
Scheduler-Based DRAM Energy Management

V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan and M. J. Irwin
The Pennsylvania State University, University Park, PA 16802

ABSTRACT
Previous work on DRAM power-mode management focused on
hardware-based techniques and compiler-directed schemes to ex-
plicitly transition unused memory modules to low-power operat-
ing modes. While hardware-based techniques require extra logic
to keep track of memory references and make decisions about fu-
ture mode transitions, compiler-directed schemes can only work
on a single application at a time and demand sophisticated pro-
gram analysis support. In this work, we present an operating sys-
tem (OS) based solution where the OS scheduler directs the power
mode transitions by keeping track of module accesses for each pro-
cess in the system. This global view combined with the flexibility
of a software approach brings large energy savings at no extra hard-
ware cost. Our implementation using a full-fledged OS shows that
the proposed technique is also very robust when different system
and workload parameters are modified, and provides the first set of
experimental results for memory energy optimization with a multi-
programmed workload on a real platform. The proposed technique
is applicable to both embedded systems and high-end computing
platforms.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General; D.4.1 [Operating Systems]:
Process Management—Scheduling; B.3.1 [Memory Structures]:
Dynamic Memory (DRAM)

General Terms
Management, Design, Experimentation

Keywords
Energy Management, DRAM, Operating Systems, Scheduler, En-
ergy Estimation.

1. INTRODUCTION AND MOTIVATION
Optimizing power consumption of computing components has

become as important as performance. Reducing the overall energy
expended in sustaining computing demands on embedded devices
is commonly accepted as being important for conserving battery

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002,June 10-14, 2002, New Orleans, Louisiana, USA
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

energy. At the same time, power optimization is also taking center-
stage on high end systems due to thermal and packaging consider-
ations. To quote a recent Intel press release [7], ‘Power and heat
are the biggest issues for this decade’. Energy management is im-
portant at different levels of the system architecture. Further, hard-
ware and software power optimization techniques are both equally
important, and often go hand-in-hand to complement each other.
Adhering to this philosophy, this paper presents a software-based
strategy that can be easily incorporated in the operating system, to
optimize the energy consumption of DRAMs by exploiting their
hardware capabilities of operating in different power modes.

Energy optimization is important for all components including
the processor datapath, caches, memory, peripherals, and buses [2].
Optimizing just one may shift the bottleneck to another component.
Realizing this, Intel has recently announced a target power budget
for each component as a percentage of overall system consumption
[6]. Our focus in this paper is on the DRAM energy consumption,
whose target consumption in [6] has put a limit of not more than 5%
of overall system consumption. It has been observed [2, 8, 16, 18]
that the memory system is a dominant consumer of the overall sys-
tem energy and is an important candidate for software and hardware
optimizations. This is especially true for many embedded applica-
tions that are typically memory-intensive (i.e., array-dominant such
as signal and video processing). In addition, applications are grad-
ually becoming more data-centric with stringent memory require-
ments (for both storage and speed), causing vendors to incorporate
large storage capacities into their offerings. Typically, a computer
system contains several DRAM chips (organized in rows/banks and
columns), with each of them consuming power even if it is not
being currently used. It would be extremely valuable to explore
techniques for selectively transitioning the unused memory mod-
ules into lower energy consumption modes whenever possible.

As with other hardware components, DRAM modules have star-
ted providing power mode control capabilities [13, 14], where in-
dividual modules can be selectively transitioned into a low-power
operating mode when inactive. There is a performance (and per-
haps energy) cost to be paid in exiting this low-power operating
mode and coming back to the active mode before a memory re-
quest can be serviced (calledresynchronization cost). In the hope
of exploiting these mode control capabilities, there has been recent
interest in hardware-based techniques [3, 9] and compiler-directed
techniques [3] to explicitly transition individual modules to a low-
power operating mode during periods of idleness.

However, each of these approaches has its own limitations. With
the compiler-directed approach, we are limited to optimizations for
statically analyzable situations, and have to often resort to con-
servative options. Further, these approaches can reach decisions
based on reference patterns for only one program at a time, and
do not have information on a more global scale, e.g., across pro-
cesses running on that system. While we can be much more aggres-
sive/optimistic (perhaps overly optimistic in some circumstances)
in hardware-based solutions, there is the cost of the additional hard-
ware that is required to keep track of historical access patterns and
to reach decisions based on these patterns.

In this paper, we present an alternate software-based solution,
where the transitioning is effected by the operating system (OS).

The operating system has the physical frame usage information
across the processes, and can often base its frame allocation poli-
cies to each process for energy optimization. Further, it has this
information on a global scale, across the processes. This informa-
tion can be used by the operating system to effect mode transitions
at appropriate points when it has a good idea that a module will
not be needed for a certain period. For example, if the OS can pre-
dict that a given module will not be used by the next process to be
scheduled, the module can be transitioned into a low-power oper-
ating mode. This prediction can be made through information that
can be gleaned by the OS by examining the reference bits in the
TLB/page-table. If this turns out to be inaccurate, a resynchroniza-
tion cost would be paid. Tracking resource access patterns across
processes within the operating system has been used in prior re-
search [12] in the context of powering down peripherals mainly,
and this is the first investigation of such issues for DRAM power-
mode control. Previous OS-based power management studies also
considered voltage and frequency scaling [1, 4, 5, 11, 15, 17].

DRAM mode control by the operating system at re-scheduling
points attempt optimization at a much coarser granularity than a
compiler or a pure hardware based approach, where transitions can
potentially be effected at memory access granularities. However, it
is our belief (and our experimental results do confirm this) that a
substantial portion of the energy savings that those techniques can
provide can be attained with our OS scheduler-based mode transi-
tion strategy, without requiring extensive compilation support, or
any additional hardware support (other than mode control capabil-
ity). In fact, we go even further to show that if there is additional
hardware support such as those that have been proposed in prior
research [3, 9], our scheduler-based mode control strategy can be
used in conjunction with these schemes to further the energy sav-
ings.

Previous studies [3, 9] that have attempted DRAM power op-
timization have used a simulation-based strategy, using a set of
applications running in isolation (dedicated mode). In contrast,
this work conducts an evaluation on an actual platform, running
a full-fledged operating system with a multiprogrammed workload.
This study modifies an off-the-shelf open-source operating system
(Linux Redhat 6.2) running on Sun Sparc hardware, to incorpo-
rate our energy optimizations. Further, memory references from a
multiprogrammed workload running on this system are traced. The
Linux scheduler has also been augmented to track the idle times for
different modules with our mode-control mechanism. Using sev-
eral applications on this experimental platform, this paper makes
the following contributions:
� We present the first results for the energy savings through

power-mode control for a multiprogrammed workload and a real
operating system during an actual execution.
� We demonstrate that our scheduler based (software-only) DR-

AM power mode control strategy can provide the bulk of the energy
savings of a pure hardware based approach, without requiring the
extra hardware.
� We also show that our scheduler based strategy, can further the

energy savings even if a hardware based DRAM energy optimizer
is available.

The rest of this paper is organized as follows. Section 2 reviews
basic concepts related to DRAM power-mode management and
summarizes important characteristics of hardware-based power-mo-
de management strategies. Section 3 presents details of our schedu-
ler-based power-mode management strategy. Section 4 introduces
our experimental methodology and presents our results. Section 5
summarizes our major conclusions.

2. MEMORY ARCHITECTURE AND LOW-
POWER OPERATING MODES

We focus on an architecture where the memory system is com-
posed of multiple memory modules organized into banks (rows)
and columns. Accessing a data in such an architecture would re-
quire activating the corresponding modules. There are several ways
of saving power in such a memory organization. The approach
adopted in this paper is to put the unused memory banks into one

Energy Re-synchronization
Consumption (nJ) Time (cycles)

Active 3.570 0
Standby 0.830 2

Nap 0.320 30
Power-Down 0.005 9,000

Figure 1: Energy consumption and resynchronization times for
different operating modes.

of several low-power operating modes. In all our experiments, we
use one module per bank; consequently, the termsbankandmodule
are used interchangeably.

Each memory bank operates independently, and when not in ac-
tive use, it can be placed into alow-power operating modeto con-
serve energy. Each low-power operating mode works by activat-
ing only specific parts of the memory circuitry such as column de-
coders, row decoders, clock synchronization circuitry, and refresh
circuitry (instead of all parts of the circuitry) [13]. The model for
our memory system associates an energy consumption value per
cycle for four different operating modes together with a resynchro-
nization time that is needed to bring the module back to the active
state (which is the only state where a memory request can be ser-
viced). The energy consumptions and resynchronization times for
our operating modes are given in Figure 1. Earlier studies [3, 9]
have used similar models for the DRAM modules. The energy val-
ues shown in this figure have been obtained from the measured cur-
rent values associated with memory modules documented in mem-
ory data sheets (for a 3.3 V, 2.5 nanoseconds cycle time, 8 MB
memory) [13]. The re-synchronization times are also obtained from
data sheets. Based on trends gleaned from data sheets, the energy
values increase by 30% when module is doubled in size.

A bank can be placed into a low-power mode using a hardware-
based, software-based, or a hybrid approach [3, 9]. Previous re-
search [3] has shown that hardware-based schemes, particularly a
history-based mechanism (called HBP), achieves the best energy
savings. To demonstrate that our approach can give energy sav-
ings close to those obtained through sophisticated hardware mech-
anisms, we compare our proposed scheduler-based strategy with
two previously proposed hardware based mode control schemes —
called Constant Threshold Predictor (CTP) and History Based Pre-
dictor (HBP).

Hardware-based mode control mechanisms, in general, monitor
the memory references to each DRAM bank, and based on the his-
tory, effect appropriate power-mode transitions. The rationale be-
hind CTP is that if a memory bank has not been accessed in a while,
then it is not likely to be accessed in the near future (that is, inter-
access times are predicted to be long). A (constant) threshold is
used to determine the idleness of a bank, and if the next access to
this bank does not come within this time, the bank is transitioned
to a lower power mode. As in previous studies (e.g., [3]), after
10 cycles of idleness, the corresponding bank is put in standby
mode in our experiments. Subsequently, if the bank is not refer-
enced for another 100 cycles, it is transitioned into the napping
mode. Finally, if the bank is not referenced for a further 1,000,000
cycles, it is put into power-down mode. Whenever a bank in the
low-power mode is referenced, it is brought directly back into the
active mode incurring the corresponding re-synchronization costs
(based on what mode it was in). HBP, as discussed in [3], esti-
mates the next inter-access time for a bank to be the same as the
previous inter-access time. With this estimate, it calculates what
would be the ideal power mode that it can transition the bank to af-
ter the current access, and at what time it should bring it back to the
active mode (so that the processor does not see resynchronization
overheads).

3. OUR APPROACH
Adhering to the philosophy that software-based solutions are

more flexible, and less expensive, we propose a power-mode con-

trol strategy within the OS. The OS not only has physical frame
allocation information for each executing process, but also has ac-
cess to those that are actually being referenced (by sampling the
reference bits in the page table/TLB). Further, it has this informa-
tion not just for one process, but across all processes. Based on
this information, it can determine points in the system execution
when one or more banks may remain idle for extended periods, and
consequently power them down.

We propose performing such power-mode transitions within the
OS scheduler, when context switching from one process to the next.
With time quantums (the period of time that a process normally
runs before being preempted) typically being tens of milliseconds,
one can hope to get substantial energy savings if a bank is not used
during a time quantum. Also, if a bank is used only by a single
process, additional energy savings can be obtained by placing the
bank in a low-power mode until the next time quantum allocated to
that process. Further, if the degree of multiprogramming increases
(i.e., the number of process pseudo-concurrently executing), then
the time gap between successive quanta for a process would further
go up, increasing the window of opportunity for energy savings
with this strategy. If we are able to track what banks are actually
being used, then we can expect the same set of banks to be used the
next time this application is scheduled. The other banks can be put
into low-power mode.

Based on this principle, we describe a scheduler-based power-
mode control scheme, that tracks memory banks that are being used
by different applications and selectively turning on/off these banks
at context switch points.

3.1 Bank Usage Table
The OS tracks memory bank usage of applications with a Bank

Usage Table (BUT). Figure 2 shows an abstract view of a BUT
which gives the bank usage information forn banks (B1 through
Bn) andmprocesses (daemons would also be included in this ta-
ble). An entry inith row andjth column marked using� in this
table indicates that processi used bankj the previous time it was
scheduled. This information can help us in selecting which banks
to transition to a low-power mode when the scheduler picks this
process the next time. We next discuss how to mark the� in the
BUT.

When a process is selected to run, we put the banks that do not
have an� into power-downmode (see Figure 1), and turn on the
ones (toactive) that do. The�markers for that row are then wiped
out. We next need to find out whether for the current quantum, the
process actually refers to a given bank. This can be achieved in
different ways:
� Whenever the operating system schedules a process, it can

wipe out the permissions (read/write/execute) of its virtual pages
that have been mapped in (to frames in memory banks) to invalid
in the page table, so that any reference to a virtual page by the pro-
cess would result in a fault (segmentation fault in this case). Note
that pages that do not have a physical frame mapping will page fault
anyway. At the time of the fault (whether a segmentation or page
fault), the OS can update the corresponding column of the BUT
based on where the physical frame resides. It can also give back the
permission for the remaining virtual pages mapping into the same
physical bank so that references to those pages do not fault again in
the same time quantum. With this approach, there is at most 1 extra
fault per bank — which does not incur the disk overheads but only
updates permissions in the page table entry — to track the BUT
within each quantum. Further, setting page table entry permissions
before scheduling a process is not a significant overhead (e.g., for
an 8MB memory bank with 8KB pages, we need to update at most
8MB/8KB (= 1024) entries per memory bank).
� Instead of taking faults, the OS could use reference bits (that

are maintained for each virtual page in the page table) to track what
is being referenced. Before scheduling a process, the OS could
wipe out the reference bits of all pages that have been physically
mapped in. When context switching out this process, it could re-
examine all these reference bits and mark the corresponding columns
of the BUT for whatever banks are referenced. Note that the page
replacement algorithm (second chance LRU in Linux) also samples

Process Id B1 B2 B3 : : : Bn
1 � � �

2 � � �

3 � �

4 �

5 � � �

: : : : : : : : : : : : : : : : : :

m � � �

Figure 2: Bank usage table (abstract view).

these reference bits, resetting them and moving on to the next can-
didate when searching for the physical frame. This code also needs
to be extended to update the BUT when resetting the reference bits.
While this approach avoids any extra page faults, it can affect the
approximate LRU page replacement algorithm unless that is also
made aware of the BUT updates that are taking place.
� The last approach that we identify is actually not an exact

mechanism, but tries to approximate bank usage pattern. The ad-
vantage with this approach is that it can be much more efficient
than the others. In this scheme, when a process is being context
switched out, we simply mark the banks in the BUT for which there
is an entry referencing a physical frame in that bank in the TLB. If
the TLB does a good job of capturing the application’s working set,
then this scheme is ideally suited for capturing bank access behav-
ior. The only situations when this approach fails to mark all banks
being accessed is when the working set is larger, and there is no
TLB entry associated with a bank that is currently being used. In
this case, TLB misses need to be handled in software (as in our
experimental platform)

All these schemes are quite involved, requiring extensive modi-
fications of the operating system. While a comprehensive experi-
mental evaluation of all these approaches is really needed to eval-
uate their pros and cons, in this study we use the first approach
to mark the BUT table entries since our focus here is mainly to
demonstrate the potential of our scheduler-based DRAM mode con-
trol strategy. All the energy and performance overheads for imple-
menting this approach are reflected in our experimental results.

3.2 Evaluation Strategy
Our current implementation and evaluation platform uses an ac-

tual Sun UltraSparc 5, running Linux RedHat 6.2, kernel version
2.2.14. The physical memory available on this machine is 128 MB,
and we can give parameters to the system specifying the bank orga-
nization. The default number of banks used in our experiments is
sixteen (each of which is 8 MB), and the default OS time quantum
is 200 milliseconds. However, we also studied the sensitivity of our
energy savings to the bank organization.

We have implemented the BUT table maintenance within the
Linux kernel by modifying the scheduler and page fault handler.
Instead of having a separate global table, we kept each row of the
table in the corresponding Linuxtaskstructure [19] for that pro-
cess. We also enhanced the page allocation/faulting mechanism to
keep track of banks that are being referenced by a process.

As was mentioned earlier, this is the first study to use an actual
implementation-based approach for evaluation purposes, consider-
ing a full-fledged system operating in a multiprogrammed fashion.
While this gives us a very realistic evaluation, one of its drawbacks
is the inability to be able to track energy savings/consumption. For
our energy calculations, we dump traces of memory references of
the system (not just for one application, but across applications)
and then use a post-processing strategy to compute memory-energy
consumption (based on the memory model discussed earlier). We
have ensured that the trace collection facility does not itself perturb
the results significantly by using extensive buffers for accumulat-
ing logs and flushing them to disk rather infrequently. The memory
reference trace contains whether the reference is a load or store, the
virtual page numbers, the corresponding physical frame number,
and the timestamp of the reference. The timestamp was generated
using the high resolution TICK register available on the UltraSparc

Appln1 Appln2 Applnm��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

Models
Energy

Memory
Configuration

Statistics
EnergyMemory

Trace

Operating System

Energy
Calculation

Figure 3: Trace collection and DRAM energy computation.

processor. A schematic of our overall evaluation strategy is given
in Figure 3.

3.3 Advantages and Disadvantages
Having presented our approach, we now qualitatively discuss its

pros and cons, specifically in relation to hardware-based strategies
that have been shown to give good energy savings in prior research
[3].

Hardware-based approaches such as CTP or HBP require addi-
tional hardware that needs to monitor the ongoing accesses to each
bank and then additional logic to make predictions based on this
history. This not only incurs additional cost, but may itself con-
sume some amount of energy. Another important concern with
hardware-based schemes is that they are not very flexible, and it
is not very easy to customize or adapt them based on the current
environment/application.

Our scheduler based software strategy, on the other hand, does
not require any additional hardware, except the mode transitioning
mechanisms that DRAM chips provide for power management. It
also offers us the flexibility of determining what banks to power
manage, when to initiate transitions, and can adapt to application
behavior dynamically. It can also track DRAM usage patterns across
applications to base its decisions. For instance, let us say a process
that has been accessing certain banks solely dies. The OS can, per-
haps, initiate transitions for those banks right away, instead of in-
curring some delays which are necessary in certain hardware based
schemes. In addition, the OS knows when the process is going to
be scheduled again after the current epoch. Consequently, to avoid
resynchronization costs, it can bring the corresponding banks to
active state before the process may need them. Our current imple-
mentation does not, however, perform this optimization. An earlier
study [12] has also pointed out the benefits of taking actions at the
operating system level using task information rather than micro-
managing the resource at the device level.

There is a downside to the scheduler-based strategy, which is a
consequence of the granularity at which we operate. The mode
control decisions are made at milliseconds granularity (at context
switch points). On the other hand, hardware-based approaches op-
erate at a much finer resolution, and can effect transitions at an
access granularity. However, we think that, in the big picture, ex-
tended periods of idleness is what really matters, and our scheduler-
based strategy is expected to exploit those periods.

We would like to point out that there is nothing to prevent our
scheduler-based approach to be used in conjunction with the hard-
ware-based mechanisms. With such an integrated approach, the
scheduler manages the power consumption between one quanta of
execution and the next, while the hardware-based mechanism man-
ages the power consumption within each quanta.

We pictorially illustrate the pros and cons of the hardware-based
(CTP in particular in this example), scheduler-based and integrated
strategies in Figure 4. In this example, we assume two application
processes, and only one memory bank being accessed (process 2
does not access this bank during its time quantum). The resynchro-
nizations activities are not explicitly shown for the sake of clarity.
The hardware-based strategy activates a bank upon an access, and
following a threshold (after the access has been complete) the bank
is transitioned into a low-power operating mode. Note that this

Process1 Process2

: Active

Hardware-Based
Strategy

Scheduler-Based
Strategy

Combined
Strategy

Access Access

Time

Access

Process
1

Figure 4: Comparison of hardware-based, scheduler-based,
and combined strategies.

Benchmark Source Input Energy (mJ)
rawcaudio MediaBench clinton.cpm 123.2
rawdaudio MediaBench clinton.adpcm 112.0
polyphase MediaBench polyphase.INT polyphase.INT.COE 85.7
md5 MediaBench - 40.4
cordic MediaBench - 44.2
paraffins Trimaran 15 entries 16.5
g721encode MediaBench clinton.pcm 6063.4
mcf Spec2000 inp.in 3172.4

Figure 5: Benchmark characteristics.

threshold period could either be completely contained during the
quantum for process 1, or some of it may spill over into the quan-
tum for process 2. Note that this may not happen in the scheduler-
based strategy since it can put this bank into a low-power mode
when process 1 is preempted (if it knows that process 2 does not
access this bank). However, it pays the penalty of keeping the bank
active during the entire quantum of process 1. The advantage of
hardware based vs. scheduler based schemes depends on whether
the former or latter factor is more significant. On the other hand,
the combined strategy can get the best of both worlds, and in this
example gives the maximum energy savings as shown in the figure.
This example has been given only to illustrate where each scheme
gets its savings, and a realistic evaluation with actual applications
is needed to really compare the schemes as is done next.

4. EXPERIMENTS AND RESULTS

4.1 Benchmarks
To evaluate the effectiveness of our scheduler-based strategy in

saving energy, we used eight complete benchmarks. Six of these
benchmarks are from MediaBench [10], a suite of applications that
stream data. One of the remaining applications ismcf , a repre-
sentative benchmark (which is very memory-intensive) from the
SpecInt 2000 suite and the other isparaffins that comes with
the Trimaran system. The salient characteristics of these bench-
marks are summarized in Figure 5. The last column gives themem-
ory system energy consumptionfor each benchmark when all 16
banks are kept in the fully active (normal operating mode) during
the entire execution of the application (assuming no cache mem-
ory). All energy numbers reported in the rest of this paper are val-
ues normalized to those in the last column.

4.2 Energy Savings and Performance with Sin-
gle Application Execution

Figure 6: Normalized memory energy consumption.

Figure 6 shows the normalized energy consumption for our bench-
marks in an execution environment where only one application is
running in the system with no cache memory present (results with
a cache are presented later). Recall that there are always some dae-
mons that execute. The energy savings obtained using CTP and
HBP are also given. We can observe that CTP and HBP give very
good energy savings, as was observed in previous studies. More
noteworthy is the observation that our OS scheduler based strat-
egy (denoted as BUT in the figure) is giving most of the energy
savings provided by the hardware mechanisms. Please note that
while the differences may look deceptively larger, the scale of the
graph is quite amplified (for example, BUT gives 92% energy sav-
ings forrawcaudio while CTP/HBP give around 98-99% energy
savings). More importantly, our strategy provides these benefits
without incurring any additional hardware costs. This overhead of
HBP scheme in particular can account to up to 10% additional en-
ergy consumption (consuming 241pJ every cycle) [3]. This over-
head is not included in our comparison as it could vary based on
the implementation. On the average, we have about 90% savings in
DRAM energy with our scheduler-based strategy. We would like
to point out that we did not put a bank into low-power mode during
the execution of an OS daemon (while the hardware-based mech-
anisms could). Providing this enhancement can further lessen the
differences between the hardware and our software strategies.

As mentioned earlier, we also considered the option of integrat-
ing our scheduler-based strategy with the hardware-based mech-
anism (both CTP and HBP), with the former providing savings
across time quantum and the latter providing savings within a time
quantum. We find that such a combined strategy can further the en-
ergy savings that are obtained with just the hardware-based mecha-
nisms. More specifically, combining CTP with BUT improved the
energy consumption of CTP by 22.7% and combining HBP with
BUT improved the energy consumption of HBP by 73.0%.

We also found that the performance overhead of our scheduler-
based approach is negligible (less than 1% for all benchmarks), as-
suming a resynchronization latency of 9000 cycles for the power-
down mode. In another set of experiments, we increased the resyn-
chronization time ten-fold, anticipating a large relative resynchro-
nization latency for future memory chips (due to increasing micro-
processor frequencies). We found that, even under this scenario,
the increase in execution cycles is less than 7%.

It should be noted that this set of experiments gives the bias more
towards the hardware-based schemes since there is not too much
gap between successive time quanta for an application (the only
activities between successive quanta for an application is the rou-
tine bookkeeping work for the OS). Even in this case, we find that
our scheduler-based strategy comes close to the hardware mech-
anisms. In the rest of the discussion, we focus on our scheduler
based strategy and examine its behavior for different workload and
hardware parameters.

4.3 Energy Savings with Multiple Applications
We performed another set of experiments where we measured

the effectiveness of our strategy under a multiprogrammed work-

load that imposes a higher demand on the memory system. No pre-
vious related study has studied this influence on the effectiveness
of the DRAM power management schemes. To conduct this study,
we simultaneously ran several instances of the same benchmark in
the system. The results are depicted in Figure 7 formcf , with the
number of instances varying from 1 to 40. As the multiprogram-
ming level increases, the time gap between successive executions
of an application increases, thereby saving more energy (we ob-
served that the OS page allocation provides some amount of insu-
lation between processes by allocating them pages from different
banks). However, beyond a certain point (4 in this case), the num-
ber of processes becomes so high that their memory demands cause
a single bank to be shared by several processes. This is evidenced
by the average number of banks used by an instance (process). We
found that the average number of banks used at any instance in-
creases from 3.4 when 10 instances are running to 7.6 when 40
instances are running. When an instance is scheduled, the sched-
uler ends up transitioning fewer banks into the low-power mode.
This consequently reduces the energy savings at high multipro-
gramming levels, making the energy consumption increase almost
linearly beyond 10 instances. Nevertheless, we observe that even
with forty instances of the application concurrently running, we
achieve nearly a 40% saving in memory energy consumption. Sim-
ilar observations were made when we conducted tests with multiple
instances of other benchmarks in our experimental suite.

Figure 7: Normalized memory energy consumption (multiple
instances ofmcf).

4.4 Sensitivity to the Number of Banks
In the next set of experiments, we changed the number of banks

in the system keeping total memory size fixed at 128MB. Recall
that the original bank configuration has sixteen 8MB banks. We ob-
serve from Figure 8 that increasing the number of banks improves
the energy savings. This is because a larger number of banks al-
lows our approach to manage power-mode transitions for smaller
portions of memory (at a finer granularity) and place more memory
space into low-power operating mode when inactive. However, our
other experiments with different number of banks also reveal that
increasing the number of banks beyond a point does not increase
the savings further. This is due to the fact that when a certain num-
ber of banks is reached, the access pattern of the application does
not allow to transition more banks into the low-power mode, i.e.,
the working set spans that many banks. We also observed that this
point is highly application-dependent. Another interesting obser-
vation from Figure 8 is that even with only four memory banks, our
scheduler-based strategy achieves nearly a 50% saving in memory
energy ofmcf .

4.5 Savings in a Cache-Based Environment
We performed another set of experiments to measure the energy

impact of power-mode control in a cache based environment. It
should be noted that the behavior of our scheduler-based strategy
is oblivious of the cache architecture in the system (if any). There-
fore, we report results only for HBP and combined strategies. In

Figure 8: Sensitivity of energy savings to the number of banks
(single instance ofmcf).

Figure 9: Impact of L1-L2 data cache hierarchy.

this set of experiments, we use a two-way L1 data cache of 16 KB
and a direct-mapped L2 cache of 32 KB. The line (block) sizes for
L1 and L2 are 32 bytes and 128 bytes, respectively. We present the
results in Figure 9. We see from these results that an L1-L2 cache
hierarchy can help to improve the energy consumption further, as
temporal locality helps the memory banks to transition to more ag-
gressive energy-saving modes (the idleness duration for main mem-
ory banks increases). We see that for themcf benchmark the ad-
ditional savings obtained from the cache are not significant. This
is because this benchmark exhibits poor locality, and consequently,
has a high miss rate. For the other benchmarks, on the other hand,
the improvement ranges from 47% (forpolyphase) to 80% (for
rawdaudio). We also observe from these results that even with
a cache-based environment, our scheduler-based strategy helps in-
crease the effectiveness of HBP in saving memory energy.

5. CONCLUSIONS
With power/energy optimization taking center-stage together with

performance, it is becoming essential to optimize energy consump-
tion at all levels of the system architecture. Such optimizations
are not only important in embedded environments, but in high-end
systems as well for reliability, packaging, and cooling constraints.
Memory energy consumption has been pointed out as playing an
important role in many applications, many of which are becoming
data centric. At the same time, the small target budget for memory
power [6] makes this an important hardware component to optimize
using hardware and software techniques.

Earlier research on memory energy optimization has mainly used
hardware mechanisms to detect bank idleness, and effect transitions
to low-power modes accordingly. Apart from the inflexibility of
such mechanisms, hardware cost is an important consideration.

Addressing these drawbacks, this paper has presented a new soft-
ware mechanism for energy management within the operating sys-
tem. We have proposed a scheduler-based mode transitioning mech-

anism for DRAMs that can keep track of banks referenced by dif-
ferent application processes, and use this information to power down
banks that will not be referenced in the next time quantum dur-
ing context switch points. Apart from this new proposal, we have
also implemented and evaluated this mechanism on an actual Linux
based system using realistic/multiprogrammed workloads. Perfor-
mance results clearly indicate that our software-based strategy can
give most of the savings of more expensive hardware-based schemes.
Further, we have also shown that the scheduler-based mode control
can even be integrated with an available hardware strategy to fur-
ther the memory energy savings.

6. ACKNOWLEDGEMENTS
This work was supported in part by NSF grants 0082064, 0093082,

0093085, 0103583, 9701475, 9988164, 0130143 and by GSRC and
PDG grants.

7. REFERENCES
[1] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design

techniques for system-level dynamic power management.IEEE
Transactions on VLSI Systems,8(3), June 2000.

[2] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle.Custom Memory Management Methodology –
Exploration of Memory Organization for Embedded Multimedia
System Design.Kluwer Academic Publishers, June 1998.

[3] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin. Hardware and software techniques for controlling
DRAM power modes.IEEE Transactions on Computers,November
2001 (Vol.50,No.11).

[4] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for
dynamic speed-setting of a low-power CPU. InProc. the ACM
International Conference on Mobile Computing and Networking,
pages 13–25, 1995.

[5] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava.
Power optimization of variable voltage core-based systems. InProc.
Design Automation Conf.,1998.

[6] Intel announcement.
http://developer.intel.com/design/mobile/intelpower/intmpg.htm.

[7] Intel announcement.
http://www.intel.com/pressroom/archive/releases/20011126tech.htm

[8] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of
compiler optimizations on system power. InProc. the 37th Design
Automation Conference,Los Angeles, California USA, June 5-9,
2000.

[9] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page
allocation. InProc. ASPLOS’00,November 2000.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a
tool for evaluating and synthesizing multimedia and communication
systems. InProc. the International Symposium on
Microarchitecture,1997.

[11] J. R. Lorch and A. J. Smith. Scheduling techniques for reducing
processor energy use in MacOS.Wireless Networks,3(5):311–324,
1997.

[12] Y.-H. Lu, L. Benini, and G. De Micheli. Operating system-directed
power reduction. InProc. ISLPED’00, Rapallo, Italy, 2000.

[13] Rambus Inc. http://www.rambus.com/.
[14] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., 1999.
[15] Y. Shin and K. Choi. Power-conscious fixed priority scheduling for

hard real-time systems. InProc. Design Automation Conference,
pages 134–139, 1999.

[16] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Y. Kim, and W. Ye.
Energy-driven integrated hardware-software optimizations using
SimplePower. InProc. the International Symposium on Computer
Architecture,June 2000.

[17] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. InProc. Symposium on Operating Systems
Design and Implementation,pages 13–23, 1994.

[18] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design
and use of SimplePower: a cycle-accurate energy estimation tool. In
Proc. the 37th Design Automation Conference,Los Angeles,
California USA, June 5-9, 2000.

[19] M. Beck.Linux Kernel Internals(2nd Edition). Addison-Wesley,
1999.

