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Abstract: In spite of significant research efforts, the existing scene text detection methods fall short
of the challenges and requirements posed in real-life applications. In natural scenes, text segments
exhibit a wide range of shape complexities, scale, and font property variations, and they appear
mostly incidental. Furthermore, the computational requirement of the detector is an important
factor for real-time operation. To address the aforementioned issues, the paper presents a novel
scene text detector using a deep convolutional network which efficiently detects arbitrary oriented
and complex-shaped text segments from natural scenes and predicts quadrilateral bounding boxes
around text segments. The proposed network is designed in a U-shape architecture with the careful
incorporation of skip connections to capture complex text attributes at multiple scales. For addressing
the computational requirement of the input processing, the proposed scene text detector uses the
MobileNet model as the backbone that is designed on depthwise separable convolutions. The network
design is integrated with text attention blocks to enhance the learning ability of our detector, where the
attention blocks are based on efficient channel attention. The network is trained in a multi-objective
formulation supported by a novel text-aware non-maximal procedure to generate final text bounding
box predictions. On extensive evaluations on ICDAR2013, ICDAR2015, MSRA-TD500, and COCOText
datasets, the paper reports detection F-scores of 0.910, 0.879, 0.830, and 0.617, respectively.

Keywords: scene text detection; MobileNets; convolutional network; text attention

1. Introduction

Text processing in images and videos is an important problem in many digital applica-
tions. With advancements in mobile and augmented reality applications, efficient scene text
processing can significantly improve the overall experience in such applications. Unlike
conventional optical character recognition, scene text processing applications deal with
much larger variations in text appearances in terms of the orientations, shapes, scripts,
and scales. The localization of text segments in input images forms the precursor for
understanding the texts embedded in scene images. In this case, a detector localizes the
text regions in the input images as rectangular or quadrilateral bounding boxes.

Early research on scene text detection focused on developing handcrafted features
for modeling text components in natural scenes [1–4]. These methods exploited the con-
ventional image processing tools including edge detection, connected component analysis,
morphological operations, and neighborhood analysis for content modeling in images and
videos [5–7]. Stroke width transform (SWT) by Epshtein et al. [2] and maximally stable
extremal regions (MSERs) by Neumann et al. [8] are two important methods in this body
of research. The SWT presented steps for pixel-level character stroke width analysis for
text instance segmentation in images, whereas the MSER for scene text detection applied
contiguous image segment analysis at multiple levels. The concepts proposed in SWT and
MSER were subsequently in many methods for scene text analysis [9–12]. However, these
methods fail to address the variations and complexities in real-life scene text detection due
to the inherently parameter-sensitive design steps.

Appl. Sci. 2022, 12, 6425. https://doi.org/10.3390/app12136425 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136425
https://doi.org/10.3390/app12136425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9039-0561
https://doi.org/10.3390/app12136425
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136425?type=check_update&version=1


Appl. Sci. 2022, 12, 6425 2 of 18

With the success of deep neural networks-based image recognition [13], many recent
methods have explored various designs of deep convolutional neural networks for scene
text analysis [14,15]. The majority of these methods focused on improving text detection
performance by applying complex convolutional neural net architectures to enhance the
representation power of detection models. However, this limits the applicability of de-
veloped methods in real-time applications because of computational requirements. In
addition, despite significant effort, the existing convolutional architectures fail to handle
complex scene text appearances in natural scenes as observed from the state of the art on
public datasets [16–18].

To this end, the paper presents a novel scene text detector based on convolutional
neural networks for predicting quadrilateral bounding boxes on scene text instances. In
addition to the detection accuracy, our approach focuses on a computationally lightweight
and accurate scene text detector suitable for digital applications with limited computa-
tional resources, e.g., mobile and embedded applications. The proposed detector uses the
MobileNet model as the backbone, where the detector network is designed in a U-shaped
encoder–decoder architecture by introducing skip connections for regulated feature fusion
at multiple levels. The selection of MobileNet was made for its lightweight and efficient
design based on the depthwise separable convolution operation [19].

The challenges of text detection in natural scenes bridge over to conventional object
detection and object instance segmentation in images. Therefore, the proposed detector is
trained in multitask learning, combining the text instance segmentation with quadrilateral
bounding box prediction around text instances. The combination of dual objectives guides
the detector to capture text attributes for arbitrarily oriented, complex shaped, and styled
scene text detection. In this convention, the subsequent layers in sequential convolutional
network design extract finer details from the input feature map by information aggregation
using layerwise convolutional operation and feature sampling. In this respect, many
recent works on object detection have explored the visual attention mechanism in the deep
network design for guiding the network to focus on target specific details [20–23]. Along
the same lines, our approach incorporates carefully placed text attention blocks in the
detector network design for enhancing the representative power of extracted features. The
common design of attention mechanisms includes convolutional blocks, which increase
the overall model complexity and computational requirements. The text attention blocks
in the proposed detector are based on efficient channel attention (ECA) [24], which has
demonstrated excellent performance on object detection tasks with marginal computational
cost. The following are the major contributions in this paper.

• A novel U-shaped network for scene text detection for real-time applications is pre-
sented, which applies the depthwise separable convolution operation. The network
predicts a quadrilateral bounding box around text instances in scene images. The
incorporation of skip connections enables the detector to efficiently capture arbitrarily
shaped text instances at multiple scales. The network is incorporated with ECA-based
text attention blocks for robust and efficient text feature extraction, and the training
is performed using a novel multitasking formulation. Next, a novel post-processing
method using non-maximal suppression is applied for final prediction, which accounts
for the text expectation in candidate quadrilateral bounding boxes.

• The different components of the proposed detector have been extensively validated
on ICDAR2013, ICDAR2015, COCOText, and MSRA-TD500 datasets. With thorough
experiments under different settings, the results demonstrate that the proposed scene
text detector presents an efficient solution for the detection of arbitrary shaped, multi-
oriented text instances in different real-life settings. As shown later in the results, the
proposed detector outperforms many prominent deep neural network-based methods,
and it achieves on par performance in comparison with others.

The paper structure is as follows. Section 2 presents relevant works pertaining to
the deep learning methods for scene text detection. The proposed scene text detector is
discussed in Section 3. The experimental validation of the proposed methodology and
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relevant discussions are available in Sections 4 and 5. The final section summarizes our
contribution and discusses the direction of future work.

2. Literature Survey

Delakis et al. [25] presented an early application of convolutional networks designed
with convolution, sampling, and activation layers for text detection in images. Subsequently,
Wang et al. [26] demonstrated a convolutional network for scene text recognition combining
text localization, character recognition, and lexicon-driven word recognition. On similar
lines, Jaderberg et al. [27] demonstrated jointly trained convolutional networks with shared
weights for text detection and recognition. However, these methods analyze the input by
spatial scanning in the image space, which is computationally inefficient.

With progress in convolutional neural network based object detectors, e.g., Fast
RCNN [28], RFCN [29], SSD [30], and Mask RCNN [31], many recent scene text detec-
tion methods followed similar designs to directly predict boundary boxes around the text
segments [32–37]. The early deep convolutional neural network design for text detection
focused on axis-aligned rectangular box prediction around text segments [38–42]. The
method by Tian et al. [40] presented a convolution RNN for text line proposal generation
and merging. Similarly, [39] showed the application of residual features in a convolutional
RNN framework for scene text detection. However, the textual content in natural images is
never constrained within the rectangular boundary but appears in arbitrary orientations
and curved shapes within complex backgrounds. Wang et al. [43] proposed a text proposal
network founded on the RPN design in the Faster RCNN object detector. The proposals are
refined using an LSTM to generate polygonal bounding boxes around text segments. In [33],
Zhang et al. designed a fully convolutional network for detecting the text saliency map in a
given input, which is subsequently processed by the MSER for text detection. CharNet [44]
presented a convolutional architecture combining the character and text instance detection
in a single network. There are also methods that focus on the segmentation of text regions
for the detection of irregular and complex text instances [34,45,46]. Mask Textspotter [34]
applied the Fast RCNN detector with a convolutional branch for text and character-level im-
age segmentation. PixelLink [46] presented a novel formulation for modeling image-level
pixel associations using a convolutional architecture. Xie et al. [47] and Huang et al. [48]
presented deep convolutional neural architectures by processing Mask RCNN generated
text instances combined with feature pyramids.

The direct regression of bounding boxes around text instances has been another
research approach to solve scene text detection. Regarding the direct regression for multi-
oriented scene texts, He et al. [49], EAST [32], SegLink [50], and Lyu et al. [51] presented
some prominent methods based on deep learning for regression. EAST presented a U-
shaped convolutional architecture for the prediction of words or text lines, whereas SegLink
presented a convolutional architecture for learning associations between text segments at
multiple levels of feature maps. Deng et al. [52] proposed a convolutional architecture
network to regress the corner points around text segments, which are combined to generate
quadrilateral text boxes. The LOMO detector [53] again pursued the regression of corner
points around text segments with additional convolutional modules for the refinement
of bounding box prediction and text shape learning. In addition, there are methods for
solving the problem in a bottom–up manner following the character/text symbol detection
followed by sequence analysis for word and text line detection [33,42,44,54]. However, the
majority of these methods have ignored the computational requirement for the proposed
method, which is critical in many applications such as mobile and augmented reality. There
are also some works on scene text detection for applications with limited computational
support [55–58]. However, these methods fail to address significant variations in the color,
scale, orientation, aspect ratio, and shape of text instances in real-life scenes.

To address the issues mentioned above, our method presents a novel convolutional
architecture to predict quadrilateral bounding boxes around text segments of different
shapes and orientations in natural scenes. The proposed model is based on the MobileNet
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model that uses the depthwise separable convolutional operation, resulting in more compu-
tationally efficient object detectors than the convolutional network based detectors. There
exists an earlier application of MobileNet for scene text detection in [59], although it was
limited in exploration and experiments. We present a novel U-shaped convolutional neural
architecture for scene text detection using MobileNet incorporating text attention blocks
in the feature extraction stage. The text attention in the proposed network is based on
the ECA module [24], which is an efficient method for implementing channel attention in
convolutional networks. In contrast to other methods, such as [32,33,39,40,50], our method
uses attention blocks in the convolutional architecture to improve feature extraction on
text-specific attributes. The detector is trained using a novel multitasking formulation
based on focal loss, which also accounts for the skewed sample distribution in scene text
problems. The predictions by the detector network are processed by a novel non-maximal
suppression technique to account for text expectation in predicted quadrilateral bounding
boxes.

3. Proposed Methodology

The following discussion presents the proposed scene text detector for quadrilateral
bounding box predictions around text segments. First, the proposed network architecture
is introduced, which is followed by the training objectives and post-processing steps.

3.1. The Network Design—MobileTDNet

The proposed detector (MobileTDNet) is designed to accurately detect scene text
segments in complex shapes, different scales and styles, and multiple orientations. In
addition, the detector network should be computationally lightweight and efficient. The
MobileNet architecture-based convolutional neural models use optimized convolution
operations in the network design [19], where the layer-wise convolution operations are
separated as multiplication and addition operation on the depth dimension of feature
maps. MobileNets have been shown to be highly effective and efficient in many vision
problems. Therefore, the proposed scene detector is designed on the MobileNet model as
the backbone. Figure 1 presents the illustration of the proposed scene text detector network.
The network consists of three major branches: feature extraction, feature merging, and
output layers.

The feature extraction branch generates convolutional feature maps of multiple spatial
resolutions. The branch is designed by the stacking of convolutional blocks, as shown
in Figure 1. Each convolutional block consists of a convolution layer with a 3× 3 mask
followed by another convolution layer with a 1× 1 mask. The first convolution layer in
the block is designed with depthwise separable convolution operation. The subsequent
convolution layer with a 1× 1 mask reduces the number of channels in the generated
feature map. The MobileNet base is extended by drawing out convolutional features at
multiple scales. These intermediate features capture text shape and scale complexities
with varying degrees of detail. The following five intermediate feature maps—F

1
2 , F

1
4 ,

F
1
8 , F

1
16 and F

1
32 in MobileTDNet are drawn out at 1

2 , 1
4 , 1

8 , 1
16 and 1

32 th scale of the input
resolution. The last fully connected layer from the MobileNet base is removed, and we
subsequently process the feature map FOUT with intermediate feature maps extracted
above in the hierarchy. For strengthening the extracted features, text attention blocks are
incorporated at three steps in the feature extraction branch, as illustrated in Figure 1. The
details of attention blocks are discussed later in Section 3.3.

In the feature merging branch, the FOUT is recursively combined with Fi ∈
{F 1

2 , F
1
4 , F

1
8 , F

1
16 , F

1
32 } through the skip connections. A skip connection is defined by two

inputs, the intermediate feature map Fi and the output from the Upscale block, which pro-
cesses the skip connection output from the previous level. Figure 1 shows the Upscale block
design consisting of a two-dimensional upsample layer based on bilinear interpolation,
which is followed by a convolutional layer for data smoothening. The channel dimension
of the output feature map is reduced with a convolution filter with a 1× 1 mask to align



Appl. Sci. 2022, 12, 6425 5 of 18

with the second merge input to skip connections. The convolutional layer outputs in the
detector are processed through batch normalization and ReLU activation.

Figure 1. MobileTDNet scene text detection architecture.

The network is designed with two output layers generating the following predictions
at one-half of the input resolution: (i) text/non-text semantic map, and (ii) text bounding
box regression at each position. The network predictions are processed through a novel
text aware non-maximal suppression method to generate the final prediction. The output
layers are described below.

• First output layer: 2nd order tensor (out1) of size S1
2 ×

S2
2 having single channel

output, assuming the input size as S1 × S2. The (out1) corresponds to the text/non-
text segmentation map generated at one-half the resolution of the input. The tensor
values represent text confidence scores at each position.

• Second output layer: 3rd order tensor (out2) of size S1
2 ×

S2
2 × 8 encodes the pixel-level

quadrilateral bounding box predictions at the output feature map. On the depth of
out2, each pair of values corresponds to a corner of the predicted quadrilateral.

3.2. The Loss Function

The MobileTDNet is trained in multitask learning accounting the predictions from
both output layers. The training loss functions is defined as follows:

L = Lseg + λrLreg (1)
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The Lseg component in Equation (1) represents the segmentation loss, measuring the
network’s ability to identify text and non-text regions in the input. Simultaneously, the loss
component Lreg measures the network’s ability to correctly predict the geometric position
of text bounding boxes around text lines in the input. Here, λr represents the regularization
parameter. Throughout all the experiments in this work, the parameter λr is set equal to 1,
i.e., both loss components contribute equally.

The cross-entropy loss, commonly applied in semantic image segmentation tasks, is
used for evaluating the segmentation loss Lseg. The out1 values are used for calculating
Lseg. In this case, the loss function measures the difference between the predicted proba-
bility distribution and the actual distribution. The conventional cross-entropy loss does
not consider the difference between the densities of relevant and non-relevant samples.
However, the text/non-text class imbalance is a practical challenge in scene text detection,
which limits the detector training performance. To address the issue, online hard example
mining [60] has been a popular method for maintaining the balance between positive and
negative classes. However, the method increases the number of computational steps and
memory requirements in the network training process. In the present formulation, the focal
loss function by Lin et al. [61] is applied to measure the segmentation error, which accounts
for the text and non-text sample distribution in scene detection. The focal loss incorporates
an additional weight factor in the conventional cross-entropy function, which balances the
positive and negative classes.

Lseg(ct) =− αy∗(1− ct)
γlog(ct)

− (1− α)(1− y∗)cγ
t log(1− ct)

(2)

The focal loss expression for output ct with y∗as the ground truth is represented by
Equation (2). The term (1− ct)γ contributes as the density modulating factor in the loss
function, with γ as the tunable parameter. As observed, the modulating factor scales down
the contribution of easy samples in Lseg based on the selected value of γ. Following the
analysis presented in [61], the parameter γ is set equal to 2 to conduct all experiments
discussed in this work. Furthermore, the expression also incorporates the parameter α as a
density-based balancing factor between two classes, which is computed as follows.

α = 1− #of text pixels in ground truth
#of pixels in ground truth

(3)

The component Lreg accounts for the quadrilateral text bounding box prediction error.
The ith position in out2 represents corners of the predicted quadrilateral bounding box in
the ordered set

qi = {(hj, wj), · · · |j ∈ 0, 1, 2, 3}

The position loss Lreg refers to the geometric error in bounding box coordinate pre-
diction with respect to the corresponding ground truth q̂i. The loss is calculated using the
smooth L1 loss function as follows

Lreg(q̂i, qi) = ∑
ĥj∈q̂i ,hj∈qi

smoothL1(ĥj − hj) (4)

where, smoothL1(x) =

{
0.5x2 if |x| < 1,
|x− 0.5| otherwise

3.3. Design of Text Attention Blocks

Attention mechanisms have been successfully applied to improve the effectiveness
of convolutional neural network architectures along with the careful selection of layers,
filters, and channel dimensions. As shown in Figure 1, the proposed detector includes
text attention blocks at three stages of the feature extraction. The objective of the attention
block at the early stage of feature extraction is to channelize the feature extraction process
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toward capturing the text positional information. The subsequent attention blocks enables
the feature extraction process to capture text attributes at all scales. The text attention
blocks in the proposed detector are implemented using the efficient channel attention
(ECA) mechanism by Wang et al. [24]. The ECA mechanism exploits the local cross-channel
attention implemented through one-dimensional convolutional operators with an adaptive
kernel size. The kernel size k represents the neighbors to be considered for the cross-channel
interaction exploration. Figure 2 shows the basic design of efficient channel attention blocks
adopted from [24]. The channel dimension Ch and the kernel size k are related by the
nonlinear mapping Ch = 2γ∗k−b i.e.,

k =

∣∣∣∣ log2(Ch) + b
γ

∣∣∣∣
nearest odd value

(5)

The implementation of the ECA module includes a channel-wise feature aggregation
layer using global average pooling followed by processing through a one-dimensional
convolutional layer. The convolutional layer output is passed through a fully connected
layer that outputs the weight of different channels. The MobileTDNet network uses a
similar block structure. The input feature aggregation is an important step in the ECA
mechanism. The ECA-Net in [24] builds on global average pooling for channel-wise feature
aggregation following SENet [62]. The average pooling-based feature values correlate with
the target shape extent in the given input, whereas the max pooling-based feature values
correlate with detection object-specific attributes, which are effective in the case of target
objects appearing at different scales.

Figure 2. Design of the Text Attention Block.

Therefore, the different feature aggregation strategies based attention blocks are applied.
At the early stage of feature processing in the network, the Text Attention 1 block is im-
plemented with global average pooling-based feature aggregation to complement the text
discovery process in the input. In later stages where the network generated feature maps
capture the finer text segment details, the Text Attention 2 and Text Attention 3 attention
blocks are implemented with the global max pooling-based feature aggregation, since this
affects the detection of small text segments. The parameters γ and b in Equation (5) control
the span of the channel neighborhood for attention analysis. Without loss of generality, the
parameter b and γ are set to 2 and 3, respectively, for all experiments in this work.

3.4. Text Aware Non-Maximal Suppression

The MobileTDNet network generates the following outputs:

• Text/non-text segmentation map C = {c1, · · · , cn} with ci representing the text confi-
dence score at the ith position with n = | S1

2 ×
S2
2 |.

• Quadrilateral predictions Q = {q1, · · · , qn} where qi represents quadrilateral bound-
ing box prediction at the ith position.

For generating the final quadrilateral text bounding box predictions, the non-maximal
suppression (NMS) technique [63] is applied in the following steps:

1. To identify the dominant predictions corresponding to the text segments, the text/non-
text segmentation map C is filtered at 0.5. The filtering results in a reduced set of
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confidence score predictions Ct, and overlapping text bounding box predictions Qt.
The NMS technique reduces the set of candidate bounding boxes by analyzing the
confidence score associated with bounding box prediction and pairwise overlap
between candidates. In contrast, the MobileTDNet output layer 2 prediction consists
of only the geometric position of text bounding boxes without the measure of text
attributes within the bounding box.

2. For calculating the text attribute of a quadrilateral box prediction qi, the text neigh-
borhood correlation within the quadrilateral boundary is exploited. For each quadri-
lateral prediction qi, the text confidence scores from Ct at all positions within the
boundary of qi is averaged to a single point measure cq

i . This returns the set
CQ = {cq

i , · · · |i = 0 to |Qt|}. Here, cq
i is referred to as the text expectation mea-

sure for the bounding box qi, as text appearances within the boundary can be in any
shape and size, and the constricted boundary around the text segment is expected
to have high text expectation. The quadrilateral boxes with low text expectation
measures are filtered out, and the boxes within the top 10% of the text expectation
measures are preserved. The filtration results in the quadrilateral bounding box pre-
diction set QF, with the corresponding text expectation values represented in set CF.
The QF and CF sets are next processed using the NMS to generate final predictions.

3. The conventional NMS procedure outcomes are sensitive to the selected intersection
over union (IoU) threshold; therefore, the soft-NMS procedure by Bodla et al. [64] is
applied. The soft-NMS uses a fixed IoU threshold for pruning, but the confidence
scores of all unfinished quadrilateral boxes are rescaled with a smooth penalty function
in each pruning iteration. The idea is to gradually decrease the score of overlapping
quadrilateral boxes, which is expected to reduce the contribution in the false positive
rate in the detection. At the same time, the function should impose a low penalty in
the case of non-overlapping quadrilateral prediction boxes. The complete algorithm
steps are listed below (Algorithm 1).

Algorithm 1: Soft-NMS for final quadrilateral box prediction

Input: Quadrilateral prediction set QF = {q1, q2, · · · , qn} with text estimation
scores for bounding boxes as CF = {cq

1, cq
2, · · · , cq

n}; IoU threshold iuoth;
Output: Final quadrilateral set Qnms = {q1, q2, · · · , qm};

1 while QF 6= NULL do
2 ind = argmax CF;
3 qmax ← qind ∈ QF;
4 cmax ← cind ∈ CF;
5 Qnms ← Qnms ∪ qmax;
6 QF ← QF − qmax;
7 CF ← CF − cmax;
8 for i to |QF| do
9 if IoU(qi, qmax) ≥ iouth then

10 QF ← QF − qi;
11 CF ← CF − ci;
12 end

13 ci = ciexp
−IoU(qi ,qmax)

sigma
14 end
15 end

The IoU measure is computed using the originally predicted coordinates of the quadri-
lateral boundary. Following the analysis in [64], the sigma and iuoth parameters are set to
0.5 and 0.3 throughout all experiments.
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4. Experimental Results

For evaluation of the methodology presented in this paper, the following datasets
are used.

1. ICDAR2013 [65]: The dataset is a collection of natural images having horizontal
and near-horizontal text appearances. The collection consists of 229 training and
233 testing images having character and word-level bounding box annotations and
corresponding annotations.

2. ICDAR2015 [66]: The dataset was released as the fourth challenge in the ICDAR 2015
robust reading competition (incidental scene text detection). The dataset consists of
1500 images, of which 1000 were for training purposes, and the remaining images
were used for testing. The dataset images are real-life scenes captured in Google Glass
in an incidental manner, with the annotations available as quadrangle text bounding
boxes with corresponding unicode transcription.

3. COCOText [67]: This is a large dataset that consists of 63,000 images sampled from the
MSCOCO image collection [68] exhibiting scene texts in all appearances. The dataset
provides rich annotations, including the text bounding boxes, handwritten/printed
labeling, script labeling, and transcripted text. The bounding boxes are horizontal axis
aligned. The dataset comes with a standard distribution of 43,000 training images,
10,000 for validation and the remaining 10,000 for testing tasks.

4. MSRA-TD500 [69]: The dataset consists of 500 examples distributed as 300/200 for
training and testing tasks. The images are indoor and outdoor natural scenes with
English and Chinese texts in all orientations and complex backgrounds. The image
resolution varies between 1294× 864 and 1920× 1280. The annotations in the dataset
are available at the text line level with the orientation value of corresponding text lines.

In all experiments, the train/test distribution, the evaluation protocol, and measures
are applied as suggested in the original source. The experiments in this work focused on
verification of the following attributes of the MobileTDNet design: (i) the networks’ ability
to model the text/non-text image attributes across all style variations and backgrounds, (ii)
the role of skip connections in capturing the text properties at all scales; and (iii) the impact
of text attention blocks in the current architecture.

4.1. Network Training and Hyperparameters

The proposed network is trained from scratch using the Adam optimizer [70,71].
Adam is an extension to the stochastic gradient descent algorithm that applies the first-
order and second-order gradient moments for adapting the learning rate to network
weight parameters. Table 1 shows the hyperparameters used for training MobileTDNet
on different datasets, which were set experimentally following the protocols suggested
in [71]. The MobileTDNet loss function intrinsically addresses the positive and negative
sample unbalance; therefore, the training procedure does not include a hard negative
sampling step.

Table 1. MobileTDNet hyperparameters: lr represents the learning rate.

Dataset Initial lr # of Epochs Batch Size # of Epochs for
lr Decay

ICDAR2013 0.001 50 16 20

ICDAR2015 0.001 50 16 20

MSRA-TD500 0.0005 60 24 30

COCO-Text 0.0001 100 8 50

Pre-training: Before evaluation on different datasets, the MobileTDNet architecture is
pre-trained on the combined training set collection of ICDAR2013 and ICDAR2015 datasets.
The pre-training is performed for 10 epochs with a slow learning rate of 0.0001, and the batch
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size is fixed at 16. The pre-training step is required as some experimental datasets are small
in size, and training the network on such datasets from scratch with randomly initialized
weights would not be effective. Therefore, MobileTDNet is pre-trained on a large and
diverse collection to initialize the network weights with a high-level understanding of the
task domain. Subsequently, the detector is trained on different datasets with the parameters
given in Table 1. The learned lr is gradually reduced by half at every 10 epochs after
crossing the initial stage of training (number of epochs mentioned in the last column of the
Table 1).

Data augmentation: For training the MobileTDNet model on ICDAR2013, IC-
DAR2015 and MSRA-TD500 datasets, data augmentation is also applied in the following
steps:

• The input images are randomly resized within the scale of [0.5, 3] by preserving the aspect
ratio. The images for the resizing operation are selected with a probability of 0.2.

• Next, the images are randomly rotated by an angle within [−45°, 45°].
• Additionally, some images are sampled for random flip and crop within the scale of

[0.5, 1]. The cropped image segments are resized to 224× 224. The probability of 0.2 is
used in the sampling step.

• Finally, the augmented examples having text instances smaller than half of the smallest
text instances in the original dataset are filtered out.

Computing infrastructure: All simulations discussed in this paper were performed
on NVIDIA Quadro P5000 GPU workstations with 32 GB RAM.

4.2. Baseline Evaluation

The baseline evaluation of the MobileTDNet architecture is performed without text
attention blocks. The results are presented in Table 2. The traditional evaluation metrics of
precision, recall, and F-score are used for bench marking. For the MSRA-TD500 dataset,
the evaluation protocol proposed in [69] is followed. The evaluation on ICDAR challenge
datasets was performed in the manner specified in the challenge specification. Our sub-
optimal implementation MobileTDNet took an average of 0.266 s to process the given
input image (after required resizing). The analysis includes the computation time for the
non-maximal suppression procedure.

Table 2. MobileTDNet baseline detection results.

Dataset Precision Recall F-Score

ICDAR2013 0.930 0.845 0.885

ICDAR2015 0.882 0.826 0.853

MSRA-TD500 0.820 0.784 0.801

COCOText 0.622 0.592 0.606

Figure 3 shows the detection results for some difficult cases, which illustrate the
detection challenges because of all variations in style, scale, and script. As observed,
MobileTDNet efficiently captures text attributes in input images at all scales and in varying
styles. It is remarkable that the MobileTDNet scene text detector, without an attention
mechanism, performs comparable to many prominent scene text detectors (presented later
in Table 3).
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(a) (b) (c)

(d) (e) (f)

Figure 3. MobileTDNet output for sample difficult cases displayed in subfigures (a–f).

Table 3. MobileTDNet detection results with attention blocks: comparison with recent methods.

ICDAR2013 Dataset ICDAR2015 Dataset MSRA-TD500 Dataset COCOText Dataset

Method Pre. Rec. F-
Score Pre. Rec. F-

Score Pre. Rec. F-
Score Pre. Rec. F-

Score

CTPN [40] 0.930 0.830 0.877 0.740 0.520 0.610 - - - - - -

Text-block
FCN [33] 0.880 0.780 0.830 0.710 0.430 0.540 0.830 0.670 0.740 - - -

RTN [39] 0.940 0.890 0.910 - - - - - - - -

Lyu et al. [51] 0.920 0.840 0.878 0.895 0.800 0.844 0.880 0.760 0.815 0.620 0.320 0.425

ATRR [43] 0.937 0.897 0.917 0.892 0.860 0.876 0.852 0.821 0.836 - - -

Mask TextSpot-
ter [34] 0.950 0.886 0.917 0.916 0.810 0.860 - - - - - -

Text-CNN [35] 0.930 0.730 0.820 - - - 0.760 0.610 0.690 - - -

TextBoxes++ [36] 0.910 0.840 0.880 0.878 0.785 0.829 0.609 0.567 0.587

PixelLink [46] 0.886 0.875 0.881 0.855 0.820 0.837 0.830 0.732 0.778 - - -

DB-ResNet-
50 [72] - - - 0.918 0.832 0.873 0.915 0.792 0.849 - - -

EAST [32] - - - 0.833 0.783 0.807 0.873 0.674 0.761 0.504 0.324 0.395

Deng et al. [52] - - - - - - - - - 0.555 0.633 0.591

SPCNET [47] 0.938 0.905 0.921 0.887 0.858 0.872 - - - - - -

LOMO [53] - - - 0.878 0.876 0.877 - - - - - -

OPMP [73] - - - 0.891 0.855 0.873 0.860 0.834 0.847 - - -

TextMountain [74] - - - 0.885 0.842 0.863 - - - - - -

MobileTDNet +
Text Attention 1 0.941 0.853 0.895 0.903 0.842 0.871 0.843 0.802 0.822 0.627 0.596 0.611

MobileTDNet +
Text Attention 1,
2 and 3

0.947 0.876 0.910 0.913 0.847 0.879 0.854 0.807 0.830 0.631 0.603 0.617
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4.3. Effect of Skip Connections

The incorporation of skip connections is an important design component in the Mo-
bileTDNet architecture. The skip connections generate multiple levels of intermediate
feature maps, i.e., F

1
2 , F

1
4 , F

1
8 , F

1
16 and F

1
32 , which are subsequently processed to generate

predictions from the network. To analyze the contribution by skip connections, the ablation
experiments are performed by gradually removing skip connections in the MobileTDNet
architecture. The experiments focus on the ICDAR2013 and ICDAR2015 datasets where the
former dataset is dominated by horizontal text appearances. Table 4 shows the summary of
experiments also having the F-score difference with the baseline results given in Table 2.

Table 4. Analysis of skip connections on ICDAR2013 and ICDAR2015 datasets.

(a) ICDAR201

Skip Connection: Feature
Maps Pre. Rec. F-Score F-Score

Difference

Average
Detection
Time in
Seconds

{F 1
2 , F

1
4 , F

1
8 , F

1
16 } 0.835 0.814 0.823 0.062 0.278

{F 1
2 , F

1
4 , F

1
8 } 0.787 0.763 0.775 0.110 0.265

{F 1
2 , F

1
4 } 0.735 0.704 0.719 0.166 0.246

{F 1
2 } 0.705 0.678 0.691 0.194 0.231

{F 1
4 , F

1
8 , F

1
16 , F

1
32 } 0.842 0.801 0.821 0.064 0.267

{F 1
8 , F

1
16 , F

1
32 } 0.777 0.751 0.764 0.121 0.280

(b) ICDAR2015

Skip Connection: Feature
Maps Pre. Rec. F-Score F-Score Difference

{F 1
2 , F

1
4 , F

1
8 , F

1
16 } 0.825 0.788 0.806 0.047

{F 1
2 , F

1
4 , F

1
8 } 0.819 0.778 0.798 0.055

{F 1
2 , F

1
4 } 0.684 0.627 0.654 0.199

{F 1
2 } 0.664 0.581 0.620 0.233

{F 1
4 , F

1
8 , F

1
16 , F

1
32 } 0.829 0.796 0.812 0.041

{F 1
8 , F

1
16 , F

1
32 } 0.736 0.749 0.742 0.111

As observed in the results, all skip connections contribute almost equally in the learn-
ing task since the text appearances in input images can be in many forms, shapes, and styles.
Concurrently looking at F-score differences: for ICDAR2015, the skip connections with
intermediate features captured at higher spatial resolutions are marginally less effective
than connections to carry features captured at lower spatial resolutions. For the dataset, the
absence of the F

1
32 feature map affects model learning more than the F

1
2 feature map. On the

contrary, for ICDAR2013, the F
1
2 feature map is more important than that of F

1
32 . The possi-

ble reason could be that the ICDAR2015 consists of more variations including incidental
text appearances with non-regular bounding boxes where skip connections capturing fine
features are more important. In the next step, the visualization of detections for an example
is investigated under two settings: (1) the network trained with {F 1

4 , F
1
8 , F

1
16 , F

1
32 } and (2)

with {F 1
8 , F

1
16 , F

1
32 } skip connections. As shown in Figure 4, the removal of the {F

1
4 } skip

connection decreased the average IoU for the detections marginally. However, the careful
observation of Figures 3f and 4a,b shows that detection quality significantly decreases with
the removal of skip connections at higher spatial resolutions. This is also observed in the
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overall results presented in Table 4. The average timing analysis for ICDAR2013 shows that
skip connections at lower spatial resolutions are relatively computationally intensive, as
lower layers in the network contribute a bigger share of network weights.

(a) (b)

Figure 4. (a) shows the detections with {F 1
4 , F

1
8 , F

1
16 , F

1
32 } skip connection, average IoU = 0.763;

(b) shows the detections with {F 1
8 , F

1
16 , F

1
32 } skip connections, average IoU = 0.758.

4.4. Incorporation of Text Attention Blocks

Next, the contribution of text attention blocks in the MobileTDNet scene text detector
is evaluated. The effect of text attention blocks into the detector network is analyzed in
two steps. First, the Text Attention 1 block is incorporated in the MobileTDNet network,
which is followed by the incorporation of Text Attention 2 and Text Attention 3 blocks.
Table 3 presents the summary of evaluation results which shows a consistent improvement
in detection performance on test datasets with the incorporation of attention blocks in
comparison with the baseline performance presented in Table 2. Table 3 also shows the
performance of other state-of-the-art benchmarks. The best results for each measure are
highlighted in bold. In addition, the next three best results are italicized. It is noteworthy
that MobileTDNet achieves the best F-score on the ICDAR2015 and COCOText datasets.
Furthermore, our method has one of the top three F-scores for ICDAR2013 and one for top
three recall rates for the MSRA-TD500 dataset.

Our analysis also focuses on the IoU measure on the MSRA-TD500 dataset, which
covers a wide range of variations in text appearances in a small collection of training and
test sets. The overall performance of MobileTDNet on this dataset lags behind that of the
ICDAR2013 and COCOText datasets. To establish the contribution of attention blocks, the
average IoU on the testing set is analyzed under different attention block settings, observing
the average processing time to determine the average computational complexity. As shown
in Table 5, the incorporation of attention blocks improved the average IoU measure on the
testing set, although with a marginal difference. The average IoU improvement is reflected
as an increase of 2.90% in the detection F-score in comparison with the baseline result
presented in Table 2.

Table 5. Analysis of attention blocks on MSRA-TD500 detections using IoU measure.

W/O Attention Text Attention 1 Text Attention 1, 2
and 3

Avg. IoU 0.772 0.786 0.793

Avg. processing time in seconds 0.385 0.415 0.486

Figures 5 and 6 further establish the efficacy of the proposed scene text detection
pipeline. Figure 5 shows the quadrilateral bounding box detections for an example input,
measuring the average IoU of detected quadrilateral boxes. In this case, the incorporation
of Text Attention 1, 2 and 3 blocks improved the average IoU by 2.20% with respect to the
baseline, i.e., without text attention.
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(a) (b) (c)

Figure 5. MobileTDNet text detection for an example: (a) shows detection without text attention
blocks, average IoU = 0.859; (b) shows detection with Text Attention 1 block, average IoU = 0.873;
(c) shows detection with Text Attention 1, 2 and 3 blocks, average IoU = 0.881.

Again, Figure 6 shows the filtered text confidence scope map for another example input
with/without the incorporation of text attention blocks. The incorporation of Text Attention
2 and 3 significantly improves the text/non-text segmentation by removing spurious text seg-
ments.

(a) (b)

(c)

Figure 6. Filtered text confidence score maps for the example in (a): the score map with Text Attention
1 block shown in (b), and with Text Attention 1, 2 and 3 blocks shown in (c).

5. Discussion

The MobileTDNet detection results in Table 3 present the best precision and F-score
on the COCOText dataset with the next best recall rate. It is remarkable as the COCOText
dataset is the largest of all datasets used in this work, where dataset images were collected
for scene understanding research and consist of a large scale of diversity and variations
in text appearances. Similarly, the proposed detector achieves the highest F-score for the
ICADR2015 dataset with the third best precision score. MobileTDNet improved on many
prominent methods, including TextBoxes++ [36], EAST [32] and PixelLink [46], as shown
in Table 3. Concurrently, the MobileTDNet performance does not surpass the state of
the art on the ICDAR2013 and MSRA-TD500 datasets, although it is positioned in the
top-3 in precision and F-score for ICDAR2013 and in the recall rate for MSRA-TD500. The
training set of these datasets is comparatively smaller, and it is likely that the MobileTDNet
extracted features do not preserve sufficient representative attributes to learn an effective
model. DB-ResNet-50 [72] performance closely matches with MobileTDNet on ICDAR2015
{precision, recall, F-score difference: 0.005, −0.015, −0.006}; however, it performs better
on the MSRA-TD500 dataset {precision, recall, F-score difference: 0.061, −0.015, 0.019}.
DB-ResNet-50 [72] and Mask TextSpotter [34] detect polygonal text segments in images and
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require more complex processing in the convolutional network architecture. In contrast,
the proposed method presents a simple convolutional architecture for scene text detection
using depthwise separable convolutions, where the detector is designed for quadrilateral
text box prediction in real-time applications.

Our method also achieves performance on par with SPCNET [47]. On ICDAR2013,
MobileTDNet improves precision by 0.009 but trails on recall and F-score by 0.029 on recall
and 0.011. Again, on MSRA-TD500, our method improves precision and F-score by 0.026
and 0.007 but trails in recall rate by 0.011. The SPCNET [47] architecture is designed for
multi-scale feature extraction using a feature pyramid network (FPN) [75]. MobileTDNet
also improves on precision and F-score measures on ICDAR2015 in comparison with
OPMP [73], which is also based on FPN-based multi-scale feature analysis. Our method
also improves the recall rate on MSRA-TD500 in comparison with OPMP by 0.027. The
FPN is widely regarded as a state-of-the-art feature extractor based on deep convolutional
networks with conventional convolution operation, with the goal to extract high-quality
representative features. The proposed detector is designed for accurate scene text detection
in images with all possible variations in text appearance, orientation, and background, and
it has computationally efficient scene text detection suitable for real-time applications. With
MobileTDNet, we achieve both objectives as a highly accurate scene text detector designed
on depthwise separable convolution based deep convolutional network. Nevertheless, the
direct prediction of quadrilateral bounding boxes is not accurate in the case of complex
curved shapes in text appearances, which requires further investigation to split and merge
bounding box predictions.

6. Conclusions and Future Work

The paper presented a novel convolutional net architecture for scene text detection,
which can detect arbitrarily shaped text segments in scene images predicting quadrilateral
bounding boxes with high accuracy. Our work demonstrated a novel application of a
depthwise separable convolutions-based MobileNet in a U-shaped network design for
a scene text detector with a text attention mechanism. The extensive experiments on
standard public datasets establish the efficacy of the presented methodology in comparison
with the state of the art where the results demonstrate that MobileTDNet outperformed
many prominent scene text detection methods. MobileTDNet is designed for mobile
and embedded applications as the target using the computationally efficient depthwise
separable convolution operation. The incorporation of split and merge strategies into the
proposed detector is the next problem to be explored in the proposed methodology. It
can address the detection of complex shaped curved text instances, which is an important
limitation of the present method. In addition, extending the proposed method into an
end-to-end scene text recognition pipeline is another direction for future work.
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