

Scented Widgets: Improving Navigation Cues with

Embedded Visualizations

Wesley Willett, Jeffrey Heer, and Maneesh Agrawala

Abstract—This paper presents scented widgets, graphical user interface controls enhanced with embedded visualizations that

facilitate navigation in information spaces. We describe design guidelines for adding visual cues to common user interface

widgets such as radio buttons, sliders, and combo boxes and contribute a general software framework for applying scented

widgets within applications with minimal modifications to existing source code. We provide a number of example applications and

describe a controlled experiment which finds that users exploring unfamiliar data make up to twice as many unique discoveries

using widgets imbued with social navigation data. However, these differences equalize as familiarity with the data increases.

Index Terms—Information visualization, user interface toolkits, information foraging, social navigation, social data analysis.

1 INTRODUCTION

The success of an interactive visualization depends not only on the
visual encodings, but also on the mechanisms for navigating the
visualized information space. These navigational mechanisms can
take many forms, including panning and zooming, text queries, and
dynamic query widgets. However, effective navigation relies on
more than input techniques alone; appropriate visual navigation cues
can aid users by guiding and refining their exploration.

Both psychological and sociological considerations suggest
approaches for improving navigation cues. Pirolli and Card’s
information foraging theory [17] models the cost structure of human
information gathering analogously to that of animals foraging for
food. One result of this theory is the concept of information scent—a
user’s ―(imperfect) perception of the value, cost, or access path of
information sources obtained from proximal cues‖ [17]. Improving
information scent through better proximal cues lowers the cost
structure of information foraging and improves information access.

While effective information scent cues may be based upon the
underlying information content (e.g., when the text in a web
hyperlink describes the content of the linked document, it serves as a
scent), others may involve various forms of metadata, including
usage patterns. In the physical world, we often navigate in response
to the activity of others. When a crowd forms we may join in to see
what the source of interest is. Alternatively, we may intentionally
avoid crowds or well-worn thoroughfares, taking ―the road less
travelled‖ to uncover lesser-known places of interest. In the context
of information spaces, such social navigation can direct our attention
to hot spots of interest or to under-explored regions.

Our current interest in visual navigation cues is motivated by our
experience building and deploying asynchronous collaborative
visualization systems, in which groups of users perform visual data
analysis by authoring comments and annotations within the
visualizations [12, 20]. Usage studies of the sense.us collaborative
visualization system [12] show that users fluidly switch between
data-centric analysis and social navigation. After exhausting a line of
inquiry, participants mine listings of comments left by other users to
find new views of potential interest and to understand which areas
have been explored. However, without explicit social navigation
cues, users must continuously switch between the visualization and a
separate list of comments.

In this paper we show that social activity cues can improve such

social data analysis by enabling social navigation within the analytic
environment of the visualization. We introduce scented widgets;
enhanced user interface widgets with embedded visualizations that
provide information scent cues for navigating information spaces
(see Figure 1 for examples). We propose design guidelines for
adding embedded visualizations to common user interface controls
such as radio buttons, sliders, and combo boxes. We then present a
Java-based toolkit-level software framework, developed according to
these guidelines, that allows scented widgets to be added to user
interfaces and bound to backing data sources. This framework allows
visual navigation aids to be added to existing applications with
minimal modifications to application source code. We also provide
results from an initial evaluation of scented widgets in a social data
analysis application. The results show that using scented widgets to
provide social navigation cues help users make up to twice as many
unique discoveries in unfamiliar datasets, but that these benefits
equalize as users become more familiar with the data.

2 RELATED WORK

Numerous navigation mechanisms have been proposed to improve
human-information interaction. In such interfaces, users may
navigate along both spatial and semantic data dimensions. Examples
of spatial navigation include maps and virtual worlds; examples of
semantic navigation include web hyperlinks and dynamic query
filters [1]. Navigation cues may be derived from the information
content being explored (e.g., data distribution or landmarks) or from
metadata, such as accumulated usage patterns. This last scenario is
an example of social navigation [9], in which aggregated activity
patterns are presented to promote awareness of other users’ actions
within the information space. All such navigation cues provide
proximal information that helps users stay oriented and gauge the
relevance of distal information content.

One class of navigation aids seeks to facilitate browsing in
geometric spaces, such as zoomable 2D canvases. Overview displays
are one common approach, while other approaches embed navigation
cues directly in focal display regions. For example, Halo [2] and City
Lights [22] use marks near the periphery of a display to provide
information about the relative position of off-screen elements.

Semantic navigation examples provide cues based on the
information content itself. In visualization, histogram sliders [8] and

 Wesley Willett, Jeffrey Heer, and Maneesh Agrawala are with the
Computer Science Division at the University of California at Berkeley,

E-Mail: {willettw, jheer, maneesh}@cs.berkeley.edu.

Manuscript received 31 March 2007; accepted 1 August 2007; posted
online 27 October 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

Figure 1. Widgets with visual information scent cues. Left: Radio

buttons with comment counts. Right: Histogram slider with data totals.

mailto:tvcg@computer.org

other data-driven variants [10] facilitate navigation to data regions of
interest by summarizing the data distribution queried by the slider.
On web pages, hyperlink text usually offers navigation cues about
the content of the link target. This is the reason that human web
surfers and modern web search indices rely on link text. Olston and
Chi’s ScentTrails system [16] facilitates search and browsing of web
sites by scoring documents in response to a text query and then
enlarging hyperlink text to indicate paths to highly ranked
documents. ScentTrails outperforms both searching and browsing
alone in information-seeking tasks.

Another strategy is to provide information scent cues based on
metadata. For example, social navigation is often based on
displaying aggregated activity patterns. Blogs and discussion forums
regularly include the number of posted comments in the link text of
hyperlinks to discussions, while the del.icio.us social bookmarking
service encodes the number of users who share a web bookmark in
gradated red backgrounds for link text. Hill et al [14] explore the use
of social navigation cues in a document editor, placing usage
histograms within the scroll bar to indicate the prevalence of reading
and editing activity throughout the document. Similarly, Björk and
Redström [5] use color marks to indicate edits and search results
along all edges of document frames. In the domain of collaborative
visualization, Wattenberg and Kriss [20] gray-out visited regions of a
visualization to provide ―anti-social navigation‖ cues to promote
analysis of unexplored regions.

Our work generalizes techniques such as histogram sliders and
Hill’s read and edit wear, providing design considerations and a
toolkit-level framework for embedding navigation cues in a variety
of interface widgets. We contribute a general framework providing
both data- and metadata-driven visual cues for navigating semantic
dimensions in an information space.

Though not focused on navigation cues, a few additional projects
share commonalities with scented widgets. Baudisch et al’s
Phosphor [3] design provides real-time collaboration cues by using
afterglow effects to highlight widget usage. Hill and Gutwin’s Multi-
User Awareness UI [13] provides toolkit-level widget support for
synchronous collaboration, such that users can see in real-time which
interface widgets collaborators are using. Our scented widgets
framework also provides a toolkit-level augmented widget suite, but
one targeted at visual navigation cues rather than synchronous
activity awareness

3 DESIGN CONSIDERATIONS

In designing a framework for encoding scent within widgets we
consider; (1) the types of information metrics that can serve as
navigation cues in scented widgets, (2) the matching of these
encodings with the navigation models of the set of standard widgets,
(3) the kinds of visual encodings used to convey this data, and (4) the
modification of the standard widgets to accommodate scenting.

3.1 Information Scent Metrics

The first step in providing navigation cues is selecting the data
source from which the cues will be derived. While the appropriate

data source usually depends on the specifics of the application,
several kinds of data and metadata can be useful aids for navigation.
One approach is to derive metrics directly from the information
content. For example, a simple metric for interactive visualization is
the number of visible data elements in each application state. This
metric provides a sense of the density of data across the information
space. More complicated metrics can be computed from the data
itself, and may involve input from the user. Users might type in
queries, as in ScentTrails [16], and be given scenting cues that
indicate relevance scores. Alternatively, advanced users might use an
expression language to enter in their own calculations over a
visualized data set.

Social activity metrics are another potential data source, providing
cues for social navigation. Interactive visualization applications such
as sense.us [12] capture a number of social activity metrics that are
typically invisible to users, but which could serve as valuable
navigation cues. For example, displaying the number of visits to a
view, comments on a view, or edits of a view, could guide users
towards the relevant or most interesting views. Similarly, indicating
the author of a comment or an edit could help users navigate to
useful views. Temporal data regarding changes in any of these
measures (e.g. recency or frequency information) are also candidates
for display, as is location-based metadata. Our approach is premised
on the notion that surfacing these sorts of activity metrics facilitates
navigation.

3.2 Navigation and the Display of Visual Scent

Scent cues are specifically designed to aid navigation. Therefore
scent cues should only be applied to interface elements that provide a
way to navigate (i.e. change views) within the application. Moreover,
widgets that represent a single navigation choice, such as buttons,
should display only one scent value, while widgets such as combo
boxes and sliders that offer multiple navigation choices should
include scent cues corresponding to each potential choice.

3.3 Visual Encodings

Scented widgets embed a visualization of information scent metrics
within a standard interface widget such as a slider, button, or combo
box. Standard widgets are usually designed to fit within a small
screen-space and a goal of our scented widgets designs is to add
information to these widgets without adversely impacting user
interface design.

We begin by considering a basic language of visual encodings for
data. These include visual variables such as position, size, angle,
color, and shape [4, 6, 15]. As noted by Cleveland [7] and Mackinlay
[15], some encodings are more suitable than others for displaying
different types of information. For example, position encodings are
more accurate than length encodings for quantitative data, which in
turn are more accurate than area encodings. For nominal data, color
encodings are better than position.

Figure 2. Examples of several scent encodings. From left to right: 1. A slider with visit totals encoded as a bar chart with recency encoded as

opacity. 2. Checkboxes with star rankings encoded using icons and rank values displayed as text. 3. A list box with dataset sizes encoded using

opacity and a visited/not visited value encoded using an icon. 4. A tree with author categories encoded using hue and edit totals encoded as text.

We can leverage these encodings in two distinct ways to convey
information on or within a widget. One approach is to directly alter
the attributes of the widgets that correspond to a given encoding. For
example, a button’s color could be based on the number of times the
application state it leads to has been manipulated by users. Because
widget sizes, shapes, and layouts are typically fixed, only a few of
the visual variables (hue, saturation, lightness, and texture) can be
applied directly to the widgets without disrupting the layout and
impeding usability. However, visual variables such as position and
length are typically more effective for displaying quantitative data.
Therefore, as a second option, small visualizations that support these
encodings can be embedded into the widgets. Examples include bar
charts over a slider (e.g., Figure 1, [8]) and small, word-sized line
charts (similar to Tufte’s sparklines [19]) integrated with widget text.

3.4 Modifying Widgets

Based on these observations, we have selected seven different scent
encodings to support within our framework. Direct encodings
include the hue, saturation, and lightness properties of the widget.
We also include four types of embedded visualizations: inset text,
shape/icon, bar chart, and line chart. The examples in Figure 2 show
several of these encodings applied to standard Swing widgets, while
Table 1 describes each supported encoding type. We avoid encoding
scent onto a widget’s existing text labels, as label formatting is often
modified by the application to convey highlighting, selection,
keyboard shortcut combinations and other information.

3.5 Design Guidelines and Feature Requirements

Through inspection of the design space of widgets and study of
related work [15, 18], we have developed a set of guidelines for the
design of scented widgets.

Scent Encoding Guidelines

Modes of scenting should be chosen that maximize comparability
and consistency across the interface. More specifically:

All widgets visualizing the same scent data should use matching
visual encodings. Rationale: Encoding the same data differently
across widgets complicates visual comparison.

Modes of encoding should reinforce semantic relationships between
the widget scent and encodings in the application. Rationale:
Conflict between the scent and the other parts of the application will
lessen the effectiveness of both. For example, avoid encoding scent
using color if the application already uses color to display unrelated
information.

Visualizations showing the same scent data should be scaled
identically (e.g. linearly, logarithmically, etc.) across all widgets.
Rationale: Scaling the same type of data differently across widgets
undermines accurate visual comparison.

Modes of encoding should respect existing interface conventions.
Rationale: User interface conventions tend to be well established and
accepted by users, so scenting cues should not conflict with them.
For example, a scent encoding should not repurpose text or icons
commonly used elsewhere in the interface to encode unrelated data.

Encodings which make some elements markedly more salient than
others, such as opacity, should be used with discretion. Rationale: If
a widget is more salient than those around it, it is more likely to be
used for navigation than its neighbors. Depending on the application,
such enhancement may or may not be a desirable result.

Layout Guidelines

Interfaces should be laid out so that scented widgets are sufficiently
proximal to allow comparisons between them. Rationale: Proximity
aids judgments of position-based encodings and visual scent is most
easily compared when graphic marks are adjacent.

Scented widgets should be grouped, sized, aligned, and oriented
similarly in order to provide common axes on which to compare
scent. Rationale: Without common axes it is difficult to accurately
compare marks across scented widgets, even if they show the same
type of data.

Composition Guidelines

The overall number and type of scented widgets in a given interface
should be small enough to allow easy comparison and visual
tracking of changes. Rationale: The inclusion of too many scented
widgets (and thus too many scent indicators) is likely to pollute the
view, increasing cognitive load and making use more difficult.

Widgets should include identifiers (icons, tooltips, text, or a legend)
that indicate what the scent cues correspond to. Rationale: It may be
difficult for new users to discern what the cues indicate.

Many of these guidelines are addressed by our implementation. We
deal with concerns about cross-widget consistency by grouping
similarly-scented widgets and encoding them according to a shared
configuration. While the distribution and layout of widgets in a user
interface is clearly within the purview of developers, sizing,
alignment and scaling can be fixed consistently across these groups.

4 IMPLEMENTATION

Using the preceding design analysis as a guide, our scented widgets
framework provides toolkit-level support with which developers can
quickly add visual scent cues to existing applications without writing
a substantial amount of new code. The framework is implemented
using Java Swing and takes advantage of the platform’s Pluggable
Look and Feel functionality, which allows the appearance of a wide
range of standard interface widgets to be changed at runtime. In this
section we discuss the design decisions made in our implementation,
with the goal of providing guidance for developers building their
own scented widget systems.

4.1 Rendering and Interaction

When implementing scented widgets, rendering and interacting with
individual widgets is a primary concern. Ideally, the components for
rendering visual scent cues should be implemented in a modular

Table 1. Scent encodings supported by scented widgets

Name Description Example

Hue
Varies the hue of the widget (or of a
visualization embedded in it)

Saturation
Varies the saturation of the widget
(or of a visualization embedded in it)

Opacity
Varies the saturation of the widget
(or of a visualization embedded in it)

Text
Inserts one or more small text
figures into the widget

Icon
Inserts one or more small icons into
the widget.

Bar Chart
Inserts one or more small bar chart
visualizations into the widget

Line Chart
Inserts one or more small line chart
visualizations into the widget

fashion, such that application developers can reuse them across
disparate widget types. In addition, the widgets should retain a
familiar look and feel.

A number of implementation paths are possible. One might
implement custom widgets from scratch, but this approach involves
re-implementing basic rendering and interaction mechanisms and
could result in an unfamiliar look and feel. Another strategy is to
subclass existing widgets, overriding rendering and input handling
techniques as needed. This approach is more efficient, requiring only
targeted changes to widget behavior, but can still prove problematic.
For example, restrictive access permission to members of the widget
parent class may make it difficult to access parts of the widget state.
Furthermore, both approaches require that developers explicitly use
custom widget types in applications. Retro-fitting an existing
application to use scented widgets then requires updating every
widget definition in the application.

To avoid these limitations, we use Java’s Pluggable Look and Feel
layer to create a custom collection of scented widgets that can be
installed without changing existing UI code. We extend Swing’s
default ―Metal‖ Look and Feel and adjust the internal layouts of the
Swing widgets to accommodate the embedded scent visualizations.
Scented widgets also intercept user interface events as needed (e.g.,
allowing a mouse hover over an embedded visualization to trigger a
custom tooltip for that graphic). Finally, we provide configurable
renderers that are responsible for drawing the embedded
visualizations. We use these scent renderer objects across the full
widget set, promoting code reuse and ensuring consistent scent
appearance in each widget type. Table 1 illustrates the encodings
currently supported by our renderer.

4.2 Scent Configuration and Widget Groups

To map a backing data set onto visual scent cues, developers must
provide a visual specification. For a group of related widgets, the
visual specification indicates which data values to visualize and how
to visualize them. Visual specifications define the names and data
types of the variables to display in each scented widget and provide
specific details about how the scent should be displayed.
Specifications also maintain default values for encodings that are not
determined by a variable. For example, a developer encoding a
variable as a bar chart might specify default hue, saturation, or
lightness values for the bars or add custom legend text or graphics.

In many cases, multiple widgets will show data from the same
source, and the visualizations should be consistent across this group.
Moreover, manipulation of a widget can alter the application state
and require updates to the scenting of all related widgets. Our
framework models these dependencies in a widget group abstraction

that monitors all widgets that should be updated in response to one
another. Upon creation, developers associate a widget group with a
visual specification and a backing data source. When a widget is
added to the group, our framework automatically configures the
widget to use the group’s specification, ensuring consistent scent
cues. The widget group then analyzes the widget to determine the set
of potential values it can take. For example, a button can only be
pressed, while a slider can take any number of values. The
framework uses this set of potential values to determine the possible
application states reachable at any given time. Next, the widget
group adds listeners to the widget, allowing updates to both the
widget’s selection state and underlying data model to be processed
by the framework.

4.3 Data Management

To track the current state of the application, every widget group
models state as a set of name-value pairs for each widget in the
group. When a widget value is changed (e.g. moving a slider,
selecting a radio button, etc.), the widget updates its state pair. In
some cases changing the value of a widget can affect the way other
widgets in the application work. Thus, every time a widget changes
state, the widget group requests new scent data for all the other
widgets in the group to update their scent values.

To populate scented widgets with data, developers must
implement the data source interface, which provides scent data in
response to queries. Scent queries consist of the current state, the
visual specification, and a reference to the widget being updated.
Scent data, which may be numbers, strings, or arbitrary Java objects,
are returned as sets of arrays for each variable defined in the visual
specification. These arrays contain scent values for each state
reachable using the widget under consideration. For quantitative and
ordinal data, scent data objects can also provide a range over which
the data will be scaled before rendering. Scaling may be linear or
logarithmic, as configured in the visual specification.

Given the vast number of potential scent metrics, we expect that
developers will build their own data source implementations that
handle scent query requests in a domain-specific manner. However,
our framework provides some tools that can help developers create
custom data sources. For example, a caching layer caches query
results and supports customizable replacement policies. Additionally,
an SQL database helper aids developers in writing the code
necessary to retrieve scent data from relational databases. The helper
provides support for translating state objects and visual specification
variables into SQL statements. A series of callbacks allow
developers to customize the mapping between specified variable
names and database column names and to generate custom database

Figure 3. Widgets from the usage example, before and after scenting.

 01 //Create the VisualSpecification and define the scent encoding
02 VisualSpecification myVspec = new VisualSpecification();

03 myVspec.addVariable("numVisits", ScentConstants.QUANTITATIVE, ScentConstants.BARCHART, SwingConstants.VERTICAL);

04

05 //Get a ScentRegistry reference

06 ScentRegistry sr = ScentRegistry.getInstance();

07

08 //Create a WidgetGroup using the VisualSpecification and a data source

09 // defined by the developer which implements DataSource

10 sr.initWidgetGroup("myWidgetGroup", myVspec, new CachedDataSource(new VisitDataSource()));

11

12 //Create and register widgets, providing a name for the widget and

13 // the name of the WidgetGroup to which it should belong

14 JSlider myJSlider = new JSlider(1,20);

15 JList myJList = new JList(new Object[] {"Option A", "Option B", "Option C"});

16 sr.register("myWidgetGroup", "sliderValue", myJSlider);

17 sr.register("myWidgetGroup", "listValue", myJList);

 Figure 4. Sample code for the usage example of the Scented Widgets framework.

keys from widget values. The helper then handles all data transfer,
packaging the results of database queries into scent data instances.

4.4 Usage Example

The scented widgets API design is intended to allow developers to
incorporate information scent cues into the widgets in their existing
applications without substantial code revision. In the example given
in Figures 3 and 4, we demonstrate how our framework can be used
to provide scenting on a pair of interface widgets.

First we create a VisualSpecification and assign a scenting
variable to it (lines 2-3). The system uses the assigned variable name
to query the DataSource. The QUANTITATIVE and BARCHART
arguments specify the data type of the variable and the visual
encoding. Since we do not provide any other configuration details,
the system relies on default settings for the other parameters. In this
case, the system scales the quantitative scent values it receives from
the DataSource and encodes them using a default color scheme.

Next we access the global ScentRegistry (line 6) to create a
WidgetGroup (line 10). The widgets in this group will be scented
using the encodings given in our VisualSpecification, with data
values drawn from a VisitDataSource object. The
VisitDataSource is a custom database wrapper that implements
the DataSource interface to provide visit data about each of the
widget states. Finally, we create a standard Java Swing slider and list
box (lines 14-15) and, using a single line of code for each one, we
register them with the WidgetGroup (lines 16-17). Thus, the system
will query scent data from the DataSource and supply it to the
widgets, which in turn will render themselves using the scent-
enabled custom Look and Feel. The system refreshes the scent cues
on each member of a widget group whenever a change is made to
another member.

5 APPLICATIONS

As a preliminary evaluation of our framework, we have built three
prototype applications that demonstrate diverse use cases for adding
visual scent cues to traditional widgets.

5.1 HomeFinder with Histogram Sliders

The first application is a re-implementation of the HomeFinder [21],
a geographic scatter plot visualization of available housing that uses
dynamic query widgets to filter the view. Figure 5 shows our version
of the application visualizing San Francisco apartment listings
automatically harvested from craigslist.org RSS feeds. Scented
widgets are used to show the number of available apartments across
rental prices, neighborhoods, and number of bedrooms, providing an
example of a data-driven scent metric. The prefuse toolkit [10] was
used to provide the scatter plot and generate the query widgets,
which were then registered as scented widgets. Scent data was

provided by a custom data source that summarizes data in the
underlying prefuse data table. The widget’s visual specification was
created with just one variable, the number of available houses, and
was configured to use linearly-scaled bar charts.

5.2 Collaborative Authoring with Activity Indicators

The next application is a collaborative text editor, in which multiple
authors access a document to simultaneously edit it. An example of
our prototype is shown in Figure 6. Each author is assigned a unique
color to identify the text segments they have edited. A scented list
widget shows all authors who have viewed the document and a line
chart of authors’ daily edits. The combined interface allows authors
to assess both textual editing patterns and the temporal activity of
editors. To implement the prototype, we built a custom data source
which models editing activity over time. A listener registered with
the text editor aggregates editing events and posts them to a server.
The visual specification includes two visual variables, one for hue
and one for the line chart.

5.3 Social Data Analysis with Social Navigation

The third application uses scented widgets to add social navigation
cues for collaborative data analysis. Figure 7 shows an interactive
stacked area chart of the United States labor force from 1850-2000,
broken down by occupation and gender. This is a reimplementation
of a visualization used in the sense.us collaborative visualization
environment [12]. Dynamic query widgets on the left allow users to
navigate to specific occupations and toggle normalization of the data
(i.e., view relative percentages or total worker count). As users
explore the data, the system records their visitation patterns to an
external database. Scented widgets then visualize these visitation
patterns, indicating both highly visited and neglected views.

We implemented this application using the prefuse visualization
toolkit, which provides the animated stacked area chart visualization.
Our SQL data source helper was used to access a database of
visitation patterns maintained by the application. The visual
specification involves a single variable—the number of visits to each
view—and specifies a bar chart encoding for the data. We used log
scaling because the visitation data exhibited a power law
distribution. We have also built a variant of this application that
shows the number of comments made on each view.

6 EVALUATION

While prior work has explored various forms of data-driven scent
cues [2, 5, 8, 10, 16, 22], less research attention has focused on
visualizing social navigation cues [14, 20]. Therefore, we conducted
a controlled experiment in which we asked subjects to perform
information foraging tasks using the social data analysis application
in Figure 7. We hypothesized that subjects would be more likely to
revisit highly visited views using scented widgets, would make more

Figure 5. HomeFinder with histogram widgets. A scatter plot and

scented query widgets show available apartments from craigslist.org.

.

Figure 6. Collaborative text editor. A scented list widget identifies

authors by color and displays a chart of editing activity over time.

Figure X: Collaborative Text Editor. A scented

list widget identifies authors by color and displays

a chart of editing activity over time.

Figure X: Collaborative Text Editor. A scented

list widget identifies authors by color and displays

unique discoveries using scented widgets, and would express a
preference for scented widgets over traditional widgets. The study
included twenty-eight participants (12 female, 16 male), all of whom
were either graduate or undergraduate students, and were recruited
through campus mailing lists. Participant ages ranged from 19 to 32
(M = 25.3, SD = 3.8).

6.1 Experiment Design

We asked subjects to find evidence either for or against specific
hypotheses in a collaborative visualization of the United States labor
force. We gave them an introductory tutorial to the system, and then
asked them to complete three tasks. For each task, we presented
subjects with one of the three following task hypotheses:

T1: Technology is costing jobs by making occupations obsolete.
T2: In the last half-century, women have joined the work force, but
stereotypically male jobs remain almost entirely male.
T3: The number and variety of jobs directly related to the nation's
food supply has diminished greatly since the 1800s.

For each task, we gave subjects 15 minutes to explore the data set
and collect evidence relevant to the task hypothesis. The task
hypotheses were intended to be of similar depth and diversity. We
instructed subjects to make at least seven observations that provided
evidence either for or against the current task hypothesis. At least
two of the observations had to be unique findings on views not yet
commented upon. Subjects were asked to note their observations by
leaving new comments on the corresponding views.

For each task, we presented subjects with one of three scenting
conditions. The conditions consisted of no scent, in which we used
standard dynamic query widgets, comment scent, in which bar charts
indicated the number of comments made on a view, and visit scent,
in which bar charts indicated the number of prior visits to a view. To
populate the interface with scent, we collected anonymized activity
metrics from a study of the sense.us system [12] and supplemented
them with a small amount of manual seeding to balance the metrics
across conditions. Subjects in the previous sense.us study used a

similar visualization to freely explore the data. Our seed data
consisted of a total of 1096 visits and 172 comments distributed
across 154 views. Both visits (R2 = 0.96) and comments (R2 = 0.90)
exhibited a power law distribution, and so we scaled them
logarithmically for display in the scented widgets.

The study employed a 3 (Task) x 3 (Scent) between-subjects
design. Task and scent pairings and presentation order were counter-
balanced using a Latin Square. All tests were carried out in a
laboratory environment using standard desktop PCs connected to a
web server hosting the visualization and usage data. After
completing the tasks, subjects filled out a survey that asked them to
rate the scenting conditions on perceived utility and user experience.

6.2 Results: Revisitation

Our first hypothesis was that social navigation cues would increase
the likelihood that users would visit views that others had visited
previously. To test this hypothesis, we created three vectors, each
representing the number of visits to each view in each scenting
condition. We removed the starting overview from consideration,
because users saw this view regardless of scenting condition. We
then compared these visitation vectors to the visitation vector for the
underlying activity measure used to seed the scented widgets. Using
Pearson’s product-moment statistic, we found correlations of r(493)
= 0.200 for visit scent, r(493) = 0.217 for comment scent, and r(493)
= 0.181 for no scent (p < 0.01 in all cases). These results suggest that
users in the visit and comment scent conditions were more likely to
visit the same views that were visited in the seed data than users in
the no scent condition. However, we note that the correlations are not
very strong. We believe that the semantics of the tasks also affect
visitation patterns and likely had an effect on these correlations.

6.3 Results: Unique Discoveries

Next, we analyzed the data to check if scented widgets help users
make unique discoveries. Our hypotheses were that scented
conditions would have a higher occurrence of unique discoveries and
that performance would improve over subsequent trials, regardless of

Figure 7. Social data analysis application with social navigation scent cues. A stacked time-series visualization shows the U.S. labor force,

broken down by gender, from 1850-2000. The current view shows the percentage of the labor force that worked as Bartenders, with a sharp drop

during Prohibition. Scented Widgets are used in the dynamic query widgets to show visitation rates in all views reachable from the current view.

the scenting condition, due to learning effects. To compute a metric
of unique findings we first collected all comments on visualization
states that previously had no comments. We manually walked
through these comments, decrementing the tally for comments that
clearly had no bearing on the task hypothesis (e.g., jokes, unrelated
questions, etc.). The result was a count of unique discoveries made in
each task trial, across a total of 83 samples (due to a software glitch,
one subject skipped a trial).

As shown in Figure 8, scenting provided limited benefits over all
tasks. The data are not normally distributed and so we used non-
parametric tests (the Kruskal-Wallis H and Mann-Whitney U
statistics) for statistical analysis. Based on these tests, the differences
in unique discoveries between scenting conditions did not reach
significance (H(2) = 1.245, p = 0.537).

However, there was a significant main effect for task hypothesis
(H(2) = 11.154, p = 0.004). Pairwise comparisons using Mann-
Whitney tests found that unique discovery counts for task hypotheses
T1 (M = 4.2, SD = 2.4) and T2 (M = 4.3, SD = 2.4) were not
significantly different (p = 0.456), but that both were significantly
different (p = 0.008 and p = 0.002, respectively) from T3 (M = 2.6,
SD = 1.3). Examining the data, we found that a lower number of
views were relevant to T3 and thus there was a limit on the number
of possible unique findings. Subjects commented on only 25 unique
views in T3, compared to 101 in T1 and 111 in T2.

We then analyzed the data according to the order in which the
tasks were performed and found a significant main effect for task
ordering (H(2) = 6.341, p = 0.042), indicating learning effects. The
number of unique discoveries increases monotonically with practice,
with significant differences between the first (M = 3.0, SD = 1.7) and
subsequent blocks (M = 3.6, SD = 2.1 and M = 4.4, SD = 2.6). We
then looked at the effects of scent within each block. Based on our
earlier task analysis, we omitted the trials in T3. In the first block of
trials, visit scent (M = 4.1, SD = 1.6) averaged 2.2 times more unique
findings than no scent (M = 1.9, SD = 0.4) and comment scent (M =
3.6, SD = 2.2) averaged 1.7 times more. These differences were
significant (H(2) = 6.613, p = 0.037). Pairwise comparisons found
that visit scent resulted in significantly more unique findings than no
scent (p = 0.029). The difference between comment scent and no
scent failed to reach significance (p = 0.053), as did the difference
between the two scenting conditions (p = 0.281). Analyses for the
second and third blocks of tasks found no significant effects for scent
(H(2) = 0.45, p = 0.799 and H(2) = 1.338, p = 0.512).

6.4 Results: User Preferences

We analyzed survey responses and found that users significantly
preferred both scented conditions to the non-scented condition across
the board (Table 2): for finding undiscovered views, for finding
discovered views, for finding interesting views more quickly, and in
terms of enjoyment. We conducted a one-way ANOVA for each of
these questions; each found a significant effect (F(2,78) ≥ 7.402, p <
0.002 in all cases). In each case, we performed post-hoc comparisons
using Fisher’s LSD test and found significant differences at the 0.05
level between the scented and non-scented conditions, but found no

significant difference between the two scented conditions.
Furthermore, users did not find either scenting condition to be
cluttered or disruptive (M = 1.6/5, SD = 1.0 for both), and rated both
about equally helpful overall (M = 3.7/5, SD = 0.9 for both). Users
were evenly split between the scented conditions as to which
condition was their favorite (14 comment, 12 visit, 1 no scent, 1
abstention), and the no scenting condition was consistently ranked as
the least favorite (24 no scent, 2 comment, 1 visit, 1 abstention).

The few complaints about scented widgets were largely related to
users wanting the widgets to display different kinds of information.
Three subjects expressed interest in toggling between multiple types
of scenting information, and several more made offhand remarks to
this effect. One subject also voiced discomfort with the inability to
turn off scent indicators, stating that she preferred to explore without
being influenced by the browsing paths of previous users.

6.5 Discussion

The results suggest that subjects found scent useful for navigating
the data when it was new to them, but as they learned the data, they
relied on scent less. As their familiarity with the data increased,
subjects may have transferred from social to semantic navigation of
the data. Some caution is warranted in this claim, however, as we
found advantages for scent after removing T3 from consideration.
On the other hand, we only asked subjects to find a minimum of two
unique discoveries, and so our results may be conservative. If users
were asked to maximize unique discoveries, the differences between
scented conditions might become stronger. As it stands, the results
suggest that scenting increases unique discoveries in unfamiliar data
even when unique discoveries are not the primary concern.

The reduced impact of social navigation cues over time seems
plausible given the limited complexity of the data set — it is not
complicated, nor particularly large. The finding also has a nice
intuitive analogue; in many tasks social navigation is unnecessary
after one becomes familiar with one's environment. A resulting
hypothesis is that social navigation cues assist unfamiliar users in
becoming oriented. Another hypothesis is that social navigation cues
become increasingly useful for larger data sets as more time is
needed to become familiar with the data. We leave further
investigation of these hypotheses to future work.

It is also possible that earlier exposure to scent cues was partly
responsible for the decreasing reliance on social cues we observed.
All subjects that encountered the no scent condition in later blocks

0

2

4

6

8

First Block Second Block Third Block

M
e

an
 U

n
iq

u
e

 D
is

co
ve

ri
e

s
(T

1
 &

 T
2

)

No Scent

Comment Scent

Visit Scent

0

2

4

6

8

All Tasks Tasks T1 & T2

M
e

an
 U

n
iq

u
e

 D
is

co
ve

ri
e

s

Figure 8. Experiment Results. Left: Mean unique discoveries for all tasks and just tasks T1 and T2. Right: Mean unique discoveries for tasks
T1 and T2, divided into blocks by order of presentation. The differences in the first block are statistically significant.

Table 2: User Survey Results. All ratings are on a 5 point scale.

 Visits Comments No Scent

Survey Ratings M SD M SD M SD

Finding undiscovered views 4.1 0.9 4.2 0.9 1.7 1.0

Finding discovered views 4.1 1.1 4.2 1.0 1.9 1.3

Finding interesting views 3.5 1.0 3.6 1.0 2.6 1.1

How enjoyable 4.1 0.7 4.1 0.7 3.3 1.2

had already been exposed to at least one of the sets of scenting data.
More careful study is needed to assess if exposure to scent affects
subsequent behaviour in other conditions.

At first glance, the results seem to suggest that visit scent may be
preferable to comment scent. Though visit and comment scent fare
equally well in user preference ratings, visit scent results in more
unique discoveries than comment scent. However, the differences
between the two are not statistically significant. Still, there are
reasons to suspect benefits for visit scent. One hypothesis is that
uninteresting views may be visited but are unlikely to accrue
comments, so visitation metrics provide cues absent in comment
scent. Another hypothesis is that, because commented views are
visited more than uncommented ones, high visitation rates may be a
good indicator of commentary. Indeed, analyzing the recorded
activity metrics finds the expected correlation between visitation and
commenting (r(154) = .603, p < 0.01). Further study is needed to
determine which social navigation cues are to be preferred. In
response to both this uncertainty and user requests, we recommend
supporting user controls over the display of visual scent cues.

Finally, it is worth reiterating that the activity metrics used in the
study were primarily drawn from general, unstructured exploration.
We were interested in determining if making such activity traces
visible impacts analysis, as one can collect this data easily and
unobtrusively. However, one could also collect activity metrics in a
more structured fashion. If visitation and commenting data can be
associated with users’ tasks or hypothesis, scented widgets could
display scent data specific to the current task. The potential benefits
for this form of scenting seemed clear enough not to require
experimentation, but may be worth investigating to check if the same
learning effects apply. In any case, task-specific scenting requires
design mechanisms that allow task metadata to be associated with
usage data in a lightweight fashion.

7 FUTURE WORK

Several limitations in the current system stand to be addressed in
future work. One issue is widgets supporting multiple selections. In a
multiple selection list box, a user can select one item from a list and
then use a modifier key (typically shift or ctrl) to select additional
items. As selecting a new item in the list in addition to the currently
selected one leads to a different state than selecting only the new
item, the number of potential states grows combinatorially.
Modelling these states is straightforward, and we could use lazy
querying of scent data to alleviate resource concerns, but there
remain unresolved design issues. To handle multiple selections, scent
can be updated not only when a widget value is changed, but also
when a modifier key is depressed. Making scent displays modal in
this fashion solves some design issues, but requires further study.

We have found that the most time-intensive part of applying
scented widgets is implementing a data source. Further support for
data management would reduce implementation time. Our SQL data
source helper (Section 4.3) is one example, as it greatly speeds
development when using a backing database. Further work is needed
to better understand other data sources of interest and determine if
we can provide toolkit support. For example, support for accessing
data in visualization toolkits such as prefuse [11] could accelerate the
creation of data-driven scented widgets.

8 CONCLUSION

In this paper we have introduced scented widgets, user interface
components enhanced with embedded visualizations to aid
information foraging. We proposed guidelines for incorporating
small embedded visualizations and other visual cues into standard
user interface designs. We then presented a toolkit-level framework
for adding visual scenting cues to widgets in the Java Swing user
interface toolkit. With a backing data source in place, our framework
allows developers to quickly add visual navigation cues to existing
applications with minimal changes to source code, typically with
only a few additional lines of code.

We have evaluated our framework by building a set of
demonstration applications and running a formal experiment in
which scented widgets provided social navigation cues.
Experimental results found that scenting led to more unique
discoveries when users were unfamiliar with the data, but that these
benefits equalized over time, suggesting a transfer from social to
semantic navigation. Subjects significantly preferred scented widgets
to traditional widgets for the analysis tasks and did not find visual
scent cues to be cluttered or distracting.

ACKNOWLEDGEMENTS

We thank Martin Wattenberg for initial discussions that led to
scented widgets and for sharing sense.us usage data. We also thank
all the experimental subjects for their participation. This work was
supported in part by fellowships from IBM and Microsoft as well as
the Alfred P. Sloan Foundation and the Okawa Foundation.

REFERENCES

[1] C. Ahlberg, C. Williamson, B. Shneiderman. Dynamic queries for

information exploration: an implementation and evaluation. In Proc. ACM

CHI 1992: 619-626. Monterey, CA. May 1992.

[2] P. Baudisch, R. Rosenholtz. Halo: a technique for visualizing off-screen

objects. In Proc. ACM CHI 2003: 481-488. Fort Lauderdale, FL. Apr. 2003.

[3] P. Baudisch, et al. Phosphor: explaining transitions in the user interface using

afterglow effects. In Proc. ACM UIST 2006: 169-178. Oct. 2006.

[4] J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps. Madison,

Wisconsin:The University of Wisconsin Press, 1967/1983.

[5] S. Björk, J. Redström. Window Frames as Areas for Information

Visualization. In Proc. of the Second Nordic Conference on Human-

Computer Interaction: 247-250. Aarhus, Denmark. 2002.

[6] S.K. Card, J.D. Mackinlay, B. Shneiderman. Readings in Information

Visualization: Using Vision to Think. Morgan Kaufman. 1999.

[7] W.S. Cleveland, R. McGill. Graphical Perception and Graphical Methods

for Analyzing Scientific Data. Science, 229: 828-833. 1985.

[8] M. Derthick, J. Harrison, A. Moore, S.F. Roth. Efficient multi-object

dynamic query histograms. In Proc. IEEE InfoVis 1999: 84. Oct. 1999.

[9] P. Dourish, Chalmers, M. Running Out of Space: Models of Information

Navigation. In Proc. Human Computer Interaction (HCI’94). 1994.

[10] S. Eick. Data Visualization Sliders. In Proc. ACM UIST 1994: 119-120.

Marina del Rey, California. Nov. 1994.

[11] J. Heer, S.K. Card, J.A. Landay. prefuse: A Toolkit for Interactive

Information Visualization. In Proc. ACM CHI 2005: 421-430. April 2005.

[12] J. Heer, F. Viégas, M. Wattenberg. Voyagers and Voyeurs: Supporting

Asynchronous Collaborative Information Visualization. In Proc. ACM CHI

2007: 1029-1038. San Jose, CA. Apr. 2007.

[13] J. Hill, C. Gutwin. Awareness support in a groupware widget toolkit. In

Proc. ACM SIGGROUP 2003: 258-267. Sanibel Island, FL. Nov. 2003.

[14] W. Hill, J.D. Hollan, D. Wroblewski, T. McCandless. Edit wear and read

wear. In Proc. ACM CHI 1992: 3-9. Monterey, CA. May 1992.

[15] J. Mackinlay. Automating the design of graphical presentation of relational

information. ACM Transactions on Graphics 5(2): 110-141. 1986.

[16] C. Olston, E.H. Chi. ScentTrails: Integrating browsing and searching on the

Web. ACM TOCHI, 10(3): 177-197. Sep. 2003.

[17] P. Pirolli, S.K. Card. Information Foraging. Psychological Review. 106(4):

643-675. 1999.

[18] H. Senay, E. Ignatius. Rules and principles of scientific data visualization.

Tech. Report GWU-IIST-90-13, The George Washington University. 1990.

[19] E. Tufte. Beautiful Evidence. Graphics Press. 2006.

[20] M. Wattenberg, J. Kriss. Designing for Social Data Analysis. IEEE Trans.

on Visualization and Computer Graphics, 12(4): 549–557. 2006.

[21] C. Williamson, B. Shneiderman. The dynamic HomeFinder: Evaluating

dynamic queries in a real-estate information exploration system In Proc.

ACM SIGIR 1992: 338-346. Copenhagen, Denmark. Jun. 1992.

[22] P.T. Zellweger, J.D. Mackinlay, L. Good, M. Stefik, P. Baudisch. City

lights: contextual views in minimal space. In Extended Abstracts of ACM

CHI 2003: 838-839. Fort Lauderdale, FL. Apr. 2003.

