enough that we do not actually

need to separate the aspects manually during training.

Finally, we apply the DPM’s obtained through weakly

supervised learning to detect objects in previously unseen

Ours [4] Ours [4]

aeroplane-left 0.075 0.091 aeroplane-right 0.211 0.236

bicycle-left 0.385 0.334 bicycle-right 0.448 0.494

boat-left 0.003 0.000 boat-right 0.005 0.000

bus-left 0.000 0.000 bus-right 0.030 0.164

horse-left 0.459 0.096 horse-right 0.173 0.091

motorbike-left 0.438 0.209 motorbike-right 0.272 0.161

Table 5. Comparison of average precision for object detection on

the PASCAL07-6x2 test set for our method vs. [4].

test images. Table 5 compares the object detection perfor-

mance for the PASCAL07-6x2 models to those of [4]. The

performance is measured by the average precision (AP) on

the entire PASCAL 2007 test set (4952 images). Our mean

AP (mAP) is 0.208, compared to 0.160 from [4]. For ref-

erence, the mAP performance of DPM’s learned with full

supervision is 0.330 [4].

Even though the initial results presented in this section

are encouraging, there remain glaring limitations and obvi-

ous avenues for improvement. One of the main limitations

is the lack of a good method for initializing the aspect ratio

of the root filter. We currently initialize it with the aver-

age aspect ratio of the positive images for the given class.

However, the aspect ratio of the input images may not be

a good indication of the object shape. One such example

is our learned model for the person-frontal class (Figure 4

(d)), which is actually pretty good at locating people, but

happens to have the wrong (horizontal) aspect ratio. For

this reason, the bounding box estimate it returns often fails

to satisfy the correct localization criterion.

5. Discussion

In Section 3, we used DPM’s to learn the structural prop-

erties of indoor scenes in order to perform scene classifica-

tion. By evaluating a multi-component model at different

positions and scales, we were able to deal with changes in

aspect and framing. Further, DPM models trained without

any detailed object-level or ROI annotation can sometimes

learn to identify common objects in the scenes. This abil-

ity makes them suitable for the problem of weakly super-

vised object localization as well. With a rather straightfor-

ward iterative refinement approach presented in Section 4,

we were able to outperform a more complex state-of-the-art

method [4] on the PASCAL-VOC07 dataset.

To summarize our contributions, we have demonstrated

how the strengths of the DPM framework can be exploited

to advance the state of the art in challenging recognition

problems involving the discovery of latent correspondence

among a set of cluttered, highly variable images. Another

contribution is that, in showing the success of DPM’s

outside of their originally intended setting, for problems

with a higher intra-class variability and a larger latent

search space, we are able to give a better idea of their

representational power and make an argument that they

belong in the toolbox of the most effective general-purpose

recognition methods available to date.



(a) bicycle-right

(b) bus-unspec.

(c) horse-unspec.

(d) person-frontal

Figure 4. Comparison of initial model (first column) with the final one (second column). The images compare the bounding boxes corre-

sponding to these two models. Initial bounding box estimate is shown in red and the final one is shown in yellow. Re-cropping has been

applied to the bounding boxes in both cases.
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