
Schedule Validation for Embedded Reactive Real-Time Systems

Felice Balarin

Cadence Berkeley Laboratories

Alberto Sangiovanni-Vincentelli

Department of EECS

University of California at Berkeley

Abstract

Task scheduling for reactive real time systems is a
di�cult problem due to tight constraints that the
schedule must satisfy. A static priority scheme
is proposed here that can be formally validated.
The method is applicable both for preemptive
and non-preemptive schedules and is conserva-
tive in the sense that a valid schedule may be
declared invalid, but no invalid schedule may be
declared valid. Experimental results show that
the run time of our validation method is negli-
gible with respect to other steps in system de-
sign process, and compares favorably with other
methods of schedule validation.

1 Introduction

There is no universally accepted formal model for embedded
systems, or even a universally accepted de�nition of which
systems are considered embedded. In our approach, a sys-
tem is considered embedded if it has the following charac-
teristics:

reactive: We consider systems consisting of many tasks which
are executed in reaction to some external events, or to
some other tasks.

single-processor: We assume that all tasks are executed on
the same processor. Although de�nitely not universal,
this assumption is true of many embedded systems in
practice, particularly for low-cost high-volume systems
like consumer products.

\Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage, the
copyright notice, the title of the publication and its date appear, and
notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior speci�c permission and/or a fee."

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

real-time: For the system to perform its function, the tasks
must implement the correct functionality, and they
have to be executed in a timely manner.

We address a question whether an embedded system per-
forms its tasks in a timely manner. The answer to this
question depends on timing properties of tasks and exter-
nal events, as well as the scheduling policy: i.e. the set of
rules determining which task to execute, if more than one
task is ready to run. Consequently, we refer to this problem
as schedule validation. Currently, the most used methods
in answering this question are simulation and prototyping.
These approaches have an obvious weakness that only a few
of an in�nite number of input patterns can be tried, and
thus the correctness of the system can never be guaranteed.

In this paper, we propose a formal method based on a
mathematical analysis of the schedule that is independent
of input patterns in the test set. Ideally we would like to
be able to show that the schedule is valid if and only if
our method says so. However, (as detailed below) achieving
this goal either implies complexity that is beyond reach with
present day computers or ignoring some important charac-
teristics of reactive real-time systems in the attempt to sim-
plify the analysis. We settle for a conservative analysis, i.e.,
a method that guarantees that if the schedule passes the test
then it is correct. On the other hand, if the schedule does
not pass the test then the schedule may still be correct. In
this way, simulation and prototyping on one side, and the
formal method proposed in this paper are complementary:
the former methods can be used to disprove the validity of
the schedule, while the latter can be used to prove it.

We represent a system as a network of tasks, �nite-state
objects that execute asynchronously and communicate through
production and consumption of events, but with functional
information abstracted and timing information added.1 We
believe that our model is a useful timing abstraction of many
discrete-event formalisms.

Our formalization of the correctness criterion arose from
the case study in veri�cation of embedded systems [2]. It
was observed there that timing requirements can often be
concisely expressed by the assumption that certain events

1This formal model is inspired by the model used in hard-
ware/software co-design system POLIS [5].

are never dropped, i.e. that a produced event is always
consumed before another event of the same kind is produced
again. In this way, veri�cation of timing and functionality
can be cleanly separated, and the most suitable method can
be applied to each.

This paper is organized as follows: We �rst present a for-
mal model of computation in section 3. A method for val-
idating preemptive schedules is presented in section 4, and
extended to non-preemptive schedules in section 5. Exper-
imental results are presented in section 6, and �nally some
conclusions and ideas for future work are given in section 7.

2 Related work

The schedule validation problem can be expressed as a stan-
dard veri�cation problem in a formalism that combines tim-
ing information with �nite-state systems. For example, Balarin
et al. [3] formulated the schedule validation problem as a
reachability problem for timed automata. This approach
has the advantage of being exact (as opposed to conserva-
tive like the method proposed here), but it su�ers from se-
vere limitations due to its computation complexity: Balarin
et al. report execution times for small systems that are sev-
eral orders of magnitude larger than those obtained by the
method proposed here.

A variety of models have been considered over past sev-
eral decades by researchers in the real-time systems com-
munity. Most of them are extensions or modi�cations of the
one introduced by Liu and Layland [7]. Audsley et. al. [1]
proposed a schedule validation method for such systems.
Harbour et. al. proposed a schedule validation method for a
generalization of this model where every independent task
can consist of a chain of subtasks [6].

The class of systems for which Audsley's method is appli-
cable is strictly contained by the class of systems for which
Harbour's method is applicable, which in turn is strictly
contained by the class of systems for which the method in
this paper is applicable. Only our method allows modeling
components that can be executed in reaction to various (in-
ternal or external) events in their environment. This feature
is crucial for realistic modeling of reactive real-time systems.

For systems for which all three methods are applicable,
all three methods are the same. Similarly, for systems for
which both Harbour's and our methods are applicable, they
both compute the same result.

3 Model of Computation

We model a system as a collection of tasks with known
priorities and execution times. Tasks are enabled either
by external events or by execution of other tasks (internal
events). Among the enabled tasks the one with the high-
est priority is executed. We assume that there exists some
known minimum time between two occurrences of external
events. A system is correct if certain critical events are never
\dropped", i.e. if tasks enabled by these events are executed
before another event of the same kind occurs.

Formally, a system is a 6-tuple (T; e;U;m;E;C) where

� T = f1; 2; . . . ; ng is a set of internal task identi�ers.
We assume that the identi�er also indicates tasks pri-
ority and that larger identi�er indicates higher priority.
Since tasks are identi�ed by their priorities, they must
be unique. 2

2Allowing multiple tasks to have the same priority would require

external

executing

a)

1

2

7

4

35

6

1 4

7 6

2 3 1 5 3 2 4 3 idle

b)

(6,2)

(7,1) (2,4)

(4,3) (1,5)

(1,2)

(5,4)

(5,3)

(2,4)

time91 2 3 4 7 10 13 14

(4,3)
(4,3)

events

4

m(7) = 20

m(6) = 10 e(2) = e(4) = 1

e(1) = e(3) = e(5) = 2

Figure 1: A system (a), and its possible execution (b). Exe-
cutions of external tasks are represented by upward arrows,
while executions of internal tasks are represented by rounded
boxes.

� e : T 7! IR (where IR is the set of positive real num-
bers) assigns to every internal task its execution time.

� U , such that U \T = ;, is a set of unique external task
identi�ers. Intuitively, these tasks represent the envi-
ronment. We are really only interested in occurrence
of external events, but for the uniformity of presen-
tation, it is convenient associate external events with
tasks that generate them.

� m : U 7! IR assigns to every external task minimum
time between two executions.

� E � (T[U)�T is a set of events. Intuitively, (i; j) 2 E

indicates that the execution of task i enables task j.
Note that only internal tasks can be enabled in this
way. We say that the graph with nodes T [U and
edges E is the system graph. We consider only system
that have acyclic system graph. If i is an external task,
then we say that (i; j) is an external event. Otherwise,
we say that (i; j) is an internal event.

� C � E is a set of critical events.

Consider, for example, a system in Figure 1a. It is a sim-
pli�ed version of shock absorber controller whose purpose is
to set the hardness of vehicle's shock absorbers based on
the inputs from various sensor (speed, vertical acceleration,
steering angle, . . .). In this simpli�ed model, the system
receives inputs from two external tasks: task 7 emits events
indicating wheel motion (once every wheel revolution), and
task 6 indicates the vertical acceleration. Tasks 1 and 5
compute the speed, tasks 2 and 4 check for error conditions,
while task 3 chooses an appropriate setting based on this
information. More precisely, task 1 does some initial pro-
cessing of data and indicates to task 2 whether the vehicle is

only minor adjustments to our method, but it would obscure the
notation without adding much substance, so we decided not to allow
it.

standing or moving. Task 2 uses this information and verti-
cal acceleration data to check for errors (the vertical acceler-
ation should be low while the vehicle is standing still). This
information is passed to task 4 which also receives computed
speed information from task 5, does some additional check-
ing and makes the �nal determination whether the speed
sensor is operating correctly. Six events are critical, as indi-
cated by black dots. For example, missing a pulse from the
wheel (event (7,1)) might cause a wrong speed calculation.
On the other hand, it is important to keep track of current
vertical acceleration, but missing an occasional reading does
not compromise overall functionality.

An execution of a system is any sequence of timed events
that satis�es the following:

� external tasks can execute at any time, as long as the
time between two executions of any external task i is
larger or equal than m(i),

� immediately after the execution of task i, all the tasks
j such that (i; j) 2 E, are enabled, and task i is dis-
abled,

� if a task i becomes enabled at some time t1, then it
will become disabled (i.e. it will terminate its execu-
tion) at time t2 such that the total amount of time in
the interval [t1; t2] in which i has the highest priority
among enabled tasks is e(i).

An event (i; j) is said to be dropped if after i is executed, task
i is executed again before task j is executed. An execution
is correct if no critical events are dropped in it. A system is
correct if all of its executions are.

A possible execution of the system in Figure 1a is shown
in Figure 1b. We invite the reader to verify its correctness.

4 Validation of Preemptive Schedules

To show that a system is correct it su�ces to show that
for every critical event (i; j) the minimum time between two
executions of i is larger than the maximum time between
executions of i and j. Even though this may be too conser-
vative (because the two may impose conicting constraints
on execution of other tasks), it is still not easy to compute.
Therefore, we pursue the following approach:

1. We restrict our attention to a class of systems in which
only external events can be dropped. The minimum
time between two executions for these events is given
by system's description.

2. We conservatively estimate the maximum time between
executions of i and j.

In this paper, we only provide relevant results and intuition
behind them. Formal proofs can be found in [4].

4.1 Analysis of internal tasks

The following proposition provides a simple su�cient con-
dition to ensure no internal events can be dropped:

Proposition 1 If i < j, then event (i; j) cannot be dropped.

Indeed, event (i; j) enables task j, and since it has higher
priority, it must be executed before i is executed again. We
will generalize this reasoning to characterize a wider class of
systems in which only external events can be dropped, but
�rst we need some additional de�nitions.

A pair (F;N) of disjoint subsets of tasks is an exclusive
neighborhood of some internal task i, if F and N satisfy the
following conditions:

C1: i 2 F [N ,

C2: if k is in N , then all of its predecessors are in F [N
(i.e. 8j; k : ((k 2 N) ^ ((j; k) 2 E)) =) (j 2 F [N)),

C3: every task in F [N except i has a unique successor in
N (i.e. 8k 2 F [N � fig91j 2 N : (k; j) 2 E), and i
has no successors in N ,

C4: k < j for every k 2 F and every j 2 N .

We say that F is the frontier and N is the interior of an
exclusive neighborhood.

Intuitively, conditions C1{C3 specify that an exclusive
neighborhood is the portion of a system graph obtained by
traversing backwards from i and cutting the traversal at
frontier nodes. In addition, condition C3 requires that por-
tion of the system graph to be a tree. Finally, condition C4

requires requires tasks at the frontier to have lower prior-
ities than tasks in the interior. For example, in Figure 1,
task 4 has an exclusive neighborhood with frontier f1; 2g
and interior f4; 5g.

The name \exclusive neighborhood" is chosen to suggest
that at most one task can be enabled in that part of a system
graph. An exclusive neighborhood does not always exist, but
if it does, it can signi�cantly simplify schedule validation,
due to the following:

Theorem 1 If (i; j) 2 E, and (F;N) is an exclusive neigh-
borhood of task i, such that:

k < j for all k 2 F ; (1)

then (i; j) cannot be dropped.

Proposition 1 is just a simple corollary of Theorem 1,
because (fig; ;) is an exclusive neighborhood of i that sat-
is�es (1).

There are two possible applications of Theorem 1: analy-
sis and synthesis. The analysis problem is to check whether
some critical event can be dropped, given a system with as-
signed priorities. To check whether Theorem 1 applies to
some event (i; j) it su�ces to perform a backward breadth-
�rst search of a system graph starting from i. The search is
not continued beyond any task with probability less than j.
If at any time some task is reached for the second time (vi-
olating C3), or an external task is reached (violating C4),
then the search is terminated with failure. In this case, re-
sults are inconclusive: it may or may not be possible for (i; j)
to be dropped. However, if the search is terminated because
there are no more unexplored nodes with priority larger than
j, then an exclusive neighborhood satisfying (1) is found,
and we can conclude that (i; j) can never be dropped.

The synthesis problem is to assign priorities in a way that
no critical internal events are dropped. There are many ways
of doing it, but Proposition 1 suggests a priority assignment
policy that is particularly easy to implement.

In the rest of this paper, we will consider only systems
in which for every critical event (i; j) 2 C there exits an
exclusive neighborhood satisfying (1). It is easy to check
that the system in Figure 1 is such a system.

Unfortunately, this simpli�cation in analysis comes at a
price of optimality. Consider, for example, the system in
Figure 2a. The system consists of one external task (4),
there internal tasks (a; b; c), and all events are critical.

The only way to apply Theorem 1 to internal tasks is
to assign to c a higher priority than to a and b, e.g. a =

1 15 time8

external

executing

a)

b)

a c b c a c

e(a) = e(b) = 1

m(4) = 7 e(c) = 4

b

4

a

c

Figure 2: An example showing that having exclusive neigh-
borhoods can be sub-optimal (a), and an error trace demon-
strating it (b).

1, b = 2, c = 3 (the other case, a = 2, b = 1, c = 3,
is symmetrical). However, in this case event (4; b) can be
dropped, as shown by the error trace in Figure 2b, where
external task 4 executes at time 8 and then again at 15
without b executing in the meantime.

On the other hand, if c is assigned lower priority than
a and b, e.g. a = 3, b = 2, c = 1, then Theorem 1 is no
longer applicable, but no events are lost in this case. This
follows from the simple observation that any execution of 4
when processor is idle, will be followed by executions of a,
b and c (in that order), requiring the total of 6 time units.
Since that is less than m(4), it follows that the processor
will always be idle when 4 is executed. Unfortunately, it is
not known presently how to generalize this ad-hoc reasoning
to arbitrary systems. Until such a generalization is discov-
ered, we feel it is well justi�ed to trade o� optimality with
predictability of behavior.

4.2 Analysis of external events

To check whether an external event (i; j) can be dropped,
we need to check whether the execution of j can be delayed
for more than m(i) time units.

There are two possible sources of delay of execution of
j: those due to tasks that are already enabled at the time i
is executed, and those due to tasks enabled (possibly indi-
rectly) by execution of some external tasks after j is enabled.
Our analysis will proceed along the following lines:

1. Delays from di�erent sources are computed indepen-
dently and then summed, to get a bound on the actual
worst case delay.

2. We limit the delay contribution from already enabled
tasks by observing that in the worst case only a subset
of tasks can be enabled (see (2)).

3. We limit the delay contribution from external task by
observing that they can be executed only a limited
number of times in a given time interval (see (3)).

In the rest of this section we will consider a typical exe-
cution of the system (sketched on Figure 3), where:

executing

external

timet0 t1 t2

< j < j� j

tntn�1

�

Figure 3: A typical execution.

� at time tn task j completes the execution, and thus it
is disabled,

� t0 is the earliest time such that between t0 and tn no
tasks with priority less than j are executed,

� in the interval [t0; tn), external tasks can execute at
any time.

Our goal is to bound � = tn � t0. If we can show that � is
less than m(i), we would show that (i; j) cannot be dropped.

The �rst step in checking whether external events can
be dropped is to compute so-called partial loads. A partial
load �(i; j) is the �rst time at which only tasks with priority
lower than j are enabled, given that:

1. task i (which may be internal or external) �nishes the
execution at time 0,

2. no tasks other than i are enabled just before i �nishes
its execution,

3. no external tasks execute in the interval [0; �(i; j)] (other
than possibly i �nishing its execution at 0).

In other words, �(i; j) is the continuous work-load at priority
j or higher caused by an execution of i. Obviously, partial
loads can be determined by simulation. A more e�cient of
doing it (in time proportional to the square of size of T [U)
is proposed in Section 4.3.

At time t0 (in Figure 3), some internal task of priority
less than j may be �nishing its execution and enabling tasks
of priority j or higher. In the worst case, such an event may
cause the following work-load at priority j or higher:3

maxf�(k; j) jk 2 T; k < jg : (2)

In a time interval of length �, some external task e can

be executed4 , at most
l

�
m(e)

m
times, and every execution

generates a work-load (at priority j or higher) of �(k; j).
Thus the total work-load at priority j or higher caused by
external tasks in an interval of length � is bounded by:

X
k2U

�
�

m(k)

�
�(k; j) : (3)

Finally, since the work-load in any time interval where only
tasks of priority j or higher execute, may be caused only

3We assume that sums and maxima over empty sets are zero, i.e.P
s2S

s = maxfsjs 2 Sg = 0 if S is empty.
4In this paper, we use dxe to denote the smallest positive integer

not smaller than x. Thus, according to this, slightly non-standard
de�nition, d0e = 1.

by an execution of a task of priority less than j at the very
beginning of the interval and by executions of external tasks
during the interval, we have (from (2) and (3)):

� � maxf�(k; j) jk 2 T; k < jg +X
k2U

�
�

m(k)

�
�(k; j) : (4)

It can be shown that true � must not only satisfy (4),
but must also be smaller than the smallest positive � satis-
fying (4) with equality. Such a � can be computed by the
following iteration computation:

�0 = maxf�(k; j) jk 2 T; k < jg ;

�l+1 = �0 +
X
k2U

�
�l

m(k)

�
�(k; j) l = 0; 1; . . . : (5)

The iteration will converge if:

X
k2U

�(k; j)

m(k)
< 1 : (6)

The following theorem summarizes the discussion above:

Theorem 2 Let (6) be satis�ed, and let �� be the limit of
iteration (5). If �� < m(i) then (i; j) cannot be dropped.

If �� � m(i) or if (5) does not converge, the results are
inconclusive: it may be the case that (i; j) can indeed be
dropped, or it may be the case that (i; j) cannot be dropped,
but our analysis is too conservative to prove it.

For example, to check whether event (7; 1) in Figure 1
can be dropped, we need to compute:

�0 = 0 ; (7)

�l+1 =

�
�l

m(7)

�
�(7; 1) +

�
�m

m(6)

�
�(6; 1) : (8)

First, we need to determine (either by simulation or by the
procedure described in the next section) that �(7; 1) = 11
and �(6; 1) = 4, and then we have that the iteration con-
verges with �2 = �3 = 19. Since that is less than m(7) =
20, we conclude that (7; 1) cannot be dropped.

4.3 Computing partial loads

To compute partial loads, we �rst compute the function � :
(T [U) � T 7! IR such that �(i; n) = �(i; n) (where n in
the highest priority task), and �(i; j) = �(i; j)� �(i; j + 1)
for all internal tasks j < n. In other words, �(i; j) is the
additional work-load generated by an execution of i if the
minimum priority task allowed to execute is j rather than
j + 1. It follows then easily that:

�(i; j) =
X
k�j

�(i; k) :

It can be shown that � can be characterized as follows:

�(i; j) =

�
e(j) +

P
k>j

�(j; k) if (i; j) 2 E ;

maxf�(k; j) j (i; k) 2 E; k > jg otherwise.

(9)
Notice, that to compute �(i; �), we only need to know �(j; �)
for all successors j of i (i.e. for all j such that (i; j) 2 E).

Thus, (9) can be implemented with a single traversal of E
in reverse topological order.

For example, for the system in Figure 1 (in a possible
order of computation):

�(4; 3) = 2
�(2; 3) = 2 �(2; 4) = 1
�(5; 3) = 2 �(5; 4) = 1
�(1; 2) = 4 �(1; 3) = 2 �(1; 4) = 1 �(1; 5) = 2
�(7; 1) = 11
�(6; 2) = 4

Note that task 3 contributes its execution time twice to the
the total load of 11 in �(7; 1). That is because there are
two path from 1 to 3, one containing a task with priority
lower than 3. Therefore, every execution of 1 will cause two
executions of 3. From task 5 there are also two paths to
task 3 but there are no lower priority tasks on them, so an
execution of 5 will cause only a single execution of 3 (ac-
counted by �(5; 3)). This observation can be used to assign
priorities such that total workload is minimized. Unfortu-
nately, this criterion might be in conict with requirements
of Theorem 1. It is still an open problem to �nd a pri-
ority assignment policy that balances these two conicting
requirement.

5 Validation of Non-Preemptive Schedules

Preemptive static priority scheduling has attracted a lot of
attention due to its elegant theoretical properties and good
service of urgent tasks. However, non-preemptive schemas
are often used in practice due to signi�cantly simpler imple-
mentation and lower execution time overhead. In this sec-
tion we extend the analysis of section 4 to non-preemptive
static priority scheduling. In this scheme, similarly to the
preemptive case, if the processor is idle, then the task with
the highest priority among enabled tasks is executed. How-
ever, once a task is selected for execution, it is run until
completion, even is some higher priority tasks become en-
abled in the meanwhile.

First, note that Theorem 1 is still valid even for non-
preemptive scheduling. Therefore we only need to check
whether some external event (i; j) can be dropped. To do
that, we consider a typical segment of the execution in which
j can be enabled, but cannot be executed. Such a segment
has the following characteristics:

� the segment begins at time t0 with the execution of
some task with priority no higher than j,

� all the other tasks executing in the segment have pri-
orities higher than j,

� the segment ends at time tn when task j starts exe-
cuting,

� in the interval [t0; tn), external tasks can execute only
at any time.

Now, by reasoning similar to section 4, it can be shown that
� = tn � t0 must satisfy:

� � maxfe(k) + �(k; j + 1) jk 2 T; k � jg +X
k2U

�
�

m(k)

�
�(k; j + 1) ; (10)

where the �rst term accounts for the execution of the initial
task in the interval and its successors, and the second term
accounts for executions of external tasks.

Table 1: Schedule validation for PATHO

number of tasks 10 100 1000 2000 4000
run time [ms] 1 1 6 12 24

Again, the smallest � satisfying (10) with equality can
be determined by straightforward iteration, which converges
if (6) is satis�ed.

Theorem 3 Let (6) be satis�ed, and let �� be the smallest
� satisfying (10) with equality. If �� + e(j) < m(i) then
(i; j) cannot be dropped.

6 Experiments

We implemented the algorithms presented in this paper in-
side the POLIS HW/SW co-design system [5]. POLIS starts
from a system speci�ed as a network of interacting compo-
nents, and provides an implementation as a set of software
and/or hardware tasks. Software tasks are scheduled ac-
cording to their priorities which are �xed. The user sets
priorities and maximum times between execution of exter-
nal events, while POLIS estimates the maximum execution
time of each task. These estimates are then used in our
algorithm to bound times between two executions of every
task.

We tested our algorithm on two classes of examples: one
from the automotive domain, the other from the reactive
Real Time Operating System domain. The simpler example
of the automotive domain is a dashboard controller which
consists of 6 tasks (to calculate and display speed, fuel level,
. . .) which react to 13 external events. The schedule used
was validated in less than 0.1s of CPU time of Sparc 10
workstation, a negligible time when compared to 8.6s it took
for POLIS to estimate execution times of individual tasks
(this time includes partially implementing the tasks, to the
point that meaningful estimations can be made).

The larger example is a shock absorber controller [2] (of
which the system in Figure 1 is a small subsystem). It has
48 tasks reacting to 11 external events. Our algorithm re-
quired 0.3s of CPU time, which was again negligible com-
pared to 880s required to estimate execution times of indi-
vidual tasks.

We also applied our algorithm to an existing model of
the PATHO real-time operating system [3]. In this model,
several tasks with known execution times share a processor
according to a non-preemptive static priority schema. In [3]
results are reported for systems with ten PATHO tasks that
range from seconds to thousands of seconds (higher priorities
tasks are easier to validate). The method presented in this
paper validated all ten tasks in one milliseconds. Note that
the speed of execution is so high that only for systems with
thousands of task we could see the dependence of the run
time to the number of tasks, and even then it is only linear
(see Table 1).

To our knowledge, experiments reported in [3] are the
only published results on using timed automata for sched-
ule validation. Timed automata are interesting because they
are representative of formalisms in which the schedule vali-
dation problem can be solved exactly, and for a wider class
of systems than it is possible with the method proposed
here. However, as PATHO schedule validation indicate, our
approach is substantially more e�cient.

7 Conclusions

We proposed a schedule validation method for reactive real-
time systems scheduled by a static priority schema. We
have developed versions of our method both for preemptive
and non-preemptive scheduling. Our method is conservative
in the sense that it might claim that a valid schedule is
invalid, but it can never declare an invalid schedule to be
valid. Initial experimental results has shown that the run
time of our method is negligible compared both to other
steps in the design process, and to schedule validation by
di�erent methods.

REFERENCES

[1] Neil C. Audsley, Alan Burns, M. Richardson, Ken W.
Tindell, and Andy J. Wellings. Applying new scheduling
theory to static priority pre-emptive scheduling. Soft-
ware Engineering Journal, pages 284{292, September
1993.

[2] Felice Balarin, Harry Hsieh, Attila Jurecska, Luciano
Lavagno, and Alberto Sangiovanni-Vincentelli. Formal
veri�cation of embedded systems based on CFSM net-
works. In Proceedings of the 33th ACM/IEEE Design
Automation Conference, pages 568{571, June 1996.

[3] Felice Balarin, Karl Petty, Alberto L. Sangiovanni-
Vincentelli, and Pravin Varaiya. Formal veri�cation of
the PATHO real-time operating system. In Proceedings
of 33rd Conference on Decision and Control, CDC'94,
December 1994.

[4] Felice Balarin and Alberto Sangiovanni-Vincentelli.
Schedule validation for embedded reactive real-time sys-
tems. Technical report, Cadence Berkeley Laboratories,
October 1996.

[5] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila
Jurecska, Luciano Lavagno, and Alberto Sangiovanni-
Vincentelli. A formal methodology for hard-
ware/software codesign of embedded systems. IEEE Mi-
cro, August 1994.

[6] Michael Gonzalez Harbour, Mark H. Klein, and John
Lehoczky. Timing analysis for �xed-priority scheduling
of hard real-time systems. IEEE Transaction on Soft-
ware Engineering, 20(1), January 1994.

[7] C. L. Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard-realtime environment.
Journal of the Association for Computing Machinery,
20(1):46{61, January 1973.

