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ABSTRACT

We prove a variant of Sch’nol’s theorem in a general setting: for generators

of strongly local Dirichlet forms perturbed by measures.

As an application, we discuss quantum graphs with δ- or Kirchhoff

boundary conditions.

Introduction

The behavior of solutions to elliptic partial differential equations and its inter-

play with spectral properties of the associated partial differential operators is a

topic of fundamental interest. Our knowledge today is in many aspects based

on groundbreaking work by Shmuel Agmon (cf. [1, 2, 3, 4, 5, 6]) to whom this

article is dedicated with great admiration and gratitude. Here we explore the

well-known classical fact that the spectral values of Schrödinger operators H

can be characterized in terms of the existence of appropriate “generalized eigen-

functions” or “eigensolutions.” One part of this characterization is Sch’nol’s
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theorem stating that existence of an eigensolution of Hu = λu “with enough

decay” guarantees λ ∈ σ(H). We refer to the original result [32] by Sch’nol

from 1957 that was rediscovered by Simon [34], as well as the discussion in [15].

Clearly, if u ∈ D(H) then λ is an eigenvalue. But much less restrictive growth

conditions suffice to construct a Weyl sequence from u by a cut-off procedure.

One of the main objectives of the present paper is to provide a proof along these

lines for a great variety of operators. In our framework, the principal part H0 of

H is the selfadjoint operator associated with a strongly local regular Dirichlet

form E and H = H0+µ with a measure perturbation. This includes Schrödinger

operators on manifolds and open subsets of Euclidean space, but much more

singular coefficients are included. In our general Sch’nol’s theorem potentials in

L1
loc with form small negative and arbitrary positive part are included, thereby

generalizing results that require some Kato class condition. The appropriate

“decay assumption” on u that is necessary can roughly be called subexponential

growth and is phrased in terms of conditions like

‖uχB(x0,rn+δ)‖

‖uχB(x0,rn)‖
→ 1 for some rn → ∞

and some fixed δ > 0. Here, χM is the characteristic function of M and B(p, s)

denotes the closed ball in the intrinsic metric around p with radius s. A precise

definition of the intrinsic metric is given below.

For uniformly bounded and strictly elliptic divergence form operators, one

recovers the usual Euclidean balls.

It is interesting to note that we use a form analogue to Weyl sequences that

enables us to treat partial differential operators with singular coefficients. Of

course, the usual calculations of H(ηu) for a smooth cut-off function η fail in the

present general context. This holds for operators in divergence form with non-

differentiable coefficients; and, to our knowledge, there does not exist Sch’nol’s

Theorem for this context in the literature. The calculations for ηu referred to

above have to be replaced by calculations with the corresponding forms. The

crucial object in that respect is the energy measure of a strongly local Dirich-

let form that supplies one with a calculus reminiscent of gradients. This leads

to our version of Sch’nol’s theorem, Theorem 4.4 below (one of the main results

of the present paper). Apart from its generality it is also pretty simple concep-

tually. One step in this concept is a new version of the Caccioppoli inequality,

Theorem 3.1 below. For the unperturbed operator H0 such an inequality can
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be found in [12]. Our variant here, including measure perturbations, might be

of interest in its own right.

1. Assumptions and basic properties

Dirichlet forms. Throughout, we will work with a locally compact, separable

metric space X endowed with a positive Radon measure m with suppm = X .

Our exposition here follows closely along the same lines as those in [12, 40]. We

refer to [18] as the classical standard reference as well as [13, 19, 30, 16] for

literature on Dirichlet forms. Let us emphasize that in contrast to most of the

work done on Dirichlet forms, we treat real and complex function spaces at the

same time and write K to denote either R or C.

The central object of our studies is a regular Dirichlet form E with domain

D in L2(X) and the selfadjoint operator H0 associated with E . This means

that D ⊂ L2(X,m) is a dense subspace, E : D×D → K is sesquilinear and D is

closed with respect to the energy norm ‖ · ‖E , given by

‖u‖2
E = E(u, u) + ‖u‖2

L2(X,m),

in which case one speaks of a closed form in L2(X,m). In the sequel we write

E(u) := E(u, u).

The unique selfadjoint operator H0 associated with E is then characterized by

D(H0) ⊂ D and E(f, v) = (H0f | v) (f ∈ D(H0), v ∈ D).

Such a closed form is said to be a Dirichlet form if D is stable under certain

pointwise operations; more precisely, T : K → K is called a normal contrac-

tion if T (0) = 0 and |T (ξ) − T (ζ)| ≤ |ξ − ζ| for any ξ, ζ ∈ K and we require

that for any u ∈ D also

T ◦ u ∈ D and E(T ◦ u) ≤ E(u).

Here we used the original condition from [11] that applies in the real and the

complex case at the same time. Nowadays, particularly in the real case, it is

mostly expressed in an equivalent but formally weaker statement involving u∨0

and u ∧ 1, see [18, Thm. 1.4.1] and [30, Section I.4].

A Dirichlet form is called regular if D∩Cc(X) is dense both in (D, ‖·‖E) and

(Cc(X), ‖ · ‖∞), where Cc(X) denotes the space of continuous functions with

compact support.
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Strong locality and the energy measure. E is called strongly local if

E(u, v) = 0

whenever u is constant a.s. on the support of v.

The typical example one should keep in mind is the Laplacian

H0 = −∆ on L2(Ω), Ω ⊂ R
d open,

in which case

D = W 1,2
0 (Ω) and E(u, v) =

∫

Ω

(∇u|∇v)dx.

Now we turn to an important notion generalizing the measure (∇u|∇v)dx ap-

pearing above.

In fact, every strongly local, regular Dirichlet form E can be represented in

the form

E(u, v) =

∫

X

dΓ(u, v),

where Γ is a nonnegative sesquilinear mapping from D×D to the set of K-valued

Radon measures on X . It is determined by
∫

X

φdΓ(u, u) = E(u, φu) −
1

2
E(u2, φ)

and called energy measure; see [13]. The energy measure satisfies the Leibniz

rule,

dΓ(u · v, w) = udΓ(v, w) + vdΓ(u,w),

as well as the chain rule

dΓ(η(u), w) = η′(u)dΓ(u,w).

One can even insert functions from Dloc into dΓ, where

Dloc := {u ∈ L2
loc such that φu ∈ D for all φ ∈ D ∩ Cc(X)},

as is readily seen from the following important property of the energy measure,

strong locality:

Let U be an open set in X on which the function η ∈ Dloc is constant, then

(1) χUdΓ(η, u) = 0,

for any u ∈ D. This, in turn, is a consequence of the strong locality of E and in

fact equivalent to the validity of the Leibniz rule.
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We write dΓ(u) := dΓ(u, u) and note that the energy measure satisfies the

Cauchy-Schwarz inequality:

∫

X

|fg|d|Γ(u, v)| ≤

(
∫

X

|f |2dΓ(u)

)1/2( ∫

X

|g|2dΓ(v)

)1/2

≤
1

2

∫

X

|f |2dΓ(u) +
1

2

∫

X

|g|2dΓ(v).

The intrinsic metric. Using the energy measure one can define the intrinsic

metric ρ by

ρ(x, y) = sup{|u(x) − u(y)| : u ∈ Dloc ∩ C(X) and dΓ(u) ≤ dm}

where the latter condition signifies that Γ(u) is absolutely continuous with re-

spect tom and the Radon-Nikodym derivative is bounded by 1 onX . In general,

ρ need not be a metric. (See the Appendix for a discussion of the finiteness of

the sup.) However, here we will mostly rely on the following

Assumption 1.1: The intrinsic metric ρ induces the original topology on X .

We denote the intrinsic balls by

B(x, r) := {y ∈ X : ρ(x, y) ≤ r}.

An important consequence of the latter assumption is that the distance function

ρx(·) := ρ(x, ·) itself is a function in Dloc with dΓ(ρx) ≤ dm, see [40]. This

easily extends to the fact that for every closed E ⊂ X the function ρE(x) :=

inf{ρ(x, y) : y ∈ E} enjoys the same properties (see the Appendix). This

has a very important consequence. Whenever ζ : R −→ R is continuously

differentiable, and η := ζ ◦ ρE , then η belongs to Dloc and satisfies

(2) dΓ(η) = (ζ′ ◦ ρE)2dΓ(ρE) ≤ (ζ′ ◦ ρE)2dm.

Measure perturbations. We will be dealing with Schrödinger type opera-

tors, i.e., perturbations H = H0 + V for suitable potentials V . In fact, we can

even include measures as potentials. Here we follow the approach from [36, 37].

Measure perturbations have been regarded by a number of authors in different

contexts; see, e.g., [8, 20, 38] and the references there. To set up the frame-

work, we first recall that every regular Dirichlet form E defines a set function,

the capacity, in the following way:

cap(U) := inf{E(φ) + ‖φ‖2 : φ ∈ D ∩ Cc(X), φ ≥ χU}
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for open U and

cap(B) := inf{cap(U) : B ⊂ U, U open}.

It is clear that the capacity of a set B is bounded below by its measure m(B).

In most cases of interest, the capacity is larger and allows a finer distinction of

sets. For example, for the classical Dirichlet form in one dimension, even a single

point has positive capacity. We say that a property holds quasi-everywhere, q.e.

for short, if it holds outside a set of capacity zero. We call a function g quasi-

continuous if, for every ε > 0 there is an open set U ⊂ X of capacity at most

ε such that g is continuous on the complement X \ U . Every element u ∈ D

admits a quasi-continuous representative ũ. Most of the times we will be sloppy

in our notation and just identify u with a quasi-continuous representative.

We denote by M0 the set of nonnegative measures µ : B → [0,∞] that do

not charge sets of capacity 0, i.e., those measures with µ(B) = 0 for every set B

with cap(B) = 0. Here B denotes the Borel subsets of X and we stress the fact

that we do not assume our measures to be locally finite. Besides examples of

the form V dm, where V is nonnegative and measurable, we should also mention

the measure ∞B, for a given B ⊂ X , defined by ∞B(M) = ∞ · cap(B ∩M)

with the usual convention ∞ · 0 = 0. For such a measure µ+ ∈ M0,

D(E + µ+) := {u ∈ D : ũ ∈ L2(X,µ+)},

(E + µ+)(u, v) := E(u, v) +

∫

X

ũṽdµ+

defines a closed form (not necessarily densely defined). We will use the notation

µ+(u, v) for the integral in the above formula. It is well-defined since quasi-

continuous versions of the same element in D agree q.e. and so give the same

integrals as the measure does not charge sets of capacity zero. The selfadjoint

operator on the closure (in L2(X, dm)) of D(E + µ+) associated with the form

E + µ+ is denoted by H0 + µ+. A little more restriction is needed for negative

perturbations. We call µ− admissible, if

D(E − µ−) := D,

(E − µ−)(u, v) := E(u, v) − µ−(u, v)

defines a semibounded closed form. Note that by regularity this implies that

µ− is a Radon measure in the sense that it is finite on relatively compact sets.

For an admissible µ− and µ+ ∈ M0 the definition of E + µ+ − µ− and the

associated operator H = H0 + µ = H0 + µ+ − µ− is obvious. To get better
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properties of these operators we sometimes have to rely upon more restrictive

assumptions concerning the negative part µ− of our measure perturbation. We

write M1 for those measures µ that are E-bounded with bound less than one;

i.e., measures for which there is a κ < 1 and a cκ such that

µ(u, u) ≤ κE(u) + cκ‖u‖
2.

By the KLMN theorem (see [31, p. 167]) these measures are admissible. An

important class with very nice properties of the associated operators is the

Kato class and the extended Kato class. In the present framework it can be

defined in the following way: For µ ∈ M0 and α > 0 we set

Φ(µ, α) : Cc(X)+ → [0,∞],

Φ(µ, α)ϕ :=

∫

X

(

(H0 + α)−1ϕ
)

˜dµ.

The extended Kato class is defined as

ŜK := {µ ∈ M0|∃α > 0 : Φ(µ, α) ∈ L1(X,m)′}

and, for µ ∈ ŜK and α > 0,

cα(µ) := ‖Φ(µ, α)‖L∞(X,m)(= ‖Φ(µ, α)‖L1(X,m)′), cKato(µ) := inf
α>0

cα(µ).

Generalized eigenfunctions. As usual an element u ∈ Dloc is called a

generalized eigenfunction for H or weak solution to the eigenvalue λ if

E(u, v) + µ(u, v) = λ(u, v)

for all v ∈ D with compact support.

2. A Weyl type criterion

We include the following criterion for completeness; see [35, Lemma 1.4.4].

Proposition 2.1: Let h be a closed, semibounded form and H the associated

selfadjoint operator. Then the following assertions are equivalent:

(i) λ ∈ σ(H).

(ii) There exists a sequence (un) in D(h) with ‖un‖ → 1 and

sup
v∈D(h),‖v‖h≤1

|(h− λ)[un, v]| → 0,

for n→ ∞.
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Proof. (i)=⇒(ii): Choose a Weyl type sequence (un) if λ ∈ σess(H) and un = u

if there is a normalized eigenvector u ∈ D(H).

(ii)=⇒(i): This is proven by contradiction. Assume λ ∈ ρ(H). Then,

sup
n∈N

‖(H − λ)−1un‖h =: C <∞.

Therefore,

‖un‖
2 = |(h− λ)[un, (H − λ)−1un]| ≤ C sup

v∈D(h),‖v‖h≤1

|(h− λ)[un, v]|

and the latter term tends to zero for n→ ∞, by assumption.

We will produce a suitable sequence (un) as above by a suitable cutoff of

generalized eigenfunctions. Note that to this end it is very convenient that

we do not have to construct elements of the operator domain D(H), a task

that seems almost hopeless in the generality of forms we are aiming at. In

fact, already for divergence form operators with singular coefficients there is no

explicit description of the operator domain and the above criterion is of use in

this important special case.

3. A Caccioppoli type inequality

In this section, we prove a bound on the energy measure of a generalized eigen-

function on a set in terms of bounds on the eigenfunction on certain neighbor-

hood of the set.

We need the following notation: For E ∈ X and b > 0 we define the b-

neighborhood of E as

Bb(E) := {y ∈ X : ρ(y,E) ≤ b}.

Theorem 3.1: Let E be a strongly local regular Dirichlet form satisfying As-

sumption 1.1. Let µ+ ∈ M0 and µ− ∈ M1 be given. Let λ0 ∈ R be given.

Then, there exists C = C(λ0, µ−) such that for any generalized eigenfunctions

u corresponding to an eigenvalue λ ≤ λ0 of H0 + µ the inequality
∫

E

dΓ(u) ≤
C

b2

∫

Bb(E)

|u|2dm

holds for any closed E ⊂ X and any b with 1 > b > 0.

Remark 3.2: The Caccioppoli inequality replaces the familiar commutator esti-

mates that are used for Schrödinger operators.
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We give a proof of the theorem at the end of this section after two auxiliary

propositions.

Proposition 3.3: Let H0 + µ be given as in the theorem and u a generalized

eigenfunction to the eigenvalue λ. Let η ∈ D, η real valued, be arbitrary. Then,

∫

η2dΓ(u) = (λ− µ)(|ηu|2) − 2

∫

η u dΓ(η, u).

Proof. A direct calculation invoking Leibniz rule and the chain rule gives
∫

η2dΓ(u) =

∫

dΓ(u, η2u) −

∫

udΓ(u, η2)

=

∫

dΓ(u, η2u) − 2

∫

uηdΓ(u, η)

= E(u, η2u) − 2

∫

uηdΓ(u, η)

= (h− λ)(u, η2u) + (λ− µ)(|ηu|2) − 2

∫

u η dΓ(u, η).

As u is a generalized eigenfunction, the statement follows.

Proposition 3.4: Let u, η ∈ D, η real valued, be given. Then,

E(ηu) =

∫

η2dΓ(u) +

∫

|u|2dΓ(η) + 2

∫

ηudΓ(u, η).

Proof. This is a direct calculation.

We can now give the

Proof of Theorem 3.1. Let ω = ρE and ζ : [0,∞) −→ [0, 1] be continuously

differentiable with ζ(0) = 1, ζ ≡ 0 on [b,∞] and |ζ′(t)| ≤ 2/b for every t ∈

[0,∞). Set η := ζ ◦ ω. Of course,

∫

E

dΓ(u) ≤

∫

η2dΓ(u).

The main idea is now to use the previous two propositions to estimate
∫

η2dΓ(u)

by terms of the form
∫

|u|2dΓ(η) and then to appeal to (2).

By assumption on µ−, there exists q < 1 and Cq ≥ 0 with

∫

ϕ2dµ− ≤ qE(ϕ) + Cq‖ϕ‖
2
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for all ϕ ∈ D. As λ ≤ λ0, this yields

(λ− µ)(|ηu|2) ≤ λ

∫

η2|u|2dm+

∫

η2|u|2dµ−

≤ λ0‖ηu‖
2 + qE(ηu) + Cq‖ηu‖

2

≤ qE(ηu) + (λ0 + Cq)‖ηu‖
2.

Combining this with Proposition 3.3 we obtain
∫

η2dΓ(u) ≤ qE(ηu) + (λ0 + Cq)‖ηu‖
2 − 2

∫

ηudΓ(u, η).

Invoking Proposition 3.4, we obtain

∫

η2dΓ(u) ≤ q

∫

η2dΓ(u) + q

∫

|u|2dΓ(η) + (λ0 + Cq)‖ηu‖
2

+ 2(q − 1)

∫

ηudΓ(u, η).

Application of Cauchy-Schwarz inequality to the last term yields
∫

η2dΓ(u) ≤q

∫

η2dΓ(u) + q

∫

|u|2dΓ(η) + (λ0 + Cq)‖ηu‖
2

+
1 − q

S2

∫

|u|2dΓ(η) + S2(1 − q)

∫

η2dΓ(u)

for any S > 0. Hence

(1 − q − S2(1 − q))

∫

η2dΓ(u) ≤
(

q +
(1 − q)

S2

)

∫

|u|2dΓ(η) + (λ0 + Cq)‖ηu‖
2

for any S > 0. As q < 1 and S > 0 is arbitrary, the statement follows with the

help of (2). This finishes the proof.

4. A Sch’nol type result

In this section, we first prove an abstract Sch’nol type result. We need the

following notation. For E ∈ X and b > 0 we define the b-collar of E as

Ab(E) := {y ∈ X : ρ(y,E) ≤ b and ρ(y,Ec) ≤ b}.

Proposition 4.1: Let E be a strongly local regular Dirichlet form satisfying

Assumption 1.1. Let µ+ ∈ M0 and µ− ∈ M1 be given. Let λ ∈ R with
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generalized eigenfunction u be given. If there exists b > 0 and a sequence (En)

of closed subsets of X with

‖uχA3b(En)‖

‖uχEn
‖

−→ 0, n −→ 0,

then λ belongs to σ(H).

Proof. Let ζ : [0,∞) −→ [0, 1] be continuously differentiable, with ζ(0) = 1,

ζ ≡ 0 on [b,∞) and |ζ′| ≤ 2/b. Let ωn := ρEn
and ηn := ζ ◦ ωn. Let un :=

η2
nu/‖η

2
nu‖. We show that (un) satisfies the assumption of Proposition 2.1: Let

v ∈ E be arbitrary. A direct calculation involving Leibniz rule gives
∫

dΓ(ηu, v) =

∫

dΓ(u, ηv) +

∫

udΓ(η, v) −

∫

vdΓ(u, η)

for all η ∈ D, which are real valued. This yields

(h− λ)[un, v] =
1

‖η2
nu‖

(
∫

dΓ(η2
nu, v) + (µ− λ)(η2

nuv)

)

=
1

‖η2
nu‖

(
∫

dΓ(u, η2
nv) +

∫

udΓ(η2
n, v)

−

∫

vdΓ(u, η2
n) + (µ− λ)(η2

nuv)

)

=
1

‖η2
nu‖

(
∫

udΓ(η2
n, v) −

∫

vdΓ(u, η2
n)

)

=
2

‖η2
nu‖

(
∫

uηndΓ(ηn, v) −

∫

vηndΓ(u, ηn)

)

where we used in the previous to the last step that u is a generalized eigenfunc-

tion. Cauchy-Schwarz now gives

|(h− λ)[un, v]|

≤
2

‖η2
nu‖

((
∫

|u|2dΓ(ηn)

)1/2( ∫

η2
ndΓ(v)

)1/2

+

∣

∣

∣

∣

∫

ηnvdΓ(u, ηn)

∣

∣

∣

∣

)

.

We will estimate the three terms on the right hand side.

As ηn is constant outside of Ab(En) we obtain from locality and (2)

∫

|u|2dΓ(ηn) =

∫

A2b(En)

|u|2dΓ(ηn) ≤
4

b2
‖χA2b(En)u‖

2.
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As for the second term, due to 0 ≤ ηn ≤ 1, we easily find
∫

η2
ndΓ(v) ≤

∫

dΓ(v) = E(v) = const.

We now come to the last term. As ηn is constant outside of Ab(En), locality

again gives

∣

∣

∣

∣

∫

ηnvdΓ(u, ηn)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A2b(En)

ηnvdΓ(u, ηn)

∣

∣

∣

∣

.

By Cauchy-Schwarz this can be estimated by
(

∫

A2b(En)

η2
ndΓ(u)

)1/2( ∫

A2b(En)

v2dΓ(ηn)

)1/2

.

By (2) we can estimate
∫

A2b(En) v
2dΓ(ηn) by 4/b2‖v‖2. By Theorem 3.1 and

for 0 ≤ ηn ≤ 1, we can estimate
(

∫

A2b(En)

η2
ndΓ(u)

)1/2

≤

(
∫

A2b(En)

dΓ(u)

)1/2

≤

(

C

b2

∫

A3b(En)

|u|2dm

)1/2

.

Putting these estimates together shows that there exists c > 0 such that

|(h− λ)[un, v]| ≤ c
‖uχA3b(En)‖

‖χEn
u‖

for all n ∈ N. As the right hand side tends to zero by our assumption, so does

the left hand side and Proposition 2.1 gives the desired result.

We will now specialize our considerations to subexponentially bounded eigen-

functions. We start with a piece of notation and two auxiliary lemmas.

A function J : [0,∞) −→ [0,∞) is said to be subexponentially bounded if

for any α > 0 there exists a Cα ≥ 0 with J(r) ≤ Cα exp(αr) for all r > 0.

A function f on a pseudo metric space (X, ρ) with measures m is said to be

subexponentially bounded if for some x0 ∈ X and ω(x) = ρ(x0, x) the function

e−αωu belongs to L2(X,m) for any α > 0.

Lemma 4.2: Let J : [0,∞) −→ [0,∞) be subexponentially bounded. Let b > 0

be arbitrary. Then, for any δ > 0 there exists an arbitrarily large r > 0 such

that J(r + b) ≤ eδJ(r).

Proof. Assume not. Then, there exists an R0 ≥ 0 with

J(r + b) > eδJ(r)



Vol. 173, 2009 SCH’NOL’S THEOREM 201

for all r ≥ R0. Induction then shows

J(R0 + nb) > enδJ(R0)

for any n ∈ N. This gives a contradiction to the bounds on J for α > 0 with

αb < δ and large n.

Lemma 4.3: Let (X, ρ) be a (pseudo)metric space, m a measure on X , x0 ∈ X

arbitrary and ω(x) = ρ(x0, x), Br := Br(x0). Let u : X −→ C be subexponen-

tially bounded. Define

J : [0,∞) −→ [0,∞), J(r) :=

∫

Br

|u|2dm.

Then, J is subexponentially bounded.

Proof. For all α > 0, we find

J(r) =

∫

Br

|u|2dm =

∫

Br

|eαωe−αωu|2dm

=

∫

Br

e2αω|e−αωu|2dm

≤ e2αr
∫

Br

|e−αωu|2dm

≤ ‖e−αωu‖2e2αr.

This proves the lemma.

Theorem 4.4: Let E be a strongly local regular Dirichlet form satisfying As-

sumption 1.1., x0 ∈ X arbitrary and ω(x) = ρ(x0, x). Let µ+ ∈ M0 and

µ− ∈ M1 be given. Let u be a generalized eigenfunction which is subexpo-

nentially bounded, i.e., e−αωu ∈ L2(X,m) for any α > 0. Then, λ belongs to

σ(H).

Proof. As u is subexponentially growing, the function

J(r) :=

∫

Br

|u|2dm

is subexponentially bounded by the previous lemma. By Lemma 4.2, we are able

to then choose b > 0 and find a sequence (rn) with rn → ∞ and

J(rn + 3b)/J(rn − 3b) −→ 1, n → ∞. As J is monotonously increasing this
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easily gives

J(rn + 3b)− J(rn − 3b)

J(rn)
−→ 0, n −→ ∞.

Thus, u satisfies the assumption of Proposition 4.1 with En = Brn
and the

statement follows.

Let us now briefly discuss a converse of Sch’nol’s Theorem as found in [14].

We need the following additional properties of the intrinsic geometry:

Assumption 4.5: For each t > 0 the semigroup e−tH0 gives a map from L2(X)

to L∞(X) and all intrinsic balls have finite volume with subexponential growth:

e−α·Rm(B(x,R)) → 0 as R → ∞ for all x ∈ X,α > 0.

With this assumption, [14, Corollary 3.1] gives:

Theorem 4.6: Let E be a strongly local regular Dirichlet form satisfying As-

sumptions 1.1 and 4.5. Let µ = µ+ − µ− with µ+ ∈ M0 and µ− ∈ ŜK with

cKato(µ) < 1. Define H := H0 + µ. Then for spectrally a.e. λ ∈ σ(H) there is a

subexponentially bounded generalized eigenfunction u 6= 0 with Hu = λu.

Thus, together with Theorem 4.4, we get the following characterization of the

spectrum:

Corollary 4.7: Let E be a strongly local regular Dirichlet form satisfying

Assumptions 1.1 and 4.5. Let µ = µ+ − µ− with µ+ ∈ M0 and µ− ∈ ŜK

with cKato(µ) < 1. Define H := H0 + µ. Then the spectral measures of H are

supported on

{λ ∈ R : ∃ subexponentially bounded u with Hu = λu}.

Remark 4.8: (1) Expansion in generalized eigenfunctions is a classical issue.

We refer the reader to [9, 10] and the literature quoted in [14] for a different

strategy.

(2) There is a number of results stating that the L2-spectrum of Schrödinger

type operators coincides with the Lp-spectra for all p. See, e.g. [21, 33, 39].

Of course, such a statement readily implies that every bounded generalized

eigenfunction contributes to the spectrum.
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5. Application: Metric and Quantum Graphs

We now introduce a class of examples that has attracted considerable interest

in the physics as well as in the mathematical literature. We refer the reader to

[7, 22, 26, 27, 28, 17, 23, 24, 25] and the references therein. Although different

levels of generality and very different ways of notation can be found in the

literature, the basic idea is the same: a metric graph consists of line segments

– edges – that are glued together at vertices. In contrast to combinatorial

graphs, these line segments are regarded as differentiable manifolds and in fact

one is interested in the Laplacian on the union of the line segments. To get

a self adjoint operator one has to specify boundary conditions at the vertices.

More precisely, we work with the following

Definition 5.1: A metric graph is Γ = (E, V, i, j) where

• E (edges) is a countable family of open intervals (0, l(e)) and V (ver-

tices) is a countable set.

• i : E → V defines the initial point of an edge and

j : {e ∈ E : l(e) <∞} → V

the end point for edges of finite length.

We let Xe := {e} × e, X = XΓ = V ∪
⋃

e∈E Xe and Xe := Xe ∪ {i(e), j(e)}.

Note that Xe is basically just the interval (0, l(e)), the first component is

added to force the Xe’s to be mutually disjoint. The topology on X will be such

that the mapping πe : Xe → (0, l(e)), (e, t) 7→ t extends to a homeomorphism

again denoted by πe : Xe → (0, l(e)) that satisfies πe(i(e)) = 0 and πe(j(e)) =

l(e) (the latter is satisfied in case that l(e) < ∞). To define a metric structure

onX we proceed as follows: we say that p ∈ XN is a good polygon if, for every

k ∈ {1, . . . , N − 1} there is a unique edge e ∈ E such that {xk, xk+1} ⊂ Xe.

Using the usual distance in [0, l(e)] we get a distance d on Xe and define

L(p) =
N−1
∑

k=1

d(xk, xk+1).

Since multiple edges are, obviously, allowed, we had to restrict our attention

to good polygons to exclude the case that {xk, xk+1} are joined by edges of

different length. Provided the graph is connected and that the degree of every
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vertex v ∈ V is

dv := |{e ∈ E : v ∈ {i(e), j(e)}| <∞,

a metric on X is given by

d(x, y) := inf{L(p) : p a good polygon with x0 = x and xN = y}.

In fact, symmetry and triangle inequality are evident and the separation of

points follows from the finiteness. Clearly, with the topology induced by that

metric, X is a locally compact, separable metric space. Note that in our setting

we do allow loops, multiple edges and there is no on upper or lower bounds

for the length of edges. In that respect, we allow more general graphs than

those considered in the literature so far. To be able to use the framework of

regular Dirichlet forms, we restrict our attention to certain boundary conditions,

known as Kirchhoff and δ-b.c. The operator with Kirchhoff b.c. is defined as

the operator corresponding to the form

D = D(E) := W 1,2
0 (X), E(u, v) :=

∑

e

(u′e|v
′
e),

where ue := u ◦ π−1
e defined on (0, l(e)),

W 1,2(X) =

{

u ∈ C(X) :
∑

e∈E

‖ue‖
2
W 1,2 =: ‖u‖2

W 1,2 <∞

}

,

W 1,2
0 (X) := W 1,2(X) ∩ C0(X).

Clearly, E is a regular Dirichlet form in L2(X,m), where m is the measure

induced by the image of the Lebesgue measure on each Xe, so that L2(X,m) 3

u 7→ (ue)e∈E ∈
⊕

e∈E L
2((0, l(e)), dt) is unitary.

This form is strongly local with energy measure

dΓ(u, v) =
∑

e∈E

u′e(πe(x))v
′
e(πe(x))dm(x).

We denote by H0 the operator associated with E . Note that every point x ∈ X

has positive capacity by the Sobolev embedding theorem so that every measure

µ : B → [0,∞] belongs to M0.

Corollary 5.2: For E as above, let µ+ : B → [0,∞] and µ− ∈ M1 be

given. Let u 6= 0 be a generalized eigenfunction for H := H0 + µ that is

subexponentially bounded. Then, λ belongs to σ(H).
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Remark 5.3: As mentioned above, µ+ may include arbitrary sums of δ-measures,

in particular δ-measures at points of V for which one gets a quantum graph with

δ-boundary conditions with positive coefficients.

While Sch’nol’s theorem had already been known for quantum graphs [28], the

way to interpret them as Dirichlet forms opens a powerful arsenal of analytic and

probabilistic techniques. Quite a number of results in operator and perturbation

theory have been established in the Dirichlet form setting and can readily be

applied to quantum graphs.

For certain tree graphs an expansion in generalized eigenfunctions has been

given in [22]. In a forthcoming work [29] we will prove that generalized eigen-

function expansions exist for much more general graphs than treated above.

Appendix A. Properties of absolutely continuous elements, the dis-

tance function ρE and all that

Let E be a regular strongly local Dirichlet form with associated energy measure

Γ. In this appendix, we discuss some properties of

A := {u ∈ Dloc : u real valued with dΓ(u) ≤ dm}.

We apply this to show that ρE belongs to A for any closed E ⊂ X (and in fact

for any E ⊂ X) if Assumption 1.1 is statisfied. For E consisting of a single

point this was first shown in [40]. For closed E this seems to be known. It is

stated for example in [41], where a proof is attributed to [40]. As we did not find

the proof there, we could not resist to produce one here. Along the way we will

also reprove the case of a single point. Moreover, we will discuss connectedness

of the space X in terms of the intrinsic metric.

We start by collecting basic properties of A.

Proposition A.1: (a) A is balanced, i.e. convex and closed under multiplica-

tion by −1.

(b) A is closed under taking minima and maxima.

(c) A is closed under adding constants.

(d) A is closed under pointwise convergence of functions, which are uniformly

bounded on compact sets.

Proof. (a) Obviously, A is closed under multiplication by −1. Let u, v ∈ A and

λ, µ ≥ 0 with µ+λ = 1 be given. Set w = λu+µv. Then, for every ϕ ∈ Cc(X)
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we have
∫

ϕ2dΓ(w) = λ2

∫

ϕ2dΓ(u) + 2λµ

∫

ϕ2dΓ(u, v) + µ

∫

ϕ2dΓ(v)

≤ λ2

∫

ϕ2dΓ(u) + 2λµ

(
∫

ϕ2dΓ(u)

∫

ϕ2dΓ(v)

)1/2

+ µ

∫

ϕ2dΓ(v)

≤

∫

ϕ2dm.

As ϕ was arbitrary the statement follows.

(b) As A is closed under multiplication by −1, it suffices to consider minima.

A direct consequence of locality is the truncation property

dΓ(u ∧ v, w) = χ{u<v}dΓ(u,w) + χ{u≥v}dΓ(v, w)

for all u, v, w ∈ Dloc. If w = u ∧ v we obtain

dΓ(u ∧ v, u ∧ v) = χ{u<v}dΓ(u, u) + χ{u≥v}dΓ(v, v).

This shows that A is closed under ∧.

(c) This is obvious.

(d) Let (un) be a sequence in A which converges pointwise to u and is uni-

formly bounded on each compact set. We first show that u belongs to Dloc.

Let ψ ∈ Cc(X) ∩ D be arbitrary. Leibniz rule, Cauchy-Schwarz inequality and

locality of dΓ give

E(ψun) =

∫

dΓ(ψun)

=

∫

ψ2dΓ(un) + 2

∫

ψundΓ(un, ψ) +

∫

u2
ndΓ(ψ)

≤

∫

ψ2dΓ(un) +

∫

u2
ndΓ(ψ) +

∫

ψ2dΓ(un) +

∫

u2
ndΓ(ψ)

≤ 2

∫

ψ2dm+ 2

∫

u2
nχsuppψdΓ(ψ).

The assumptions on (un) show that (E(ψun)) remains bounded. By semicon-

tinuity of E we infer that ψu belongs to D. As ψ ∈ D ∩ Cc(X) is arbitrary, we

obtain u ∈ Dloc.

Let now an arbitrary ϕ ≥ 0 continuous with compact support be given.

Choose ψ ∈ D ∩ Cc(X) with ψ ≡ 1 on the support of ϕ. This is possible as E

is a Dirichlet form. Then, by Banach/Saks theorem, boundedness of (E(ψun))

implies convergence of convex combinations (wk) of the (ψun) with respect to
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the energy norm. By convexity of A, these convex combinations have the form

wk = ψvk with vk ∈ A. As ψun converges to ψu in L2 we infer that the energy

norm limit of the (wk) is also ψu. Locality and convergence of wk = ψvk to uψ

with respect to the energy norm yield
∫

ϕdΓ(u) =

∫

ϕdΓ(ψu) = lim

∫

ϕdΓ(ψvn) = lim

∫

ϕdΓ(vn) ≤

∫

ϕdm.

As ϕ ≥ 0 with compact support is arbitrary, the statement follows.

The previous proposition implies that A is also closed under taking suitable

suprema and infima. This is discussed next.

Lemma A.2: Let F ⊂ A ∩ C(X) be stable under taking maxima (minima). If

u := sup{v : v ∈ F} (u := inf{v : v ∈ F}) is continuous, then u belongs to A.

Proof. By our assumptions on X , there exist compact Kn ⊂ X , n ∈ N, with

X =
⋃

n∈N
Kn and Kn ⊂ K◦

n+1. By (d) of the previous proposition it suffices to

construct un ∈ F with |un − u| ≤ 1/n on Kn for each n ∈ N. This will be done

next: For n ∈ N and x ∈ Kn, we can find vx,n ∈ F with u(x)−1/(2n) ≤ vx,n(x).

By continuity of vx,n and u, there exists then an open neigbourhood Ux,n of x

with

u(y) − 1/n ≤ vx,n(y)

for all y ∈ Ux,n. As Kn is compact, there exist x1, . . . , xl with Kn ⊂
⋃l
j=1 Uxj,n.

As F is closed under taking maxima, the function

un := max{vxj,n : j = 1, . . . , l}

belongs go F . By construction

u(x) − 1/n ≤ un on Kn.

As the inequality un ≤ u is clear, the proof is fnished.

We now turn to the distance function ρ. By definition we have

ρ(x, y) := sup{u(x) − u(y) : u ∈ A ∩ C(X)}.

Direct arguments show that ρ(x, y) is nonnegative, symmetric and satisfies the

triangle inequality. As A ∩ C(X) is closed under adding constants, for each

x ∈ X , the distance function ρx(y) := ρ(x, y) is then given by

ρx(y) := sup{u(y) : u ∈ Fx}
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with Fx = {u ∈ A ∩ C(X) : u(x) = 0}. The following proposition is essentially

contained in [40, p. 191 and p. 194].

Proposition A.3: Assume 1.1. Let x ∈ X be arbitrary. Then,

{y : ρx(y) <∞}

is exactly the connected component of x.

Proof. Set Cx := {y : ρx(y) < ∞}. Of course, all functions which are constant

on each component of X belong to A ∩ C(X). Thus, ρx(y) = ∞ whenever x

and y belong to different components. Thus, Cx is contained in the connected

component of x. We now show the reverse inclusion. To do so it suffices to

show that Cx is both open and closed. By Assumption 1.1 the set Cx is open.

Moreover, if y belongs to X \ Cx, then by

∞ = ρ(x, y) ≤ ρ(y, z) + ρ(z, x)

we obtain that any z ∈ X with ρ(z, y) < 1 belongs to X \ Cx as well. By

Assumption 1.1 again the set of such z is open, and the complement X \ Cx is

shown to be open as well.

Proposition A.4: Assume 1.1. Let x ∈ X be arbitrary and Cx be the con-

nected component of x. Then, χCx
ρx belongs to A ∩C(X).

Proof. It suffices to consider the case that X is connected. By Assumption 1.1

and the previous lemma, ρx is then continuous. As

Fx = {u ∈ A ∩ C(X) : u(x) = 0}

is closed under taking maxima and ρx(y) = sup{u : u ∈ Fx}, the statement

now follows from Lemma A.2.

We now turn to distances from arbitrary sets. For E ⊂ X we define

ρE(z) := inf{ρx(z) : x ∈ E}.

Theorem A.5: Assume 1.1. Let E ⊂ X be arbitrary and let C be the union of

the connected components of the points of E. Then, the function χCρE belongs

to A ∩C(X).

Proof. As C is open and closed it suffices to consider the case C = X . By As-

sumption 1.1 and triangle inequality, the function ρE is continuous. Moreover,
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as discussed above ρx belongs to A∩C(X) for any x ∈ X . The statement now

follows from Lemma A.2.

We note a consequence of the previous theorem.

Corollary A.6: Assume 1.1. For E ⊂ X , the equality

ρE(z) = sup{u(z) : u ∈ FE}

holds, where FE := {v ∈ A ∩ C(X) : v ≡ 0 onE}.

Proof. Denote the supremum in the statement by ρ∗E . As ρx(z) ≥ u(z) for any

u ∈ FE and x ∈ E, we have ρE ≥ ρ∗E . For the converse direction, we note that

ρE belongs FE by the previous theorem.

We finish this section by noting a strong closedness property of A.

Proposition A.7: A is closed under convergence in L2
loc.

Proof. Let K be an arbitrary compact subset of X . As ρx belongs to A for

any x ∈ X , we can find ψ ∈ Cc(X) ∩ A with ψ ≡ 1 on K (take, e.g., ψ :=

max{0, 1
R min{R, 2R − ρx}} for x ∈ K and R large). The proof follows by

mimicking the argument in the proof of Proposition A.1 (d) and using that

dΓ(ψ) ≤ dm.
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Mathématique 23 (1970), 1–25.
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