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Abstract—Feasibility analysis of fixed priority systems has been widely studied in the real-time literature and several acceptance tests

have been proposed to guarantee a set of periodic tasks. They can be divided in two main classes: polynomial time tests and exact

tests. Polynomial time tests can efficiently be used for on-line guarantee of real-time applications, where tasks are activated at runtime.

These tests introduce a negligible overhead, when executed upon a new task arrival, however provide only a sufficient schedulability

condition, which may cause a poor processor utilization. On the other hand, exact tests, which are based on response time analysis,

provide a necessary and sufficient schedulability condition, but are too complex to be executed on line for large task sets. As a

consequence, for large task sets, they are often executed off line. This paper proposes a novel approach for analyzing the

schedulability of periodic task sets on a single processor under an arbitrary fixed priority assignment. Using this approach, we derive a

new schedulability test which can be tuned through a parameter to balance complexity versus acceptance ratio, so that it can be used

on line to better exploit the processor, based on the available computational power. Extensive simulations show that our test, when

used in its exact form, is significantly faster than the current response time analysis methods. Moreover the proposed approach, for its

elegance and compactness, offers an explanation of some known phenomena of fixed priority scheduling and could be helpful for

further work on schedulability analysis.

Index Terms—Real-time systems and embedded, systems analysis and design, fixed priority scheduling.

�

1 INTRODUCTION

FIXED priority scheduling is widely used in modern real-
time systems, since it can be easily implemented on top

of commercial kernels that provide a limited number of
priority levels. One of the most common fixed priority
assignment follows the Rate Monotonic (RM) algorithm,
according to which tasks’ priorities are ordered based on
tasks’ activation rates, so that the task with the shortest
period is assigned the highest priority. In general, however,
there can be particular situations in which task priorities,
although fixed, do not necessarily follow the Rate Mono-
tonic assignment.

Liu and Layland [1] proved that in a uniprocessor system
RM is optimal among all fixed priority schemes, meaning
that, if a task set is not schedulable by RM, then it cannot be
scheduled by any other fixed priority assignment. In the
same paper, the authors also derived a simple guarantee
test to verify the feasibility of a set of n periodic tasks under
RM. Each periodic task �i consists of an infinite sequence of
jobs �ik (k ¼ 1; 2; . . . ), where the first job �i1 is released at
time ri1 ¼ �i (the task phase) and the generic kth job �ik is
released at time rik ¼ �i þ ðk� 1Þ Ti, where Ti is the task
period. Each job is characterized by a worst-case execution
time Ci, a relative deadline Di and an absolute deadline
dik ¼ rik þDi. The ratio Ui ¼ Ci=Ti is called the utilization
factor of task �i and represents the fraction of processor time
used by that task. Finally, the value

Up ¼
Xn
i¼1

Ui

is called the total processor utilization factor and represents
the fraction of processor time used by the periodic task set.
Clearly, if Up > 1 no feasible schedule exists for the task set.

The schedulability condition for RM is derived for a set
�n of n periodic tasks under the assumptions that all tasks
start simultaneously at time t ¼ 0, relative deadlines are
equal to periods and tasks are independent, meaning that
they do not have resource constraints, nor precedence
relations. Under such assumptions, a set of n periodic tasks
is schedulable by the RM algorithm if

Xn
i¼1

Ui � n ð21=n � 1Þ: ð1Þ

Throughout the paper, we will refer to the previous
schedulability condition as the LL-test. We recall that

lim
n!1

n ð21=n � 1Þ ¼ ln 2 ’ 0:69:

After this first result, a lot of work has been done to
improve the schedulability bound of the RM algorithm or
relax some restrictive assumption on the task set.

Lehoczky et al. [2] performed a statistical study and
showed that for task sets with randomly generated
parameters the LL-test is able to accept schedulable task
sets with an average breakdown utilization of about 88
percent. Exact schedulability tests for RM yielding to
necessary and sufficient conditions have been indepen-
dently derived [3], [2], [4], [5]. Using the method proposed
by Audsley et al. [4], a periodic task set is schedulable with
the RM algorithm if and only if the worst-case response
time of each task is less than or equal to its deadline. The
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worst-case response time Ri of a task can be computed
using the following iterative formula:

R
ð0Þ
i ¼ Ci

R
ðkÞ
i ¼ Ci þ

X
j:Dj<Di

R
ðk�1Þ
i

Tj

& ’
Cj;

8><
>: ð2Þ

where the worst-case response time of task �i is given by the

smallest value of R
ðkÞ
i such that R

ðkÞ
i ¼ R

ðk�1Þ
i . It is worth

noting, however, that the complexity of the exact test is

pseudopolynomial, thus it may be unsuited for online

admission control, especially in those real-time applications

consisting of large task sets running on slow microproces-

sors. Leung and Whitehead [6] considered the case of

deadlines smaller than periods and proved that the Dead-

line Monotonic priority assignment is optimal. Sha et al. [7]

extended the Rate Monotonic analysis in the presence of

resource constraints, where access to resources is performed

using concurrency control protocols, such as the Priority

Inheritance Protocol and the Priority Ceiling Protocol.

Audsley et al. [4] generalized the response time analysis

including resource constraints. Burns et al. [8] extended it to

take fault-tolerant constraints into account. Sjödin and

Hansson [9] provided some methods for reducing the

number of iterations in computing the tasks response times;

however, the worst-case complexity of their test is still

pseudopolynomial.
In the last years, other authors [10], [11], [12] proposed

novel approaches for deriving polynomial time tests with
better acceptance ratio than the LL-test. For example, the
Hyperbolic Bound (HB) proposed by Bini et al. [12]
improves the acceptance ratio by a factor of

ffiffiffi
2

p
for large

n, compared with the Liu and Layland test. According to
HB method, a set of periodic tasks is schedulable by RM if

Yn
i¼1

ðUi þ 1Þ � 2: ð3Þ

The authors also extended the test in the presence of
resource constraints and aperiodic servers.

The Liu and Layland utilization bound has been
improved by considering some additional information on
the task set, such as the number of harmonic chains and the
value of the periods [13], [14]. A similar approach was
proposed by Park et al. [15] and, in the case of a graph
structured task, by Liu and Hu [16].

In this paper, we propose a novel and more general
approach for analyzing the schedulability of periodic task
sets under the Rate Monotonic priority assignment. Using
this approach, we derived a new schedulability test, called
�-HET (Hyperplanes �-Exact Test), which can be tuned
through a parameter to balance complexity versus accep-
tance ratio, so that it can be used online to better exploit the
processor, based on the available computational power. So,
for example, if the processor is powerful enough, and there
is sufficient time for online guarantee, our test can be tuned
to behave like the response time test, but with less execution
overhead. On the other hand, when the processor utiliza-
tion is high and the overhead of the guarantee test must be

contained, our test can be set to run in less time, with
decreased performance.

Extensive simulations show that our test, when used in

its exact form, is significantly faster than the current
response time analysis methods, and performs much better
than polynomial tests (such LL or HB) when used in its

reduced form.
As a last remark, we like to notice that the main result of

this paper, expressed by Theorem 3, is very general and
provides a new view of the some results present in the

literature [13], [15], [14].
The rest of the paper is organized as follows: Section 2

describes the task model and states our notation. Section 3
explains our approach in detail. Section 4 illustrates the

proof of the main result of the paper. Section 5 introduces
the tunable guarantee test, called the �-HET test. Section 6
compares the �-HET test with others similar tests

proposed in the literature. Section 7 disusses some
extensions that allow to apply the proposed approach to
more realistic cases. Finally, Section 8 presents our

conclusions and future work.

2 TASK MODEL AND NOTATION

In this section, we introduce the task model and the
notation we will use throughout the paper. We consider a

set �n ¼ f�1; . . . ; �ng of n periodic (or sporadic) tasks, where
each task �i ¼ ð�i; Ci; Ti;DiÞ is characterized by an initial
activation time �i (phase), a worst-case computation time

Ci, a period (or a minimum interarrival time) Ti, and a
relative deadline Di not greater than Ti. We denote a fixed-
priority assignment as FP and, without loss of generality,

we assume the tasks in �n are ordered by decreasing
priority, so that �1 is the highest priority task. If priorities
are assigned based on the RM algorithm, then we have

FP=RM. Each task �i consists of an infinite sequence of jobs,
where �ik denotes the kth job of task �i. In particular, rik and
fik denote the release time and the finishing time of �ik,

respectively. Each job has a relative deadline Di � Ti, thus,
for the periodicity assumption, the release time rik and the
absolute deadline dik of job �ik can be computed as follows:

rik ¼ �i þ ðk� 1ÞTi; dik ¼ rik þDi:

Finally, Ui ¼ Ci=Ti denotes the utilization factor of task �i.
As proven by Liu and Layland [1], the worst-case

scenario for a periodic task set scheduled by RM occurs
when all the tasks are simultaneously activated at the same

time. Hence, without loss of generality, we assume �i ¼ 0

for all the tasks and then we will denote the task �i ¼
ð0; Ci; Ti;DiÞ simply by ðCi; Ti;DiÞ. It is not difficult to see

that under arbitrary fixed priorities (non-RM) this scenario
of simultaneous activation is still the worst. Moreover, it has
been proven that such a condition represents the worst-case

scenario also in the presence of shared resources [7].
To simplify the presentation of the proposed approach,

we initially assume that tasks cannot be blocked and are
fully preemptive. The presence of blocking times and the

extension to nonpreemptive scheduling will be considered
in Section 7.
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In our formulation, a task set is viewed as a point in a

specific space of the task set parameters, hence the

feasibility test will be expressed as a check that verifies

whether a point belongs to a region MMn of the FP

schedulable tasks sets. In particular, region MMn is defined

as follows:

MMnðT1; . . .Tn;D1; . . .DnÞ ¼fðC1; . . . ; CnÞ 2 Rn
þ :

�n is schedulable by FPg:
ð4Þ

We note that periods Ti and deadlines Di are considered as

parameters, whereas Ci are the free variables. Hence, we

obtain a constraint on the Ci variables, which is a function

of all the Ti and theDi. The space in which every coordinate

is represented by a task computation time Ci, is called the

C-space. In the following section, we express region MMn in a

convenient form which simplifies the feasibility check.

3 EXPRESSING MMn

A first attempt to analytically characterize the MMn region in

the C-space was indirectly done by Lehoczky et al. [2]. In

their work, deadlines are assumed equal to periods,

whereas, in this paper, from Section 4 on, we consider the

more general case of Di � Ti. They proved the following

theorem [2]:

Theorem 1 (Theorem 2 in [2]). Given a periodic task set

�n ¼ f�1; . . . ; �ng,

1. �i is feasibly schedulable (for any task phasing) by the
RM algorithm if and only if:

Li ¼ min
t2Si

Pi
j¼1

t
Tj

l m
Cj

t
� 1;

where Si ¼ frTj : j ¼ 1 . . . i; r ¼ 1 . . . Ti
Tj

j k
g.

2. The entire task set is feasibly schedulable (for any task
phasing) by RM if and only if:

max
i¼1...n

Li � 1:

Manipulating this result, we can restate the theorem in a

more expressive form (in the next mathematical passages

we will widely use the logical OR operator _ and the logical

AND operator ^):

max
i¼1...n

min
t2Si

Pi
j¼1

t
Tj

l m
Cj

t
� 1()

()
^

i¼1...n

min
t2Si

Pi
j¼1

t
Tj

l m
Cj

t
� 1()

()
^

i¼1...n

_
t2Si

Pi
j¼1

t
Tj

l m
Cj

t
� 1:

The last result provides a first analytical formulation of

the MMn feasibility region in the important subcase of Rate

Monotonic priorities. It is expressed by the following

theorem:

Theorem 2.When deadlines are equal to periods, the region of the
schedulable task sets MMn, as defined by (4), is given by:

MMnðT1; . . . ; Tn;D1; . . . ; DnÞjDi¼Ti ¼ fðC1; . . . ; CnÞ 2 Rn
þ :

^
i¼1...n

_
t2Si

Xi
j¼1

t

Tj

� �
Cj � tg;

where Si ¼ fr Tj : j ¼ 1 . . . i; r ¼ 1 . . . Ti
Tj

j k
g.

Proof. It directly follows from Theorem 1 and (4) which
defines MMn. tu

To understand this result, consider a simple example
composed by three tasks. Table 1 reports the periods Ti and
the sets Si.

The equations we get by expanding Theorem 2 are:

C1 � 3 3 2 S1

C1 þ C2 � 3 3 2 S2

2C1 þ C2 � 6 6 2 S2 plane � in Fig: 1
3C1 þ C2 � 8 8 2 S2 plane � in Fig: 1

������
C1 þ C2 þ C3 � 3 3 2 S3

2C1 þ C2 þ C3 � 6 6 2 S3

3C1 þ C2 þ C3 � 8 8 2 S3

3C1 þ 2C2 þ C3 � 9 9 2 S3

4C1 þ 2C2 þ C3 � 12 12 2 S3

5C1 þ 2C2 þ C3 � 15 15 2 S3 plane �
6C1 þ 2C2 þ C3 � 16 16 2 S3 plane �
6C1 þ 3C2 þ C3 � 18 18 2 S3 plane �
7C1 þ 3C2 þ C3 � 20 20 2 S3 plane �;

������������������

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð5Þ

where the k symbol denotes the logical OR among the
equations in the array, whereas the f symbol denotes the
logical AND.1 Fig. 1 shows a graphical representation of the
MM3ð3; 8; 20Þ region in the C-space.

It is now worth making the following considerations:

. Observation 1. TheMMn region is delimited by planes
(hyperplanes in higher dimensions). Every plane
equation must be contained in the equation list (5).
The opposite is not true; in fact, there can be
equations in the list that are not shown in the
picture because ORed with a more relaxed one.

. Observation 2. In Fig. 1, we can distinguish six
different planes, meaning that in the equation list (5)
there are 7 useless equations. Clearly, the situation
can change for different values of the periods.

. Observation 3. A necessary and sufficient test can be
derived by translating the task set �n ¼ fðT1; C1Þ;
. . . ; ðTn; CnÞg into a point in the C-space and then
checking whether it belongs to MMnðT1; . . . ; TnÞ.
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. Observation 4. Such a formulation is appropriate for
making a tunable schedulability test. In fact, every
subregion HH � MMn, obtained by eliminating some of
the equations to be OR-ed, is a subset of MMn, and
hence the feasibility check in HH will be less complex
(i.e., less equations to be checked) and “less
necessary” (i.e., smaller region) than the one based
on MMn.

. Observation 5. For large task sets, the number of
equations to be checked is huge and is equal to the
sum of the number of elements in all Si. When the
ratio Tn=T1 is large, the number of equations is
so high that prevents a practical application of
Theorem 2 for any guarantee test.

. Observation 6. The sum reported in Theorem 2 can
also be written as

Xi
j¼1

t

Tj

� �
Tj
t
Uj � 1:

We note that coefficients t
Tj

l m
Tj
t are always greater

than or equal to 1. Coefficients close to 1 delimit large

regions. In particular, if there exists a t such that t
Tj

l m
Tj
t

is equal to 1 for all j, the MMn region becomesP
Ci=Ti � 1. This is just the mathematical translation

of the commonly known behavior of RMwhen all the

periods are in the same harmonic chain [13].
. Observation 7. Operation research algorithms could

also be applied on the MMn region to find the
maximum achievable utilization bound. This ap-
proach has been followed by Park et al. [15].
However, this method involves a higher number of
equations, so it is either slow or not very accurate.

Among the considerations above, the most negative
seems to be Observation 5, which says that the high number

of equations prevents a practical use of the method.
However, as stated in Observation 2, many equations in
(5) are useless, so the idea is to reduce the number of
equations by eliminating the redundant elements in Si.

Before entering into a detailed discussion of such a
reduction process, it is worth noting that such a reduction
has been so effective as to make the test not only applicable
in practice, but even better than all other tests proposed in
the literature. The reduction has been condensed in the next
theorem, which is the key contribution of the paper. The
theorem and its proof are reported in the next section.

4 FEASIBILITY ANALYSIS IN THE C-Space

The following theorem significantly reduces the number of
equations that are needed to delimit the MMn region.

Theorem 3. The region of the schedulable task sets MMn, as
defined by (4), is given by

MMnðT1; . . . ; Tn�1; D1; . . . ; DnÞ ¼ fðC1; . . . ; CnÞ 2 Rn
þ :

^
i¼1...n

_
t2Pi�1ðDiÞ

Ci þ
Xi�1

j¼1

t

Tj

� �
Cj � tg;

where PiðtÞ is defined by the following recurrent expression:

P0ðtÞ ¼ ftg
PiðtÞ ¼ Pi�1

t
Ti

j k
Ti

� �
[ Pi�1ðtÞ:

(
ð6Þ

Before proving the theorem, we first illustrate its
application. Then, the formal proof will be given in a
dedicated subsection.

The difference between this result and that of Theorem 2
is only the presence of the set Pi�1ðDiÞ, instead of Si. This
may seem a little change, but it is not. For example, Fig. 2
shows the difference between the sets S3 and P2ðD3Þ for the
task set reported in Table 1 (deadlines are assumed equal to
the periods).

With the introduction of set Pi�1ðDiÞ, the test to check
whether a task set belongs to MMn becomes not only
reasonable, but better than every necessary and sufficient
test proposed in the literature. Notice that Pi�1ðTiÞ � Si
(remember that Si is defined when Di ¼ Ti). This proposi-
tion can be formally proved by induction on i and it is
clarified by Fig. 2. This allows to dramatically reduce and
bound the time needed for the schedulability test.

Due to the double recurrent form of its definition, the
“worst-case” cardinality of a generic PiðtÞ set is 2i. We
intentionally say “worst-case” cardinality because if the two
sets to be joined overlap, the cardinality, of course, reduces.
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Fig. 1. A view of MM3ð3; 8; 20Þ in the C-space: (a) the projection view,

(b) the isometric view.

Fig. 2. Comparison between S3 and P2ðD3Þ for the task set shown in

Table 1.



We note that set Pi�1ðDiÞ is only a function of Di and of

all Tj for j from 1 to i� 1 and, more in general, PiðtÞ is a

function of time t and of all the periods T1; . . . ; Ti. This

remark explains why the region in the C-space is not a

function of the lowest priority period Tn. Fig. 3 shows all the

recurrent calls of P4ðD5Þ in the case of T1 ¼ 9, T2 ¼ 15,

T3 ¼ 16, T4 ¼ 36, andD5 ¼ 100. In this figure, we can clearly

see how the PjðtÞ definition works. Every set PjðtÞ is

represented by a big grey dot. When j 6¼ 0, each set is the

union of two sets, and the union relationship is represented

by a line connecting two sets. A dashed line means that the

union does not contribute with new points. Such a case

happens, for example, when t
Tj

j k
Tj ¼ t.

4.1 Proof of Theorem 3

To prove Theorem 3, we need the following definitions:

Definition 1. A job �ik is said to be active at time t if
rik < t < fik.

Definition 2. The processor is i-busybusy at time t if there exists a job
of a task in �i active in t. More formally, the following
function represents the subset of points in ½0; b� where the
processor is i-busy:

Busyð�i; bÞ ¼ ft 2 ½0; b� : 9�jk such that �jk is

active at t; �j 2 �ig:

Definition 3. The worst-case workload WiðbÞ of the i highest
priority tasks in ½0; b� is the total time the processor is i-busy in
½0; b�. By extension, W0ðbÞ ¼ 0 for all b.

Note that, using the concept of workload, the schedul-
ability condition of �i can be expressed by

Ci þWi�1ðDiÞ � Di: ð7Þ

Definition 4. Given the subset �i of the i highest priority tasks,
we define  iðbÞ to be the last instant in ½0; b� in which the
processor is not i-busy, that is:

 iðbÞ ¼ max t 2 ½0; b� ^ t 62 Busyð�i; bÞf g:

By Definition 1, the set Busyð�i; bÞ is the union of open
intervals, hence the set ½0; b� n Busyð�i; bÞ has always a
maximum and so the last idle instant  iðbÞ is well defined.2

This formalism is needed because the point  iðbÞ is useful
for simplifying the computation of WiðbÞ and to express the
FP schedulability condition (7). The following lemma
provides a method to easily compute the workload in
½0; b� through the last idle instant  iðbÞ.
Lemma 1. Given a subset �i ¼ f�1; . . . ; �ig of the i highest

priority tasks, the workload WiðbÞ can be written as

WiðbÞ ¼
Xi
j¼1

 iðbÞ
Tj

� �
Cj þ ðb�  iðbÞÞ:

Proof. From the definition of  iðbÞ, we note that no task
instance in �i is active at  iðbÞ and all the released jobs
have been completed at that time. Hence,

Wið iðbÞÞ ¼
Xi
j¼1

 iðbÞ
Tj

� �
Cj:

Moreover, because the processor is always i-busy in
½ iðbÞ; b�, the workload of the i highest priority tasks in
such an interval is ðb�  iðbÞÞ. Hence, the lemma
follows. tu

Lemma 2. For any schedulable task subset �i ¼ f�1; . . . ; �ig,

WiðbÞ ¼ min
t 2 ½0;b�

Xi
j¼1

t

Tj

� �
Cj þ ðb� tÞ: ð8Þ

Proof. We first observe that
Pi

j¼1
t
Tj

l m
Cj is the processor

demand in ½0; t�, which is the time required by the tasks

to be executed in ½0; t�. So, it must be that

8t WiðtÞ �
Xi
j¼1

t

Tj

� �
Cj

because the processor has no other job to be executed.
Moreover, since in a feasible schedule the workload in

½t; b�(i.e., WiðbÞ �WiðtÞ) is smaller than the length of the
interval, we have that

8t 2 ½0; b� WiðbÞ �WiðtÞ � ðb� tÞ:

or, equivalently,

8t 2 ½0; b� WiðbÞ �
Xi
j¼1

t

Tj

� �
Cj þ ðb� tÞ: ð9Þ

Now, since  iðbÞ 2 ½0; b�, for Lemma 1 there exists a
value in ½0; b� for which the equality holds, so the lemma
follows: tu

The meaning of Lemma 2 is illustrated in Fig. 4, which
shows the upper bounding function3 of the workload for a
specific set of four periodic tasks. Notice that the minimum
of such a function is W4ðbÞ and it falls in  4ðbÞ.

In other words, the workload WiðbÞ in ½0; b� can be upper

estimated by the computation of
Pi

j¼1
t
Tj

l m
Cj þ ðb� tÞ in any

t 2 ½0; b�. This is not directly useful because this estimation is
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rough, but the workload can be exactly calculated by the

function
Pi

j¼1
t
Tj

l m
Cj þ ðb� tÞ once we know the last idle

instant  iðbÞ. Unfortunately the complexity moves from the

workload estimation to the  iðbÞ search. So we now restrict

the set of possible values of  iðbÞ by the following lemma.

Lemma 3. Given a task subset �i ¼ f�1; �2; . . . ; �ig schedulable

by FP, let  iðbÞ be the last idle instant in ½0; b� as defined in

Definition 4, and let PiðbÞ be the set of points defined by the

following recurrent expression:

P0ðbÞ ¼ fbg
PiðbÞ ¼ Pi�1

b
Ti

j k
Ti

� �
[ Pi�1ðbÞ:

(

Then,

 iðbÞ 2 PiðbÞ:

Proof. We demonstrate the lemma by induction on i.

Initial Step. If i ¼ 1, we have to prove that, for a
schedulable task �1,  1ðbÞ 2 P1ðbÞ for all b. We observe

that, in this case,

P1ðbÞ ¼ P0
b

T1

� �
T1

	 

[ P0ðbÞ ¼

b

T1

� �
T1; b

� �
:

Since �1 is schedulable, then the last idle instant  1ðbÞ can
only be:

1. at bb=T1cT1, if the last instance in ½0; b� of �1 is
active at b;

2. at b, otherwise.

Both values are in P1ðbÞ and the initial step is proven.

Inductive Step. If iðbÞ2PiðbÞ for all b, wehave to prove

that, given a schedulable task subset �iþ1¼f�1; . . . ; �iþ1g,
then  iþ1ðbÞ 2 Piþ1ðbÞ for all b.

Let us consider the time interval b=Tiþ1b cTiþ1; b½ �. In
this interval, two things can happen:

1. the processor is ðiþ 1Þ-busy in the whole interval;

2. there exists an instant of time at which the
processor is not ðiþ 1Þ-busy.

In the first case,  iþ1ðbÞ ¼  iþ1 b=Tiþ1b cTiþ1ð Þ because

in bb=Tiþ1cTiþ1; b½ � the processor always runs a task in

�iþ1. Moreover, it must be

 iþ1 b=Tiþ1b cTiþ1ð Þ ¼  i b=Tiþ1b cTiþ1ð Þ;

otherwise, the last instance of �iþ1 in 0; b=Tiþ1b cTiþ1½ �
would miss its deadline at b=Tiþ1b cTiþ1, contradicting the

hypothesis of �iþ1 schedulability.

In the second case, let x 2 b=Tiþ1b cTiþ1; b½ � be an

instant of time where no tasks in �iþ1 are active. Since
at time x the b=Tiþ1 þ 1b cth job of �iþ1 is terminated, �iþ1

is never active in ½x; b�. This implies that  iþ1ðbÞ ¼  iðbÞ.
Merging the two cases, we get:

 iþ1ðbÞ ¼  i
b

Tiþ1

� �
Tiþ1

	 
_
 iþ1ðbÞ ¼  iðbÞ:

For the inductive hypothesis, we have that:

 i b=Tiþ1b c Tiþ1ð Þ 2 Pi b=Tiþ1b c Tiþ1ð Þ and  iðbÞ 2 PiðbÞ.
Hence,

 iþ1ðbÞ 2 Pi
b

Tiþ1

� �
Tiþ1

	 
[
PiðbÞ

and finally, for the Piþ1ðbÞ definition:

 iþ1ðbÞ 2 Piþ1ðbÞ;

which proves the inductive step and the lemma. tu

Lemma 4. Given a task subset �i ¼ f�1; . . . ; �ig schedulable by

FP and the set PiðbÞ as defined in (6), the workload WiðbÞ is

WiðbÞ ¼ min
t 2 PiðbÞ

Xi
j¼1

t

Tj

� �
Cj þ ðb� tÞ:

Proof. By observing that PiðbÞ � ½0; b�, the lemma directly

follows from Lemmae 1, 2, and 3. tu

We are now ready to prove the theorem.

Proof of Theorem 3. We have to prove the equivalence

between the following two sentences:

1. for all i ¼ 1 . . .n, �i is schedulable by a fixed
priority algorithm;

2.
^

i¼1...n

_
t2Pi�1ðDiÞ

Xi
j¼1

t

Tj

� �
Cj � t.

Without loss of generality, we can assume that, for the

schedulability of task �i, all tasks �1; . . . ; �i�1 are

schedulable. In this case, the schedulability condition of

the single task �i can be written as:

Ci þWi�1ðDiÞ � Di;

where Wi�1ðDiÞ is the workload of the first i� 1 tasks in

the interval ½0; Di�. Using Lemma 4, such a condition of

individual schedulability can be written as:
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Ci þ min
t2Pi�1ðDiÞ

Xi�1

j¼1

t

Tj

� �
Cj þ ðDi � tÞ � Di

Ci þ min
t2Pi�1ðDiÞ

Xi�1

j¼1

t

Tj

� �
Cj � t � 0

_
t2Pi�1ðDiÞ

Ci þ
Xi�1

j¼1

t

Tj

� �
Cj � t:

Hence, the schedulability condition for all the tasks is
clearly given by

^
i¼1...n

_
t2Pi�1ðDiÞ

Ci þ
Xi�1

j¼1

t

Tj

� �
Cj � t

as required by Theorem 3. tu
In the next paragraphs, two examples are illustrated to

extend the applicability of this result: First, one considers a

non-RM priority assignment and the second one deals with

deadlines smaller than periods.

4.2 Example with Non-RM priorities

Let us consider the same tasks shown in Table 1. However,

in this example, we invert the priorities of the tasks with

period 8 and 20 (we still assume Di ¼ Ti). In particular, the

resulting tasks set is ordered as follows:

By expanding the equations given by Theorem 3, which

provides a necessary and sufficient condition, we get the

following inequalities, which describe the exact schedul-

ability region:

C1 � 3
6C1 þ C2 � 18
7C1 þ C2 � 20

����
C3 � 0
2C1 þ C2 þ C3 � 6
3C1 þ C2 þ C3 � 8

������

8>>>>>><
>>>>>>:

Notice that the inequality C3 � 0 would force C3 to be zero.

Such a strict constraint is not a problem because it is ORed

with more relaxed ones.
As was done for the Rate Monotonic case, we can now

draw the schedulability region in the C-space, formerly

defined as MMn. The result is depicted in Fig. 5.
It is worth noticing that this region is smaller than the

RM one (see Fig. 1). This is a clear consequence of the RM

optimality: A task set schedulable by a generic fixed priority

assignment is also schedulable by Rate Monotonic.

4.3 Example with Deadlines Smaller than Periods

We now consider a task set with deadlines smaller than

periods. Tasks are the same as those in Table 1, but

deadlines D2 and D3 are decreased by one unit of time,

leading to the following task set:

Applying Theorem 3, we get the following set of inequal-

ities:

C1 � 3
2C1 þ C2 � 6
3C1 þ C2 � 7

����
5C1 þ 2C2 þ C3 � 15
6C1 þ 2C2 þ C3 � 16
6C1 þ 3C2 þ C3 � 18
7C1 þ 3C2 þ C3 � 19

��������

8>>>>>>>><
>>>>>>>>:

The resulting schedulability regionMMn is shown in Fig. 6.

We notice that the region achieved in this case is smaller

than that shown in Fig. 1, confirming that shortening

deadlines reduces schedulability.

5 THE HYPERPLANES �-Exact TEST

In this section, we first show how the necessary and

sufficient test is derived and then we describe the method to

make it tunable.
As we saw in the last section, the FP schedulability

condition in Theorem 3 can be equivalently expressed as

8i ¼ 1 . . .n Ci þWi�1ðDiÞ � Di;

where the workload Wi�1ðDiÞ is given by Lemma 4:
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Wi�1ðDiÞ ¼ min
t2Pi�1ðDiÞ

Xi�1

j¼1

t

Tj

� �
Cj þ ðDi � tÞ

and W0ðD1Þ ¼ 0 by extension.
Using this formulation, the pseudo-C code of the

necessary and sufficient test can be written as follows:

Boolean FPTestð�nÞ {
int i;

for (i ¼ 1; i � n; iþþ)

if (Ci þWorkLoadði� 1; DiÞ > DiÞ
return false;

return true;

}

Now, we focus our attention on the function

WorkLoadði; bÞ, which is the workload of the i highest

priority tasks in ½0; b�, also called WiðbÞ previously. From

Lemma 4, we know that

WiðbÞ ¼ min
t2PiðbÞ

Xi
j¼1

t

Tj

� �
Cj þ ðb� tÞ

and then, from the definition of PiðbÞ, we can write (in the

following expressions we define f ¼ bb=Tic and c ¼ db=Tie):

WiðbÞ ¼min min
t2Pi�1 fTið Þ

Xi
j¼1

t

Tj

� �
Cj þ b� tð Þ;

(

min
t2Pi�1ðbÞ

Xi
j¼1

t

Tj

� �
Cj þ ðb� tÞ;

)
;

ð10Þ

where we split the set PiðbÞ in the two subsets which

compose it.
We now write these expressions in a more meaningful

form. By noting that the ith element in the first sum is

always equal to fCi (due to the schedulability of �i), the first
element of (10) can be written as

min
t2Pi�1 fTið Þ

Xi
j¼1

t

Tj

� �
Cj þ b� tð Þ ¼

¼ fCi þmin
Xi�1

j¼1

t

Tj

� �
Cj þ b� tð Þ ¼

¼ bþ fCi � fTi þmin
Xi�1

j¼1

t

Tj

� �
Cj þ fTi � tð Þ ¼

¼ b� fðTi � CiÞ þWi�1ðfTiÞ

from the result of Lemma 4. Similarly, the second element in
(10) can be written as:

min
t2Pi�1ðbÞ

Xi
j¼1

t

Tj

� �
Cj þ ðb� tÞ ¼

¼ cCi þmin
Xi�1

j¼1

t

Tj

� �
Cj þ ðb� tÞ ¼

¼ cCi þWi�1ðbÞ:

Hence, (10) can be expressed in a recurrent form as follows:

WiðbÞ ¼ minfb� fðTi � CiÞ þWi�1ðfTiÞ; c Ci þWi�1ðbÞg:
ð11Þ

Such a recurrent expression of WiðbÞ directly follows
from the recurrent definition of PiðbÞ. As in the PiðbÞ
definition the two sets Pi�1ðbb=TicÞ and Pi�1ðbÞ could
overlap (see Fig. 3), it can happen that, for particular values
of j and t , two calls ofWjðtÞ could return the same value. In
this case, following both branches would be a waste of time.
This can be avoided by keeping track of the execution flow
through a global variable which can be used to prune all the
useless branches. The resulting algorithm is shown below:

double last ½BIG ENOUGH�;
double lastWorkLoad½BIG ENOUGH�;

double WorkLoadðint i;double bÞ {
int f; c;

double branch0, branch1;

if (i � 0) return 0;

if ðb � last ½i�Þ /* if WorkLoadði; bÞ already computed */

return lastWorkLoad½i�; /* don’t go further */

f ¼ bb=Tic; c ¼ db=Tie;
branch0 ¼ b� f ðTi � CiÞ þWorkLoadði� 1; f Ti);

branch1 ¼ c Ci þWorkLoadði� 1; b);

last ½i� ¼ b;

lastWorkLoad½i� ¼ minðbranch0; branch1);
return lastWorkLoad½i�;

}

We note that the ith element of the array lastWorkLoad
keeps track of the call WorkLoadði; last ½i�Þ. The necessary
and sufficient algorithm obtained in this way, called the
Hyperplanes Exact Test (HET), is quite more efficient than
the response time based algorithm. The performance
comparison is presented in Section 6.
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5.1 The �-HET Test

The tunable test �-HET is obtained by reducing the PiðbÞ set
as a function of an additional parameter �, as follows:

P0ðb; �Þ ¼ fbg 8�

Piðb; �Þ ¼
Pi�1

b
Ti

j k
Ti; �

� �
[ Pi�1ðb; �Þ if b� � Ti

Pi�1
b
Ti

j k
Ti; �

� �
otherwise:

8><
>:

8>>><
>>>:

By this definition, it is easy to prove the following

properties of the Piðb; �Þ set:

�1 � �2 , Piðb; �1Þ � Piðb; �2Þ
Piðb; 1Þ ¼ PiðbÞ:

Similar properties also hold for the workload expressed by

Lemma 4. If we define

W
ð�Þ
i ðbÞ ¼ min

t 2 Piðb;�Þ

Xi
j¼1

t

Tj

� �
Cj þ ðb� tÞ;

then we have that

�1 � �2 ,W
ð�1Þ
i ðbÞ �W

ð�2Þ
i ðbÞ

W
ð1Þ
i ðbÞ ¼WiðbÞ:

Both properties follow directly from the definition of W
ð�Þ
i .

In particular, the first property derives form the observation

that the minimum cannot decrease when computed on a

smaller set.
The �-HET test can then be derived by substituting PiðbÞ

with Piðb; �Þ. The resulting algorithm for computing the

new workload function is illustrated below.

double last ½BIG ENOUGH�;
double lastWorkLoad½BIG ENOUGH�;

double WorkLoadðint i;double b;double �Þ {
int f , c;

double branch0, branch1;

if (i � 0)
return 0;

if (b � last ½i�) /* if WorkLoadði; bÞ already computed */

return lastWorkLoad½i�; /* don’t go further */

f ¼ bb=Tic; c ¼ db=Tie;
branch0 ¼ b� f ðTi � CiÞ þWorkLoadði� 1; f TiÞ;
if (Ti � b �)

branch1 ¼ cCi þWorkLoadði� 1; bÞ;
else

branch1 ¼ branch0; /* one branch is cut! */

last ½i�� ¼ b;

lastWorkLoad½i� ¼ minðbranch0; branch1Þ;
return lastWorkLoad½i�;

}

6 PERFORMANCE OF �-HET

In this section, we compare the �-HET test with the

common schedulability tests proposed in the literature for

the RM algorithm, when deadlines are equal to periods. The
performance of a test is evaluated in terms of both
acceptance ratio and complexity. The acceptance ratio is
measured by the number of accepted task sets with respect
to those accepted by a necessary and sufficient test. In
particular, if U denotes the set of task sets for which there
exists a feasible schedule, let S� � U be those task sets
which are schedulable with fixed priorities (and, hence, RM
schedulable), and let ST � S� be those task sets which are
guaranteed by a sufficiency test T . Then the acceptance
ratio acceptanceRatioðT Þ of a test T is computed as follows:

acceptanceRatioðT Þ ¼ jST j
jS�j ;

where the operator j � j indicates “the number of elements.”
From this definition it follows that acceptanceRatioðT Þ � 1
for all T , and acceptanceRatioðT Þ ¼ 1 for the response-time
analysis and all the necessary and sufficient tests.

The complexity of a test is measured by counting the
number of innermost loop iterations. Formally, we define
stepsNumberðT;�Þ as the number of innermost loop steps
required to compute the guarantee test T on the tasks set �.
Moreover, we model the computation time of a guarantee
test T as a random variable stepsðT Þ, defined by the
following cumulative distribution function (c.d.f.):

FstepsðT ÞðxÞ ¼ PfstepsNumberðT;�Þ � xg � 2 U;

where Pf�g denotes the probability of an event. This model
is useful because the maximum and the average number of
iteration steps can easily be extracted from the probability
density function (p.d.f.), which is

fstepsðT Þ ¼
dFstepsðT Þ

x
:

In our experiments, simulations have been performed by
generating 108 task sets, each composed by eight tasks. Task
periods Ti were randomly extracted in ½1; 1000000� (with
uniform distribution) and computation times Ci were
computed as random variables in ½0; Ti� (also with uniform
distribution). Fig. 7 illustrates the results of a first experi-
ment, which compares three necessary and sufficient tests:
the classical Response Time Analysis (RTA) of Audsley et al.
[4], the Response Time analysis Improved (RTI) by Sjödin et
al. [9], and the Hyperplanes Exact Test (HET) presented in
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this paper. The figure plots the probability density achieved

for the three tests.
We notice that the HET test, although pseudopolyno-

mial, is significantly faster than the others, not only for the

average case, but also, and especially, for its worst case. The

appreciable “noise” of the probability density is not due to

the low number of sets (108), but it comes from the intrinsic

structure of the algorithm.
Fig. 8 shows the result of another experiment, in which

we evaluated the dependency of the average number of

steps on the number of tasks in the set. As we can clearly

see, although for all tests the average number of steps

increases exponentially, in the case of the HET algorithm

the speed of growth is significantly smaller.
In a third experiment, we evaluated the performance of

the �-HET test with respect to several other tests proposed

in the literature, such as the Response Time Analysis (RTA)

[4], the Response Time analysis Improved (RTI) [9], the Liu

and Layland test (LL) [1], and the Hyperbolic Bound (HB)

[12]. The �-HET has been executed for several values of

� 2 ½0:5; 1�. The comparison is made in terms of both

acceptance ratio and complexity, on a universe of 106 tasks

sets consisting of eight tasks.
In particular, each test is characterized by two values

(that is, the average number of steps and the acceptance

ratio), thus it is represented as a point in a plane, having

stepsðT Þ and acceptanceRatioðT Þ as coordinates. In such a

plane, the best area for a guarantee test is the one located

around the upper-left corner, where the acceptance ratio is

high and the complexity is low. The result of this

experiment is shown in Fig. 9.
As we can see, the performance of the �-HET test covers

all the intermediate positions in the plane. In particular

when n ¼ 8, for � ¼ 0:5, the �-HET test has a performance

similar to the one of the LL-test, whereas, for � ¼ 1 (exact

analysis), it is still significantly better than the RTI test.

7 EXTENSIONS

This section extends the proposed analysis to the case of

shared resources and nonpreemptive scheduling. We then

show some additional application of the proposed

methodology.

7.1 Shared Resources

The blocking times due to resource sharing can be taken
into account by introducing, for each task �i, a blocking
term Bi to be added to the task computation time [7].
Hence, the schedulability condition (7) can be extended as
follows:

Ci þBi þWi�1ðDiÞ � Di: ð12Þ

Using the same reasoning, Theorem 3 can also be
extended as follows, to take blocking times into account.

Theorem 4. A task set � composed by tasks �i ¼ ðCi; Ti;Di; BiÞ
is schedulable if:

^
i¼1...n

_
t2Pi�1ðDiÞ

Ci þ
Xi�1

j¼1

t

Tj

� �
Cj � t�Bi: ð13Þ

Clearly, this condition is more stringent than the one
expressed by Theorem 3. To better understand the impact of
this result, we consider an example with the same task set
as before, in which tasks �1 and �2 have blocking times
B1 ¼ B2 ¼ 1.

Applying Theorem 3, the schedulability region in the
C-space can be described by the following inequalities:

C1 � 2
2C1 þ C2 � 5
3C1 þ C2 � 6

����
5C1 þ 2C2 þ C3 � 15
6C1 þ 2C2 þ C3 � 16
6C1 þ 3C2 þ C3 � 18
7C1 þ 3C2 þ C3 � 19

��������

8>>>>>>>><
>>>>>>>>:

The shape of the region for the given example is
illustrated in Fig. 10. Again, we notice that this region is
smaller than that shown in Fig. 6, achieved in the absence of
blocking times.

As a last remark, notice that the last theorem provides
only a sufficient condition because when a blocking time is
present, the worst-case scenario can be different than the
synchronous (classical Liu and Layland) one.
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Fig. 9. Comparison of guarantee tests.



7.2 Nonpreemptive Scheduling

The proposed analysis can be immediately extended to

nonpreemptive scheduling by observing that nonpreemp-

tive scheduling is just a special case of resource sharing,

where all tasks share a single resource for their entire

execution. Hence, Theorem 4 can be applied in this case if

blocking times are computed as

Bi ¼ max
j>i

Cj ð14Þ

We now show how the schedulability region of task set

in Table 1 is reduced in the nonpreemptive case. By

applying Theorem 4 with (14), we get:

C1 � 3�maxfC2; C3g
2C1 þ C2 � 6� C3

3C1 þ C2 � 8� C3

����
5C1 þ 2C2 þ C3 � 15
6C1 þ 2C2 þ C3 � 16
6C1 þ 3C2 þ C3 � 18
7C1 þ 3C2 þ C3 � 20

��������

8>>>>>>>><
>>>>>>>>:

and then:

C1 þ C2 � 3
C1 þ C3 � 3
2C1 þ C2 þ C3 � 6
3C1 þ C2 þ C3 � 8

����
5C1 þ 2C2 þ C3 � 15
6C1 þ 2C2 þ C3 � 16
6C1 þ 3C2 þ C3 � 18
7C1 þ 3C2 þ C3 � 20

��������

8>>>>>>>>>><
>>>>>>>>>>:

Simplyfing the redundant equations, we finally get:

C1 þ C2 � 3
C1 þ C3 � 3

�
ð15Þ

Equation (15) summarize some known properties of the

nonpreemptive scheduling algorithms. For example, it is

well known that every single computation time Ci must be
not greater than the smallest period. In the considered
example, the smallest period (T1) is 3 and the found
condition deny all the Ci to be greater than 3.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach for analyzing
the schedulability of periodic task sets under the Rate
Monotonic priority assignment. Such an approach allowed
us to precisely describe the feasibility region in the space of
task computation times (the C-space) and to derive a
tunable guarantee test (�-HET), by which we can balance
acceptance ratio and complexity. Such a tunability property
of the �-HET test is important in those cases in which the
performance of a polynomial time test is not sufficient for
achieving high processor utilization, and the overhead
introduced by exact tests is too high for an online admission
control.

We believe that the proposed formulation opens a novel
direction in the schedulability analysis of fixed priority
systems, allowing further research in this domain. As a
future work, we plan to investigate the case where task
computation times are considered as random variables with
known probability distribution. In this case, the probability
to meet the deadlines of a task set can be computed by the
integral of the Ci probability density on the MMn region.

Another interesting situation that can be addressed by
the proposed method deals with the case in which not all
the computation times are fixed, but we have some freedom
to select the size of some tasks (for instance when using
imprecise computation models). In this condition, the HET
approach can be used to decide the best values of those free
variables in order to improve schedulability. In fact, fixing a
Ci value is equivalent to cutting the MMn region in the
C-space at a certain coordinate (this can easily be visualized
in Fig. 1).
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