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Abstract

Despite their rising popularity, current cloud storage

offers and cloud-backed storage systems still have some

limitations related with reliability, durability assurances

and inefficient file sharing. We present SCFS, a cloud-

backed file system that addresses these issues and pro-

vides strong consistency and near-POSIX semantics on

top of eventually-consistent cloud storage services. SCFS

provides a pluggable backplane that allows it to work with

various storage clouds or a cloud-of-clouds (for added de-

pendability). It also exploits some design opportunities

inherent in the current cloud services through a set of

novel ideas for cloud-backed file systems: always write /

avoid reading, modular coordination, private name spaces

and consistency anchors.

1 Introduction

File backup, data archival and collaboration are among

the top usages of the cloud in companies [1], and they are

normally based on cloud storage services like the Ama-

zon S3, Dropbox, Google Drive and Microsoft SkyDrive.

These services are popular because of their ubiquitous

accessibility, pay-as-you-go model, high scalability, and

ease of use. A cloud storage service can be accessed in

a convenient way with a client application that interfaces

the local file system with the cloud. Such services can be

broadly grouped in two classes: (1) personal file synchro-

nization services (e.g., DropBox) and (2) cloud-backed

file systems (e.g., S3FS [5]).

Services of the first class – personal file synchroniza-

tion – are usually composed of a back-end storage cloud

and a client application that interacts with the local file

system through a monitoring interface like inotify (in

Linux). Recent works shown that this interaction model

can lead to reliability and consistency problems on the

stored data [38], as well as CPU and bandwidth over usage

under certain workloads [32]. In particular, given the fact

that these monitoring components lack an understanding

of when data or metadata is made persistent in the local

storage, this can lead to corrupted data being saved in the

cloud. A possible solution to these difficulties would be to

modify the file system to increase the integration between

the client application and local storage.

The second class of services – cloud-backed file sys-

S3FS,%S3QL%

Cloud%

Storage%Proxy&

Limita4on%
Trust&on&the&provider&

Limita4on%
No&sharing&

Limita4on%
Single&point&of&failure&

BlueSky%%

Figure 1: Cloud-backed file systems and their limitations.

tems – solve the problem in a more generic way. This ap-

proach is typically implemented at user-level, following

one of the two architectural models represented in Fig-

ure 1. The first model is shown at the top of the figure and

is followed by BlueSky [36] and several commercial stor-

age gateways. In this model, a proxy component is placed

in the network infrastructure of the organization, acting as

a file server to the various clients and supporting access

protocols such as NFS and CIFS. The proxy implements

the core functionality of the file system and calls the cloud

to store and retrieve files. File sharing among clients is

possible as long as all of them connect to the same proxy.

The main limitations are that the proxy can become a per-

formance bottleneck and a single point of failure. More-

over, in BlueSky (and other systems), there is no coordi-

nation between different proxies accessing the same files.

The second model is implemented by open-source solu-

tions like S3FS [5] and S3QL [6] (bottom of Figure 1).

In this model, clients access the clouds directly, without

the interposition of a proxy. Consequently, there is no

longer a single point of failure, but on the negative side,

the model misses the convenient rendezvous point for syn-

chronization, making it harder to support controlled file

sharing among clients.

A common limitation of the two classes of services

is the need to trust the cloud provider with respect to

the stored data confidentiality, integrity and availability.

Although confidentiality can be guaranteed by making

clients (or the proxy) encrypt files before sending them

to the cloud, sharing encrypted files requires a key dis-

tribution mechanism, which is not easy to implement in

this environment. Integrity is provided by systems like

SUNDR [31], but there is the need to run server-side code

in the cloud provider, which is currently not possible when

using unmodifiable storage services. Availability against

cloud failures to the best of our knowledge is not provided

by any of the current cloud-backed file systems.
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This paper presents the Shared Cloud-backed File Sys-

tem (SCFS),1 a storage solution that addresses the afore-

mentioned limitations. More specifically, SCFS allows

entities to share files in a secure and fault-tolerant way,

improving the durability guarantees. It also ensures strong

consistency on file accesses, and provides a pluggable

backplane that supports the use of different cloud storage

offerings.

SCFS leverages almost 30 years of distributed file sys-

tems research, integrating classical ideas like consistency-

on-close semantics [26] and separation of data and meta-

data [19], with recent trends such as using cloud services

as (unmodified) storage backends [18, 36] and increasing

dependability by resorting to multiple clouds [8, 11, 12].

SCFS also contributes with the following novel tech-

niques for cloud-backed storage design:

• Always write / avoid reading: SCFS always pushes

updates of file contents to the cloud (besides stor-

ing them locally), but resolves reads locally when-

ever possible. This mechanism has a positive impact

in the reading latency. Moreover, it reduces costs be-

cause writing to the cloud is typically cheap, on the

contrary of reading that tends to be expensive2.

• Modular coordination: SCFS uses a fault-tolerant

coordination service, instead of having lock and

metadata management embedded, as most dis-

tributed file systems do [9, 29, 37]. This service has

the benefit of assisting the management of consis-

tency and sharing. Moreover, the associated modu-

larity is important for instance to allow different fault

tolerance tradeoffs to be supported.

• Private Name Spaces: SCFS uses a new data struc-

ture to store metadata information about files that are

not shared between users (which is expected to be the

majority [30]) as a single object in the storage cloud.

This relieves the coordination service from maintain-

ing information about such private files and improves

the performance of the system.

• Consistency anchors: SCFS employs this novel

mechanism to achieve strong consistency, instead of

the eventual consistency [35] offered by most cloud

storage services, a model typically considered unnat-

ural by a majority of programmers. This mechanism

provides a familiar abstraction – a file system – with-

out requiring modifications to cloud services.

• Multiple redundant cloud backends: SCFS may

employ a cloud-of-clouds backplane [12], making

1SCFS is an open-source project that is available at http://

code.google.com/p/depsky/wiki/SCFS.
2For example, in Amazon S3, writing is free, but reading a GB is

more expensive ($0.12 after the first GB/month) than storing data during

a month ($0.09 per GB). Google Cloud Storage’s prices are similar.

the system tolerant to data corruption and unavail-

ability of cloud providers. All data stored in the

clouds is encrypted for confidentiality and encoded

for storage-efficiency.

The use case scenarios of SCFS include both individu-

als and large organizations, which are willing to explore

the benefits of cloud-backed storage (optionally, with a

cloud-of-clouds backend). For example: a secure per-

sonal file system – similar to Dropbox, iClouds or Sky-

Drive, but without requiring complete trust on any single

provider; a shared file system for organizations – cost-

effective storage, but maintaining control and confiden-

tiality of the organizations’ data; an automatic disaster

recovery system – the files are stored by SCFS in a cloud-

of-clouds backend to survive disasters not only in the lo-

cal IT systems but also of individual cloud providers; a

collaboration infrastructure – dependable data-based col-

laborative applications without running code in the cloud,

made easy by the POSIX-like API for sharing files.

Despite the fact that distributed file systems are a well-

studied subject, our work relates to an area where further

investigation is required – cloud-backed file systems – and

where the practice is still immature. In this sense, besides

presenting a system that explores a novel region of the

cloud storage design space, the paper contributes with a

set of generic principles for cloud-backed file system de-

sign, reusable in further systems with different purposes.

2 SCFS Design

2.1 Design Principles
This section presents a set of design principles that are

followed in SCFS:

Pay-per-ownership. Ideally, a shared cloud-backed file

system should charge each entity (owner of an account)

by the files it creates in the service. This principle is im-

portant because it leads to a flexible usage model, e.g., al-

lowing different organizations to share directories paying

only for the files they create. SCFS implements this prin-

ciple by reusing the protection and isolation between dif-

ferent accounts granted by the cloud providers (see §2.6).

Strong consistency. A file system is a more familiar stor-

age abstraction to programmers than the typical basic in-

terfaces (e.g., REST-based) given by cloud storage ser-

vices. However, to emulate the semantics of a POSIX file

system, strong consistency has to be provided. SCFS fol-

lows this principle by applying the concept of consistency

anchors (see §2.4). Nevertheless, SCFS optionally sup-

ports weaker consistency.

Service-agnosticism. A cloud-backed file system should

rule out from its design any feature that is not supported

by the backend cloud(s). The importance of this principle

derives from the difficulty (or impossibility) of obtaining

modifications of the service of the best-of-breed commer-
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cial clouds. Accordingly, SCFS does not assume any spe-

cial feature of storage clouds, and requires only that the

clouds provide access to on-demand storage with basic

access control lists.

Multi-versioning. A shared cloud-backed file system

should be able to store several versions of the files for

error recovery [21]. An important advantage of having a

cloud as backend is the (almost) unlimited storage capac-

ity and scalability. SCFS keeps old versions of files and

deleted files until they are definitively removed by a con-

figurable garbage collector.

2.2 Goals
A primary goal of SCFS is to allow clients to share files

in a controlled way, providing the necessary mechanisms

to guarantee security (integrity and confidentiality; avail-

ability despite cloud failures is optional). An equally im-

portant goal is to increase data durability by exploiting the

resources granted by storage clouds and keeping several

versions of files.

SCFS also aims to offer a natural file system API

with strong consistency. More specifically, SCFS sup-

ports consistency-on-close semantics [26], guaranteeing

that when a file is closed by a user, all updates it saw or

did are observed by the rest of the users. Since most stor-

age clouds provide only eventual consistency, we resort to

a coordination service [14, 27] for maintaining file system

metadata and synchronization.

A last goal is to leverage the scalability of cloud of-

ferings to support large numbers of users, volume of

data, and numbers of files. However, SCFS is not in-

tended to be a “big data” file system, since file data is

uploaded/downloaded from one or more clouds; on the

contrary, a common principle for big data processing is to

take computation to the data (e.g., MapReduce systems).

2.3 Architecture Overview
Figure 2 represents the SCFS architecture with its three

main components: the backend cloud storage for main-

taining the file data (shown as a cloud-of-clouds, but a

single cloud can be used); the coordination service for

managing the metadata and to support synchronization;

and the SCFS Agent that implements most of the SCFS

functionality, and corresponds to the file system client

mounted at the user machine.

The separation of file data and metadata has been often

used to allow parallel access to files in parallel file sys-

tems (e.g., [19, 37]). In SCFS we take this concept further

and apply it to a cloud-backed file system. The fact that

a distinct service is used for storing metadata gives flex-

ibility, as it can be deployed in different ways depending

on the users needs. For instance, our general architecture

assumes that the metadata is kept in the cloud, but a large

organization could distribute the metadata service over its

own sites for disaster tolerance.
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Figure 2: SCFS architecture with its three main components.

Metadata in SCFS is stored in a coordination service.

Three important reasons led us to select this approach in-

stead of, for example, a NoSQL database or some cus-

tom service (as in other file systems). First, coordination

services offer consistent storage with enough capacity for

this kind of data, and thus can be used as consistency an-

chors for cloud storage services (see next section). Sec-

ond, coordination services implement complex replication

protocols to ensure fault tolerance for the metadata stor-

age. Finally, these systems support operations with syn-

chronization power [24] that can be used to implement

fundamental file system functionalities, such as locking.

File data is maintained both in the storage cloud and

locally in a cache at the client machine. This strategy is

interesting in terms of performance, costs and availability.

Since cloud accesses usually entail large latencies, SCFS

attempts to keep a copy of the accessed files in the user

machine. Therefore, if the file is not modified by another

client, subsequent reads do not need to fetch the data from

the clouds. As a side effect, there are cost savings as there

is no need to pay for the download of the file. On the

other hand, we follow the approach of writing everything

to the cloud (enforcing consistency-on-close semantics),

as most providers let clients upload files for free as an

incentive for the use of their services. Consequently, no

completed update is lost in case of a local failure.

It is worth to stress that the storage cloud and the coor-

dination service are external services, and that SCFS can

use any implementation of such services as long as they

are compatible (provide compliant interfaces, access con-

trol and the required consistency). We will focus the rest

of this section on the description of the SCFS Agent and

its operation principles, starting with how it implements

consistent storage using weakly consistent storage clouds.

2.4 Strengthening Cloud Consistency
A key innovation of SCFS is the ability to provide

strongly consistent storage over the eventually-consistent

services offered by clouds [35]. Given the recent interest

in strengthening eventual consistency in other areas, we

describe the general technique here, decoupled from the

file system design. A complete formalization and correct-

ness proof of this technique is presented in a companion

technical report [15].
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WRITE(id, v):

w1: h← H(v)

w2: SS.write(id|h, v)

w3: CA.write(id, h)

READ(id):

r1: h← CA.read(id)

r2: while v = null do v ← SS.read(id|h)

r3: return (H(v) = h)?v : null

Figure 3: Algorithm for increasing the consistency of the stor-

age service (SS) using a consistency anchor (CA).

The approach uses two storage systems, one with lim-

ited capacity for maintaining metadata and another to save

the data itself. We call the metadata store a consistency

anchor (CA) and require it to enforce some desired con-

sistency guarantee S (e.g., linearizability [25]), while the

storage service (SS) may only offer eventual consistency.

The objective is to provide a composite storage system

that satisfies S, even if the data is kept in SS.

The algorithm for improving consistency is presented

in Figure 3, and the insight is to anchor the consistency

of the resulting storage service on the consistency offered

by the CA. For writing, the client starts by calculating a

collision-resistant hash of the data object (step w1), and

then saves the data in the SS together with its identifier id

concatenated with the hash (step w2). Finally, data’s iden-

tifier and hash are stored in the CA (step w3). One should

notice that this mode of operation creates a new version of

the data object in every write. Therefore, a garbage col-

lection mechanism is needed to reclaim the storage space

of no longer needed versions.

For reading, the client has to obtain the current hash

of the data from CA (step r1), and then needs to keep on

fetching the data object from the SS until a copy is avail-

able (step r2). The loop is necessary due to the eventual

consistency of the SS – after a write completes, the new

hash can be immediately acquired from the CA, but the

data is only eventually available in the SS.

2.5 SCFS Agent

2.5.1 Local Services

The design of the SCFS Agent is based on the use of

three local services that abstract the access to the coordi-

nation service and the storage cloud backend.

Storage service. The storage service provides an inter-

face to save and retrieve variable-sized objects from the

cloud storage. Since cloud providers are located over the

internet, SCFS overall performance is heavily affected by

the latency of remote data accesses. To address this prob-

lem, we read and write whole files as objects in the cloud,

instead of splitting them in blocks and accessing block by

block. This allows most of the client files (if not all) to be

stored locally, and makes the design of SCFS simpler and

more efficient for small-to-medium sized files.

To achieve adequate performance, we rely on two lev-

els of cache, whose organization has to be managed with

care in order to avoid impairing consistency. First, all files

read and written are copied locally, making the local disk

a large and long term cache. More specifically, the disk is

seen as an LRU file cache with GBs of space, whose con-

tent is validated in the coordination service before being

returned, to ensure that the most recent version of the file

is used. Second, a main memory LRU cache (hundreds of

MBs) is employed for holding open files. This is aligned

with our consistency-on-close semantics, since, when the

file is closed, all updated metadata and data kept in mem-

ory are flushed to the local disk and the clouds.

The actual data transfers between the various storage

locations (memory, disk, clouds) are defined by the dura-

bility levels required by each kind of system call. Ta-

ble 1 shows examples of POSIX calls that cause data to

be stored at different levels, together with their location,

storage latency and provided fault tolerance. For instance,

a write in an open file causes the data to be saved in

the memory cache, which gives no durability guarantees

(Level 0). Calling fsync flushes the data (if modified)

to the local disk, achieving the standard durability of local

file systems, i.e. against process or system crashes (Level

1). When a file is closed, the data is eventually written to

the cloud. A system backed by a single cloud provider can

survive a local disk failure but not a cloud provider fail-

ure (Level 2). However, in SCFS with a cloud-of-clouds

backend, the data is written to a set of clouds, such that

failure of up to f providers is tolerated (Level 3), being f

a system parameter (see §3.2).

Level Location Latency Fault tolerance Sys call

0 main memory microsec none write

1 local disk millisec crash fsync

2 cloud seconds local disk close

3 cloud-of-clouds1 seconds f clouds close

Table 1: SCFS durability levels and the corresponding data lo-

cation, write latency, fault tolerance and example system calls.
1Supported by SCFS with the cloud-of-clouds backend.

Metadata service. The metadata service resorts to the

coordination service to store file and directory metadata,

together with information required for enforcing access

control. In particular, it ensures that each file system ob-

ject is represented in the coordination service by a meta-

data tuple containing: the object name, the type (file, di-

rectory or link), its parent object (in the hierarchical file

namespace), the object metadata (size, date of creation,

owner, ACLs, etc.), an opaque identifier referencing the

file in the storage service (and, consequently, in the stor-

age cloud) and the collision-resistant hash (SHA-1) of the

contents of the current version of the file. These two last

fields represent the id and hash stored in the consistency

anchor (see §2.4). Metadata tuples are accessed through

a set of operations offered by the local metadata service,

which are then translated into different calls to the coor-

dination service.

To deal with bursts of metadata accesses (e.g., opening

a file with the vim editor can cause more than five stat
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calls), a small short term main memory cache (up to few

MBs for tens of milliseconds) is utilized to serve meta-

data requests. The objective of this cache is to reuse the

data fetched from the coordination service for at least the

amount of time spent to obtain it from the network. In

§4.4 we show this cache can improve the performance of

the system significantly.

Locking service. As in most consistent file systems, we

use locks to avoid write-write conflicts. The lock ser-

vice is basically a wrapper for implementing coordina-

tion recipes for locking using the coordination service of

choice [14, 27]. The only strict requirement is that the

lock entry is inserted in an ephemeral way, making the

system automatically unlock tuples if the client that cre-

ated the lock crashes. In practice, this requires locks to be

represented by ephemeral znodes in Zookeeper or timed

tuples in DepSpace, ensuring they will disappear (auto-

matically unlocking the file) in case the SCFS client that

locked it crashes before uploading its updates and releas-

ing the lock (see next section).

It is important to remark that opening a file for read-

ing does not require locking it. Read-write conflicts

are automatically addressed by the upload/download of

whole files and the use of a consistency anchor (see §2.4)

which ensures the most recent version of file (according

to consistency-on-close) will be read upon its opening.

2.5.2 File Operations

Figure 4 illustrates the execution of SCFS when serv-

ing the four main file system calls, open, write, read and

close. To implement these operations, the SCFS Agent

intercepts the system calls issued by the operating system

and invokes the procedures provided by the storage, meta-

data and locking services.

Opening a file. The tension between provisioning strong

consistency and suffering high latency in cloud access

led us to provide consistency-on-close semantics [26] and

synchronize files only in the open and close operations.

Moreover, given our aim of having most client files (if not

all) locally stored, we opted for reading and writing whole

files from the cloud. With this in mind, the open opera-

tion comprises three main steps: (i) read the file metadata,

(ii) optionally create a lock if the file is opened for writ-

ing, and (iii) read the file data to the local cache. Notice

that these steps correspond to an implementation of the

READ algorithm of Figure 3, with an extra step to ensure

exclusive access to the file for writing.

Reading the metadata entails fetching the file metadata

from the coordination service, if it is not available in the

metadata cache, and then make an update to this cache.

Locking the file is necessary to avoid write-write conflicts,

and if it fails, an error is returned. Reading the file data

either uses the copy in the local cache (memory or disk)

or requires that a copy is made from the cloud. The local

data version (if available) is checked to find out if it corre-

sponds to the one in the metadata service. In the negative

case, the new version is collected from the cloud storage

and copied to the local disk. If there is no space for the file

in main memory (e.g., there are too many open files), the

data of the least recently used file is first pushed to disk

(as a cache extension) to release space.

Write and read. These two operations only need to inter-

act with the local storage. Writing to a file requires updat-

ing the memory-cached file and the associated metadata

cache entry (e.g., the size and the last-modified times-

tamp). Reading just causes the data to be fetched from

the main memory cache (as it was copied there when the

file was opened).
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Closing a file. Closing a file involves the synchroniza-

tion of cached data and metadata with the coordination

service and the cloud storage. First, the updated file data

is copied to the local disk and to the storage cloud. Then,

if the cached metadata was modified, it is pushed to the

coordination service. Lastly, the file is unlocked if it was

originally opened for writing. Notice that these steps cor-

respond to the WRITE algorithm of Figure 3.

As expected, if the file was not modified since opened

or was opened in read-only mode, no synchronization is

required. From the point of view of consistency and dura-

bility, a write to the file is complete only when the file is

closed, respecting the consistency-on-close semantics.

2.5.3 Garbage Collection

During normal operation, SCFS saves new versions of

the file data without deleting the previous ones, and files

removed by the user are just marked as deleted in the asso-

ciated metadata. These two features support the recovery

of a history of the files, which is useful for some applica-

tions. However, in general this can increase the monetary

cost of running the system, and therefore, SCFS includes

a flexible garbage collector to enable various policies for

reclaiming space.

Garbage collection runs in isolation at each SCFS

Agent, and the decision about reclaiming space is based

on the preferences (and budgets) of individual users. By

default, its activation is guided by two parameters defined

upon the mounting of the file system: number of writ-

ten bytes W and number of versions to keep V . Every

time a SCFS Agent writes more than W bytes, it starts

the garbage collector as a separated thread that runs in

parallel with the rest of the system (other policies are pos-

sible). This thread fetches the list of files owned by this

user and reads the associated metadata from the coordina-

tion service. Next, it issues commands to delete old file

data versions from the cloud storage, such that only the

last V versions are kept (refined policies that keep one

version per day or week are also possible). Additionally,

it also eliminates the data versions of the files removed by

the user. Later on, the corresponding metadata entries are

also erased from the coordination service.

2.6 Security Model
The security of a shared cloud storage system is a tricky

issue, as the system is constrained by the access control

capabilities of the backend clouds. A straw-man imple-

mentation would allow all clients to use the same ac-

count and privileges on the cloud services, but this has

two drawbacks. First, any client would be able to modify

or delete all files, making the system vulnerable to mali-

cious users. Second, a single account would be charged

for all clients, preventing the pay-per-ownership model.

SCFS implements the enhanced POSIX’s ACL

model [20], instead of the classical Unix modes (based on

owner, group, others). The owner O of a file can give ac-

cess permissions to another user U through the setfacl

command, passing as parameters the identifier of U , the

permissions and the file name. The getfacl command

returns the permissions of a file.

As a user has separate accounts in the various cloud

providers, and since each probably has a different identi-

fier, SCFS needs to associate with every client identifier a

list of cloud canonical identifiers. This association is kept

in a tuple in the coordination service, and is loaded when

the client mounts the file system for the first time. When

the SCFS Agent intercepts a setfacl request from a

client O to set permissions on a file for a user U , the fol-

lowing steps are executed: (i) the agent uses the two lists

of cloud canonical identifiers (of O and U ) to update the

ACLs of the objects that store the file data in the clouds

with the new permissions; and then, (ii) it also updates the

ACL associated with the metadata tuple of the file in the

coordination service to reflect the new permissions.

Notice that we do not trust the SCFS Agent to imple-

ment the access control verification, since it can be com-

promised by a malicious user. Instead, we rely on the ac-

cess control enforcement of the coordination service and

the cloud storage.

2.7 Private Name Spaces
One of the goals of SCFS is to scale in terms of users

and files. However, the use of a coordination service (or

any centralized service) could potentially create a scala-

bility bottleneck, as this kind of service normally main-

tains all data in main memory (e.g., [14, 27]) and requires

a distributed agreement to update the state of the repli-

cas in a consistent way. To address this problem, we take

advantage of the observation that, although file sharing

is an important feature of cloud-backed storage systems,

the majority of the files are not shared between different

users [18, 30]. Looking at the SCFS design, all files and

directories that are not shared (and thus not visible to other

users), do not require a specific entry in the coordination

service, and instead can have their metadata grouped in a

single object saved in the cloud storage.

This object is represented by a Private Name Space

(PNS) abstraction. A PNS is a local object kept by the

SCFS Agent’ metadata service, containing the metadata

of all private files of a user. Each PNS has an associated

PNS tuple in the coordination service, which contains the

user name and a reference to an object in the cloud stor-

age. This object keeps a copy of the serialized metadata

of all private files of the user.

Working with non-shared files is slightly different from

what was shown in Figure 4. When mounting the file sys-

tem, the agent fetches the user’s PNS entry from the coor-

dination service and the metadata from the cloud storage,

locking the PNS to avoid inconsistencies caused by two

clients logged as the same user. When opening a file, the
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user gets the metadata locally as if it was in cache (since

the file is not shared), and if needed fetches the data from

the cloud storage (as in the normal case). On close, if the

file was modified, both the data and the metadata are up-

dated in the cloud storage. The close operation completes

when both updates finish.

When permissions change in a file, its metadata can be

removed (resp. added) from a PNS, causing the creation

(resp. removal) of the corresponding metadata tuple in the

coordination service.

With PNSs, the amount of storage used in the coordi-

nation service is proportional to the percentage of shared

files in the system. For example, in a setup with 1M files

where only 5% of them are shared (e.g., the engineering

trace of [30]): (i) Without PNSs, it would be necessary 1M

tuples of around 1KB, for a total size of 1GB of storage

(the approximate size of a metadata tuple is 1KB, assum-

ing 100 byte file names); (ii) With PNSs, only 50 thou-

sand tuples plus one PNS tuple per user would be needed,

requiring a little over 50MB of storage. Even more im-

portantly, by resorting to PNSs, it is possible to reduce

substantially the number of accesses to the coordination

service, allowing more users and files to be served.

3 SCFS Implementation
SCFS is implemented as a user space file system based

on FUSE-J, which is a wrapper to connect the SCFS

Agent to the FUSE library. Overall, the SCFS implemen-

tation comprises 6K lines of commented Java code, ex-

cluding any coordination service or storage backend code.

We opted to develop the SCFS in Java mainly because

most of the backend code (the coordination and storage

services) were based on Java and the high latency of cloud

accesses make the overhead of using a Java-based file sys-

tem comparatively negligible.

3.1 Modes of Operation
Our implementation of SCFS supports three modes of

operation, based on the consistency and sharing require-

ments of the stored data.

The first mode, blocking, is the one described up to this

point. The second mode, non-blocking, is a weaker ver-

sion of SCFS in which closing a file does not block until

the file data is on the clouds, but only until it is written

locally and enqueued to be sent to the clouds in back-

ground. In this model, the file metadata is updated and

the associated lock released only after the file contents are

updated to the clouds, and not when the close call returns

(so mutual exclusion is preserved). Naturally, this model

leads to a significant performance improvement at cost of

a reduction of the durability and consistency guarantees.

Finally, the non-sharing mode is interesting for users that

do not need to share files, and represents a design similar

to S3QL [6], but with the possibility of using a cloud-of-

clouds instead of a single storage service. This version

does not require the use of the coordination service, and

all metadata is saved on a PNS.

3.2 Backends
SCFS can be plugged to several backends, including

different coordination and cloud storage services. This

paper focus in the two backends of Figure 5. The first one

is based on Amazon Web Services (AWS), with an EC2

VM running the coordination service and file data being

stored in S3. The second backend makes use of the cloud-

of-clouds (CoC) technology, recently shown to be prac-

tical [8, 11, 12]. A distinct advantage of the CoC back-

end is that it removes any dependence of a single cloud

provider, relying instead on a quorum of providers. It

means that data security is ensured even if f out-of 3f+1

of the cloud providers suffer arbitrary faults, which en-

compasses unavailability and data deletion, corruption or

creation [12]. Although cloud providers have their means

to ensure the dependability of their services, the recurring

occurrence of outages, security incidents (with internal or

external origins) and data corruptions [17, 22] justifies the

need for this sort of backend in several scenarios.

SCFS%

Agent%

SCFS%

Agent%

DS%

BFT$SMaRt*

DepSky*

S3(

EC2(

AWS%Backend% CoC%Backend%

S3(

DS% DS%

DS%DS% RS(

WA(

GS(

S3(

Figure 5: SCFS with Amazon Web Services (AWS) and Cloud-

of-Clouds (CoC) backends.

Coordination services. The current SCFS prototype sup-

ports two coordination services: Zookeeper [27] and

DepSpace [14] (in particular, its durable version [13]).

These services are integrated at the SCFS Agent with sim-

ple wrappers, as both support storage of small data entries

and can be used for locking. Moreover, these coordina-

tion services can be deployed in a replicated way for fault

tolerance. Zookeeper requires 2f + 1 replicas to tolerate

f crashes through the use of a Paxos-like protocol [27]

while DepSpace uses either 3f + 1 replicas to tolerate

f arbitrary/Byzantine faults or 2f + 1 to tolerate crashes

(like Zookeeper), using the BFT-SMaRt replication en-

gine [3]. The evaluation presented in this paper is based

on the non-replicated DepSpace in the AWS backend and

its BFT variant in the CoC backend.

Cloud storage services. SCFS currently supports Ama-

zon S3, Windows Azure Blob, Google Cloud Storage,

Rackspace Cloud Files and all of them forming a cloud-

of-clouds backend. The implementation of single-cloud

backends is simple: we employ the Java library made
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available by the providers, which accesses the cloud stor-

age service using a REST API over SSL. To implement

the cloud-of-clouds backend, we resort to an extended

version of DepSky [12] that supports a new operation,

which instead of reading the last version of a data unit,

reads the version with a given hash, if available (to imple-

ment the consistency anchor algorithm - see §2.4). The

hashes of all versions of the data are stored in the Dep-

Sky’s internal metadata object, stored in the clouds.

Figure 6 shows how a file is securely stored in the

cloud-of-clouds backend of SCFS using DepSky (see [12]

for details). The procedure works as follows: (1) a ran-

dom key K is generated,(2) this key is used to encrypt the

file and (3) the encrypted file is encoded and each block

is stored in different clouds together with (4) a share of

K, obtained through secret sharing. Stored data security

(confidentiality, integrity and availability) is ensured by

the fact that no single cloud alone has access to the data

since K can only be recovered only with two or more

shares and that quorum reasoning is applied to discover

the last version written. In the example of the figure,

where a single faulty cloud is tolerated, two clouds need

to be accessed to recover the file data.

Storage(Services(
Client(

1

2. encrypt 

1. gen. key 
1(

File 

Data 

22(

33(

44(

4. secret sharing 

3. erasure coding 

Figure 6: A write in SCFS using the DepSky protocols.

4 Evaluation
This section evaluates SCFS using the AWS and CoC

backends, operating in different modes, and comparing it

with other cloud-backed file systems. The main objective

is to understand how SCFS behaves with some representa-

tive workloads and to shed light on the costs of our design.

4.1 Setup & Methodology
Our setup considers a set of clients running on a cluster

of Linux 2.6 machines with two quad-core 2.27 GHz Intel

Xeon E5520, 32 GB of RAM and a 15K RPM SCSI HD.

This cluster is located in Portugal.

For SCFS-AWS (Figure 5, left), we use Amazon S3

(US) as a cloud storage service and a single EC2 instance

hosted in Ireland to run DepSpace. For SCFS-CoC, we

use DepSky with 4 storage providers and run replicas of

DepSpace in four computing cloud providers, tolerating

a single fault both in the storage service and in the co-

ordination service. The storage clouds were Amazon S3

(US), Google Cloud Storage (US), Rackspace Cloud Files

(UK) and Windows Azure (UK). The computing clouds

were EC2 (Ireland), Rackspace (UK), Windows Azure

(Europe) and Elastichosts (UK). In all cases, the VM in-

stances used were EC2 M1 Large [2] (or similar).

The evaluation is based on a set of benchmarks fol-

lowing recent recommendations [34], all of them from

Filebench [4]. Moreover, we created two new benchmarks

to simulate some behaviors of interest for cloud-backed

file systems.

We compare six SCFS variants considering different

modes of operation and backends (see Table 3) with two

popular open source S3-backed files systems: S3QL [6]

and S3FS [5]. Moreover, we use a FUSE-J-based local

file system (LocalFS) implemented in Java as a baseline to

ensure an apples-to-apples comparison, since a native file

system presents much better performance than a FUSE-J

file system. In all SCFS variants, the metadata cache expi-

ration time was set to 500 ms and no private name spaces

were used. Alternative configurations are studied in §4.4.

Blocking Non-blocking Non-sharing

AWS SCFS-AWS-B SCFS-AWS-NB SCFS-AWS-NS

CoC SCFS-CoC-B SCFS-CoC-NB SCFS-CoC-NS

Table 3: SCFS variants with different modes and backends.

4.2 Micro-benchmarks
We start by running six Filebench micro-

benchmarks [4]: sequential reads, sequential writes,

random reads, random writes, create files and copy files.

The first four benchmarks are IO-intensive and do not

consider open, sync or close operations, while the last

two are metadata-intensive. Table 2 shows the results for

all considered file systems.

The results for sequential and random r/w show that

the behavior of the evaluated file systems is similar, with

the exception of S3FS and S3QL. The low performance

of S3FS comes from its lack of main memory cache for

opened files [5], while S3QL’s low random write perfor-

mance is the result of a known issue with FUSE that

makes small chunk writes very slow [7]. This bench-

mark performs 4KB-writes, much smaller than the rec-

ommended chunk size for S3QL, 128KB.

The results for create and copy files show a difference

of three to four orders of magnitude between the local or

single-user cloud-backed file system (SCFS-*-NS, S3QL

and LocalFS) and a shared or blocking cloud-backed file

system (SCFS-*-NB, SCFS-*-B and S3FS). This is not

surprising, given that SCFS-*-{NB,B} access the coor-

dination service in each create, open or close operation.

Similarly, S3FS accesses S3 in each of these operations,

being even slower. Furthermore, the latencies of SCFS-*-

NB variants is dominated by the coordination service ac-

cess (between 60-100 ms per access), while in the SCFS-

*-B variants such latency is dominated by the read/write

operations in the cloud storage.
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Micro-benchmark #Operations File size
SCFS-AWS SCFS-CoC

S3FS S3QL LocalFS
NS NB B NS NB B

sequential read 1 4MB 1 1 1 1 1 1 6 1 1

sequential write 1 4MB 1 1 1 1 1 1 2 1 1

random 4KB-read 256k 4MB 11 11 15 11 11 11 15 11 11

random 4KB-write 256k 4MB 35 39 39 35 35 36 52 152 37

create files 200 16KB 1 102 229 1 95 321 596 1 1

copy files 100 16KB 1 137 196 1 94 478 444 1 1

Table 2: Latency of several Filebench micro-benchmarks for SCFS (six variants), S3QL, S3FS and LocalFS (in seconds).

4.3 Application-based Benchmarks
In this section we present two application-based bench-

marks for potential uses of cloud-backed file systems.

File Synchronization Service. A representative work-

load for SCFS corresponds to its use as a personal cloud

storage service [18] in which desktop application files

(e.g., xlsx, docx, pptx, odt) are stored and shared. A new

benchmark was designed to simulate the opening, saving

and closing actions on a text document (odt file) in the

OpenOffice application suite.

The benchmark follows the behavior observed in traces

of a real system, which are similar to other modern desk-

top applications [23]. Typically, the files managed by the

cloud-backed file system are just copied to a temporary

directory on the local file system where they are manipu-

lated as described in [23]. Nonetheless, as can be seen in

the benchmark definition (Figure 7), these actions (espe-

cially save) still impose a lot of work on the cloud-backed

file system.

Open Action: 1 open(f,rw), 2 read(f), 3-5 open-write-close(lf1), 6-8

open-read-close(f), 9-11 open-read-close(lf1)

Save Action: 1-3 open-read-close(f), 4 close(f), 5-7 open-read-

close(lf1), 8 delete(lf1), 9-11 open-write-close(lf2), 12-14 open-

read-close(lf2), 15 truncate(f,0), 16-18 open-write-close(f), 19-

21 open-fsync-close(f), 22-24 open-read-close(f), 25 open(f,rw)

Close Action: 1 close(f), 2-4 open-read-close(lf2), 5 delete(lf2)

Figure 7: File system operations invoked in the personal stor-

age service benchmark, simulating an OpenOffice text document

open, save and close actions (f is the odt file and lf is a lock file).

Figure 8 shows the average latency of each of the three

actions of our benchmark for SCFS, S3QL and S3FS, con-

sidering a file of 1.2MB, which corresponds to the aver-

age file size observed in 2004 (189KB) scaled-up 15% per

year to reach the expected value for 2013 [10].

Figure 8(a) shows that SCFS-CoC-NS and S3QL ex-

hibit the best performance among the evaluated file sys-

tems, having latencies similar to a local file system (where

a save takes around 100 ms). This shows that the added

dependability of a cloud-of-clouds storage backend does

not prevent a cloud-backed file system to behave similarly

to a local file system, if the correct design is employed.

Moreover, these results shows that SCFS-*-NB re-

quires substantially more time for each phase due to the

number of accesses to the coordination service, especially
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Figure 8: Latency of a personal storage service actions (see

Figure 7) in a file of 1.2MB. The (L) variants maintain lock files

in the local file system. All labels starting with CoC or AWS

represent SCFS variants.

to deal with the lock files used in this workload. Nonethe-

less, saving a file in this system takes around 1.2 s, which

is acceptable from the usability point of view. A much

slower behavior is observed in the SCFS-*-B variants,

where the creation of a lock file makes the system block

waiting for this small file to be pushed to the clouds.

We observed that most of these operations’ latency

comes from the manipulation of lock files. However, these

files do not need to be stored in the SCFS partition, since

the locking service already prevents write-write conflicts

between concurrent clients. We modified the benchmark

to represent an application that writes lock files locally (in

/tmp), just to avoid conflicts between applications in the

same machine. The (L) variants of Figure 8 present results

with such local lock files. These results show that remov-

ing the lock files makes the cloud-backed system much

more responsive. The takeaway here is that the usability

of blocking cloud-backed file systems could be substan-

tially improved if applications take into consideration the

limitations of accessing remote services.

Sharing files. Personal cloud storage services are of-

ten used for sharing files in a controlled and convenient

way [18]. We designed an experiment for comparing

the time it takes for a shared file written by a client to

be available for reading by another client, using SCFS-

*-{NB,B}. We did the same experiment considering a

Dropbox shared folder (creating random files to avoid

deduplication). We acknowledge that the Dropbox de-

sign [18] is quite different from SCFS, but we think it is

illustrative to show how a cloud-backed file system com-

pares with a popular file synchronization system.

The experiment considers two clients A and B deployed

in our cluster. We measured the elapsed time between the
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Figure 9: Sharing file 50th and 90th latency for SCFS (CoC B

and NB, AWS B and NB) and Dropbox for different file sizes.

instant client A closes a variable-size file that it wrote to a

shared folder and the instant it receives an UDP ACK from

client B informing the file was available. Clients A and B

are Java programs running in the same LAN, with a ping

latency of around 0.2 milliseconds, which is negligible

considering the latencies of reading and writing. Figure 9

shows the results of this experiment for different file sizes.

The results show that the latency of sharing in SCFS-*-

B is much smaller than what people experience in current

personal storage services. These results do not consider

the benefits of deduplication, which SCFS currently does

not support. However, if a user encrypts its critical files

locally before storing them in Dropbox, the effectiveness

of deduplication will be decreased significantly.

Figure 9 also shows that the latency of the blocking

SCFS is much smaller than the non-blocking version with

both AWS and CoC backends. This is explained by the

fact that the SCFS-*-B waits for the file write to complete

before returning to the application, making the benchmark

measure only the delay of reading the file. This illustrates

the benefits of SCFS-*-B: when A completes its file clos-

ing, it knows the data is available to any other client the

file is shared with. We think this design can open interest-

ing options for collaborative applications based on SCFS.

4.4 Varying SCFS Parameters
Figure 10 shows some results for two metadata-

intensive micro-benchmarks (copy and create files) for

SCFS-CoC-NB with different metadata cache expiration

times and percentages of files in private name spaces.

As described in §2.5.1, we implemented a short-lived

metadata cache to deal with bursts of metadata access op-

erations (e.g., stat). All previous experiments used an

expiration time of 500 ms for this cache. Figure 10(a)

shows how changing this value affects the performance of

the system. The results clearly indicate that not using such

metadata cache (expiration time equals zero) severely de-

grades the system performance. However, beyond some
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Figure 10: Effect of metadata cache expiration time (ms) and

PNSs with different file sharing percentages in two metadata in-

tensive micro-benchmarks.

point, increasing it does not bring much benefit either.

Figure 10(b) displays the latency of the same bench-

marks considering the use of PNS (see §2.7) with dif-

ferent percentages of files shared between more than one

user. Recall that all previous results consider full-sharing

(100%), without using PNS, which is a worst case sce-

nario. As expected, the results show that as the number

of private files increases, the performance of the system

improves. For instance, when only 25% of the files are

shared – more than what was observed in the most recent

study we are aware of [30] – the latency of the bench-

marks decreases by a factor of roughly 2.5 (create files)

and 3.5 (copy files).

4.5 SCFS Operational Costs
Figure 11 shows the costs associated with operating and

using SCFS. The fixed operational costs of SCFS com-

prise mainly the maintenance of the coordination service

running in one or more VMs deployed in cloud providers.

Figure 11(a) considers two instance sizes (as defined in

Amazon EC2) and the price of renting one or four of them

in AWS or in the CoC (one VM of similar size for each

provider), together with the expected memory capacity (in

number of 1KB-metadata tuples) of such DepSpace setup.

As can be seen in the figure, a setup with four Large in-

stances would cost less than $1200 in the CoC per month

while a similar setup in EC2 would cost $749. This differ-

ence of $451 can be seen as the operational cost of tolerat-

ing provider failures in our SCFS setup, and comes mainly

from the fact that Rackspace and Elastichosts charge al-

most 100% more than EC2 and Azure for similar VM in-

stances. Moreover, such costs can be factored among the

users of the system, e.g., for one dollar per month, 2300

users can have a SCFS-CoC setup with Extra Large repli-

cas for the coordination service. Finally, it is worth to

mention that this fixed cost can be eliminated if the orga-

nization using SCFS hosts the coordination service in its

own infrastructure.

Besides the fixed operating costs, each SCFS user has

to pay for its usage (executed operations and storage

space) of the file system. Figure 11(b) presents the cost

of reading a file (open for read, read whole file and close)

and writing a file (open for write, write the whole file,
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VM Instance EC2 EC2×4 CoC Capacity

Large $6.24 $24.96 $39.60 7M files

Extra Large $12.96 $51.84 $77.04 15M files
(a) Operational costs/day and expected coordination service capacity.
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Figure 11: The (fixed) operational and (variable) usage costs

of SCFS. The costs include outbound traffic generated by the

coordination service protocol for metadata tuples of 1KB.

close) in SCFS-CoC and SCFS-AWS (S3FS and S3QL

will have similar costs). The cost of reading a file is the

only one that depends on the size of data, since providers

charge around $0.12 per GB of outbound traffic, while in-

bound traffic is free. Besides that, there is also the cost

of the getMetadata operation, used for cache valida-

tion, which is 11.32 microdollars (µ$). This corresponds

to the total cost of reading a cached file. The cost of writ-

ing is composed by metadata and lock service operations

(see Figure 4), since inbound traffic is free. Notice that

the design of SCFS exploits these two points: unmodified

data is read locally and always written to the cloud for

maximum durability.

Storage costs in SCFS are charged per number of files

and versions stored in the system. Figure 11(c) shows

the cost/version/day in SCFS-AWS and SCFS-CoC (con-

sidering the use of erasure codes and preferred quo-

rums [12]). The storage costs of SCFS-CoC are roughly

50% more than of SCFS-AWS: two clouds store the half

of the file each while a third receives an extra block gen-

erated with the erasure code (the fourth cloud is not used).

It is also worth to mention that the cost of running the

garbage collector corresponds to the cost of a list opera-

tion in each cloud (≤ µ$1/cloud), independently of the

number of deleted files/versions. This happens because

all used clouds do not charge delete operations.

5 Related Work

The literature about distributed file systems is vast and

rich. In this section we discuss only a subset of the works

we think are most relevant to SCFS.

Cloud-backed file systems. S3FS [5] and S3QL [6]

are two examples of cloud-backed file systems. Both

these systems use unmodified cloud storage services (e.g.,

Amazon S3) as their backend storage. S3FS employs a

blocking strategy in which every update on a file only re-

turns when the file is written to the cloud, while S3QL

writes the data locally and later pushes it to the cloud.

An interesting design is implemented by BlueSky [36],

another cloud-backed file system that can use cloud stor-

age services as a storage backend. BlueSky provides a

CIFS/NFS proxy (just as several commercially available

cloud storage gateways) to aggregate writings in log seg-

ments that are pushed to the cloud in background, im-

plementing thus a kind of log-structured cloud-backed

file system. These systems differ from SCFS in many

ways (see Figure 1), but mostly regarding their lack of

controlled sharing support for geographically dispersed

clients and dependency of a single cloud provider.

Cloud-of-clouds storage. The use of multiple (unmod-

ified) cloud storage services for data archival was first

described in RACS [8]. The idea is to use RAID-like

techniques to store encoded data in several providers to

avoid vendor lock-in problems, something already done

in the past, but requiring server code in the providers [28].

DepSky [12] integrates such techniques with secret shar-

ing and Byzantine quorum protocols to implement single-

writer registers tolerating arbitrary faults of storage

providers. ICStore [11] showed it is also possible to

build multi-writer registers with additional communica-

tion steps and tolerating only unavailability of providers.

The main difference between these works and SCFS(-

CoC) is the fact they provide a basic storage abstraction (a

register), not a complete file system. Moreover, they pro-

vide strong consistency only if the underlying clouds pro-

vide it, while SCFS uses a consistency anchor (a coordi-

nation service) for providing strong consistency indepen-

dently of the guarantees provided by the storage clouds.

Wide-area file systems. Starting with AFS [26], many

file systems were designed for geographically dispersed

locations. AFS introduced the idea of copying whole files

from the servers to the local cache and making file updates

visible only after the file is closed. SCFS adapts both these

features for a cloud-backed scenario.

File systems like Oceanstore [29], Farsite [9] and

WheelFS [33] use a small and fixed set of nodes as lock-

ing and metadata/index service (usually made consistent

using Paxos-like protocols). Similarly, SCFS requires

a small amount of computing nodes to run a coordina-

tion service and simple extensions would allow SCFS

to use multiple coordination services, each one dealing

with a subtree of the namespace (improving its scal-

ability) [9]. Moreover, both Oceanstore [29] and Far-

site [9] use PBFT [16] for implementing their metadata

service, which makes SCFS-CoC superficially similar to

their design: a limited number of nodes running a BFT

state machine replication algorithm to support a meta-

data/coordination service and a large pool of untrusted

storage nodes that archive data. However, on the contrary

of these systems, SCFS requires few “explicit” servers,

11



and only for coordination, since the storage nodes are re-

placed by cloud services like Amazon S3. Furthermore,

these systems do not target controlled sharing of files and

strong consistency, using thus long-term leases and weak

cache coherence protocols. Finally, a distinctive feature

of SCFS is that its design explicitly exploit the charging

model of cloud providers.

6 Conclusions

SCFS is a cloud-backed file system that can be used

for backup, disaster recovery and controlled file sharing,

even without requiring trust on any single cloud provider.

We built a prototype and evaluated it against other cloud-

backed file systems and a file synchronization service,

showing that, despite the costs of strong consistency, the

design is practical and offer control of a set of tradeoffs

related with security, consistency and cost-efficiency.
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