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Abstract—The Elastic Mixed-Criticality (E-MC) task model and
an Early-Release EDF (ER-EDF) scheduling algorithm have been
studied to address the service interruption problem for low-
criticality tasks in uniprocessor systems, where the minimum ser-
vice requirements of low-criticality tasks are guaranteed by their
maximum periods. In this paper, focusing on multicore systems,
we first investigate and empirically evaluate the schedulability
of E-MC tasks under partitioned-EDF (P-EDF) by considering
various task-to-core mapping heuristics. Then, to improve the
service levels of low-criticality tasks by exploiting slack at
runtime, with and without task migrations being considered, we
study both global and local early-release schemes. Moreover,
considering varied migration overheads between different cores,
we propose the multicore-aware and migration constrained global-
ER schemes. The simulation results show that, compared to the
state-of-the-art Global EDF-VD scheduler, P-EDF with various
partitioning heuristics can lead to many more schedulable E-MC
task sets. Moreover, our proposed global and local ER schemes
can significantly improve the execution frequencies (and thus
service levels) of low-criticality tasks, while Global EDF-VD may
severely affect them by discarding most of their task instances at
runtime (especially for systems with more cores). Furthermore,
by allowing task migrations, global-ER schemes can dramatically
improve low-criticality tasks’ service levels for partitionings that
do not balance high- and low-criticality tasks among the cores.

I. INTRODUCTION

As the next-generation engineering systems, cyber-physical
systems (CPS) can have computation tasks with different levels
of importance according to their functionalities that further
lead to different criticality levels. For instance, it is typically
more important to guarantee flight-critical functionality (e.g.,
flight control) than mission-oriented functionality (e.g., cap-
turing photos in unmanned aerial vehicles) [1]. Note that,
in general, the flight-critical functionalities are certified by
certification authorities (such as US Federal Aviation Authority
and European Aviation Safety Agency) with extremely strict
and pessimistic assumptions, which are very hardly to occur
in reality [5]. In the mean time, for mission-critical functional-
ities, they are normally validated by vendor manufacturers in
a less rigorous standard. Since tasks with different criticality
levels need to share computing resources, how to efficiently
schedule such mixed-criticality (MC) tasks while satisfying
their specific requirements has been identified as one of the
most fundamental issues in CPS [5].
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Without proper provisions for such mixed-criticality tasks,
traditional scheduling algorithms are likely to cause the so-
called “priority inversion” problems [18]. Based on the MC
task model where a task generally has multiple worst case
execution times (WCETs) according to different certification
levels, several studies have been reported for uniprocessor [2],
[5], [6], [9], [18], [24] and multiprocessor systems [12], [11],
respectively.

Note that, in most existing MC scheduling algorithms, the
execution of low-criticality tasks is rather opportunistic. That
is, when any high-criticality task uses more time than its
low-level WCET and causes the system to enter the high-
level execution mode, all low-criticality task instances will be
discarded immediately to provide the high-level computation
need of high-criticality tasks. Such an approach can cause
serious service interruption and significant performance loss
for low-criticality tasks, especially when they are control tasks,
where their performance is mainly affected by the execution
frequencies and service intervals [20], [25].

To mitigate such a problem, based on the traditional mixed-
criticality task model, Santy et al. studied an online scheme
that calculates a delay-allowance before entering the high-
level execution mode and thus delays the cancellation of low-
criticality tasks to improve their service levels [19]. However,
this approach still can not provide any guarantee for the service
levels of low-criticality tasks. In [17], Mollison et al. further
studied a hierarchical scheduling algorithm that redistributed
slacks to low-criticality tasks.

Based on a different principle, we have studied the Elastic
Mixed-Critical (E-MC) task model and an early-release EDF
(ER-EDF) scheduling algorithm for uniprocessor systems [22].
Instead of executing low-criticality tasks opportunistically, the
central idea of E-MC is to have variable periods (i.e., service
intervals) for low-criticality tasks, where their minimal service
levels are represented by their maximum periods and guar-
anteed offline. At runtime, by properly reclaiming the slack,
ER-EDF allows low-criticality tasks to release their instances
earlier than their maximum periods (i.e., more frequently) and
thus to improve their service levels.

Inspired by but different from all existing work, we study in
this paper the scheduling algorithms for E-MC tasks in multi-
core systems. Focusing on the partitioned-EDF scheduling, we
first investigate the schedulability of E-MC tasks under various



task-to-core mapping heuristics and then study different early-
release techniques with the goal of improving the service levels
of low-criticality tasks at runtime. The main contributions of
this work are summarized as follows:

• First, we investigate the schedulability of E-MC tasks
under partitioned-EDF with various task-to-core mapping
heuristics (e.g., First-Fit, Best-Fit and Worst-Fit) and task
ordering policies (such as Decreasing Utilization and
Decreasing Criticality).

• Second, we propose both local and global early-release
(ER) schemes under partitioned-EDF, which prohibits
and allows task migrations, respectively, to improve the
service levels of low-criticality tasks at runtime;

• Third, considering difference in task migration overheads
between different cores, we devise multicore-aware and
migration constrained global early-release schemes;

• Finally, we evaluated the proposed schemes through
extensive simulations.

Our simulation results show that, with all the mapping
heuristics being considered, partitioned-EDF can schedule
many more E-MC task sets when compared to that of Global
EDF-VD [11], the state-of-the-art global MC scheduler.
Moreover, partitioned-EDF with early-release techniques can
significantly improve the service levels for low-criticality
tasks. On the other hand, Global EDF-VD could have a large
negative impact due to possibly unbounded cancellation of
their task instances at runtime, especially for systems with
more cores. Lastly, for task-to-core mappings (e.g., FF and
BF) that have unbalanced high- and low-criticality tasks,
the global early-release schemes that allows task migrations
can drastically increase the service levels for low-criticality
tasks when compared to that of the local early-release scheme.

The remainder of this paper is organized as follows. Sec-
tion II reviews closely realted works. Section III presents
task and system models. The schedulability of partitioned-
EDF for E-MC tasks is investigated in Section IV. Section V
presents both local and global early-release techniques for
low-criticality tasks. The evaluation results are discussed in
Section VI and Section VII concludes the paper.

II. CLOSELY RELATED WORKS

As the first work to address the scheduling of such tasks,
Vestal formalized the mixed-criticality scheduling problem
with multiple certification requirements at different degrees of
confidence and studied a fixed-priority scheduling algorithm
in [24]. Focusing on a finite number of mixed-criticality jobs,
several scheduling algorithms have been studied based on the
Own-Criticality Based Priority (OCBP) approach [4], [5], [16].
In [21], the Mixed-Critical EDF scheduling is studied, which
was shown to dominate OCBP-based schemes with higher
schedulability ratio and reduced complexity.

For sporadic MC tasks, an extension of OCBP was studied
that has a pseudo-polynomial complexity [15] and a more
efficient algorithm has been proposed [10]. Based on fixed-
priority preemptive scheduling (such as RMS), a zero-slack

scheduling approach [18] prevents low criticality tasks from
interfering high criticality tasks under overload condition,
by scheduling tasks with different criticality levels based
on their priorities until their “zero slack” time points. The
authors further studied the Priority and Criticality Ceiling
Protocol (PCCP) that addresses task synchronization problems
in the zero-slack based algorithms [14]. More recently, an-
other efficient scheduling algorithm, namely EDF-VD (virtual
deadline), that assigns virtual (and smaller) deadlines for high-
criticality tasks to ensure their schedulability in the worst case
scenario [2]. Based on the demand-bound function analysis,
an extension of EDF-VD using an efficient relative deadline
tuning technique can achieve better schedulability [9].

As multicore processors become popular for modern real-
time systems, several works have studied the scheduling
problem of mixed-criticality tasks in multiprocessor systems.
Focusing on partitioned scheduling, researchers investigated
the schedulability of various partitioning heuristics (e.g.,
First-Fit, Best-Fit and Worst-Fit) and task sorting policies
(e.g., Decreasing-Utilization and Decreasing-Criticality) under
fixed-priority (RMS) scheduling [12]. For global scheduling,
the Global EDF-VD algorithm extends Global-EDF to sched-
ule mixed-criticality tasks in multiprocessor systems [11].
In [3], Baruah et al. studied a global-based scheme with OCBP
for a finite collection of independent mixed-criticality jobs and
partitioned-based EDF-VD for sporadic tasks.

Note that, most existing mixed-criticality scheduling algo-
rithms guarantee the timeliness of high-criticality tasks in the
worst case scenario at the expense of low-criticality tasks. For
instance, when any high criticality task uses more time than
its low-level WCET and causes the system to enter high-level
execution mode, all low-criticality tasks will be discarded to
provide the required computation capacity for high-criticality
tasks [2], [6], [11]. Such an approach can cause serious
service interruption and significant performance loss for low-
criticality tasks. Based on the traditional mixed-critical task
model, Santy et al. studied an online scheme that calculates a
delay-allowance before entering the high-level execution mode
and thus delays the qcancellation of low-criticality tasks to
improve their services [19].

In our recent work [22], we proposed an Elastic Mixed-
Critical (E-MC) task model and studied the early-release
EDF (ER-EDF) scheduling algorithm. The central idea of E-
MC is to have variable periods (i.e., service intervals) for
low-criticality tasks, where their minimal service levels are
represented by their maximum periods and guaranteed offline.
At runtime, by properly reclaiming the slack, ER-EDF allows
low-criticality tasks to release earlier than their maximum
periods and thus to improve their service levels.

In this work, focusing on partitioned scheduling, we studied
the performance of various partitioning heuristics for a set of
E-MC tasks running on multiprocessor systems. In addition,
when there is not enough slack on a low-criticality task’s host
processor, we further investigate the scheme that allows it to
temporarily migrate and reclaim slack on other processors,
which is different from the existing works.



III. SYSTEM AND TASK MODELS

Note that, in the traditional MC task model, low-criticality
tasks are executed opportunistically with potentially un-
bounded cancellation at runtime to provide the worst-case
guarantee for high-criticality tasks [2]. Following a completely
different approach, the Elastic Mixed-Criticality (E-MC) task
model aims at guaranteeing the minimum service requirements
of low-criticality tasks offline and improving their service
levels at runtime without sacrificing the worst-case guarantee
for high-criticality tasks [22].

We consider systems that have only two different criticality
levels, HI and LO. There is a set of n E-MC tasks Γ =
{τ1, . . . , τn} and each task τi has a parameter ζi to denote
its criticality level. To guarantee the computation demands
of HI tasks in the worst case scenario, they have the same
timing parameters as those in traditional MC task model [2],
where cLO

i and cHI
i denotes its low- and high-level worst

case execution times (WCETs), respectively; moreover, pi
represents its period [22]. In general, cLO

i and cHI
i (where

cLO
i < cHI

i ) are specified by system designers and certification
authorities, respectively [2]. The low and high bounds for
utilization of task τi are further defined as uLO

i =
cLO
i

pi
and

uHI
i =

cHI
i

pi
, respectively.

The main difference between E-MC and MC task models
comes from the representation of low-criticality tasks. To
represent its minimum service level, each low-criticality task
τi has a maximum period (i.e., service interval) pmax

i [22], in
addition to its low WCET cLO

i and (desired1) period pi [2].
Moreover, to facilitate the improvement of its service level at
runtime, a low-criticality task τi also has a set of ki possible
early-release points PER

i = {p1i , . . . , p
ki
i } [22]. Similarly, the

(desired) low and minimum utilizations of τi are defined as
uLO
i =

cLO
i

pi
and uMIN

i =
cLO
i

pmax
i

, respectively.

MC Parameters Additional E-MC Parameters
ζi cLO

i cHI
i pi pmax

i PER
i

τ1 HI 10 20 25 - -
τ2 HI 4 8 11 - -
τ3 LO 2 - 12 12 {4}
τ4 LO 2 - 10 10 {7}

TABLE I: An example E-MC task set with four tasks.

As an example, Table I shows the timing parameters for a
set of four E-MC tasks. For high-criticality tasks τ1 and τ2,
their timing parameters are the same as in MC task model and
shown in the left part of the table. However, for low-criticality
tasks τ3 and τ4, in addition to their MC timing parameters,
additional E-MC parameters (i.e., pmax

i and PER
i ) are shown

on the right side of the table. We have pmax
i = pi for low-

criticality tasks since they are schedulable under partitioned-
EDF even with pi as shown in Section V and there is no need
to have extended and larger pmax

i [22].
We consider the set of E-MC tasks to be executed on a

multicore system that have m identical cores, which may

1Essentially, pi is kept in the E-MC task model to act as the bridge for
comparison with existing MC scheduling algorithms [22].

share different levels of on/off-chip caches. The commonly
adopted parallel scheduling constraints are assumed [8]: a
task can only run on one core at any given time (i.e., tasks
are not parallel); and a core can only be allocated to one
task at any given time (i.e., no hyperthreading). Moreover, it
is assumed that any instance of task τi will not run longer
than cζii ; otherwise, such instance will be aborted and an
error will be reported [2]. Given the above definitions and
assumptions, a given set of E-MC tasks is said to be E-MC
schedulable under a given scheduling algorithm if both the
high-level WCETs of high-criticality tasks and the minimum
service requirements (represented by pmax) of low-criticality
tasks can be guaranteed in the worst-case scenario [22].

IV. SCHEDULABILITY OF E-MC TASKS UNDER P-EDF

In [22], we studied the EDF schedulability condition for
E-MC tasks running on uniprocessor systems. In this section,
we investigate and empirically evaluate the schedulability of E-
MC tasks under the partitioned-EDF (P-EDF) scheduling with
various task-to-core mapping heuristics on multicore systems.

A. Schedulability Condition

First, based on the definitions of task utilizations, similar to
those in [2], we use the following notation:

• UΓ(H,L) =
∑

τi∈Γ∧ζi=HI u
LO
i

• UΓ(H,H) =
∑

τi∈Γ∧ζi=HI u
HI
i

• UΓ(L,L) =
∑

τi∈Γ∧ζi=LO uLO
i

• UΓ(L,MIN) =
∑

τi∈Γ∧ζi=LO uMIN
i

Suppose that a given task-to-core partitioning is Π =
{Γ1, · · · ,Γm}, where Γ = Γ1∪, · · · ,∪Γm. From Lemma 1
in [22], we can have the following theorem.

Theorem 1: For a set Γ of E-MC tasks running on
an m-core system, a given task-to-core partitioning Π =
{Γ1, · · · ,Γm} is E-MC feasible under the partitioned-EDF,
if:

UΓk
(H,H) + UΓk

(L,MIN) ≤ 1 (1)

where k = 1, · · · ,m.
♢

Note that the E-MC schedulability conditions represented
in Equation (1) depend only on the high utilization of high-
criticality tasks and the minimum utilization of low-criticality
tasks. Based on such utilizations, it is well-known that finding
the optimal partitioning of a given set of tasks to satisfy
Equation (1) is NP-hard [8]. Therefore, in what follows,
we focus on various task-to-core partitioning heuristics and
empirically evaluate their E-MC schedulability performance.

B. Evaluations of E-MC Schedulability under P-EDF

We have evaluated [22] the schedulability of E-MC tasks un-
der EDF and compared it against EDF-VD [2] on uniprocessor
systems. The results show that better schedulability (in terms
of acceptance ratio of generated task sets) can be achieved
under EDF for E-MC tasks when the minimum service levels
of low-criticality tasks can be set as one-fifth to half of their
desired service levels. In this section, we first evaluate the



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
cc

ep
ta

nc
e 

R
at

io

Normalized System Utilization

FF-DU 
FF-DC

WF-DU
WF-DC

GLO
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
cc

ep
ta

nc
e 

R
at

io

Normalized System Utilization

FF-DU 
FF-DC

WF-DU
WF-DC

GLO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
cc

ep
ta

nc
e 

R
at

io

Normalized System Utilization

FF-DU 
FF-DC

WF-DU
WF-DC

GLO
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
cc

ep
ta

nc
e 

R
at

io

Normalized System Utilization

FF-DU 
FF-DC

WF-DU
WF-DC

GLO

a. m = 8, prob(HI) = 0.2; b. m = 8, prob(HI) = 0.5; c. m = 8, prob(HI) = 0.8; d. m = 16, prob(HI) = 0.8;

Fig. 1: The acceptance ratio of E-MC task sets under P-EDF with various partitioning heuristics and Global EDF-VD.

schedulability of E-MC tasks under P-EDF and Global EDF-
VD [11].

Note that, when partitioning tasks among cores, there are
two main issues [8]: (a) core selection for a given task; and (b)
the order of tasks being allocated. In this work, we consider
the core selection heuristics similar to those used in [12],
namely First-Fit (FF), Best-Fit (BF) and Worst-Fit (WF). For
the order of tasks being allocated, the following heuristics are
considered:

• Decreasing Utilization (DU): tasks are sorted in non-
increasing order of their utilizations; uHI

i and uMIN
i are

used for high- and low-criticality tasks, respectively;
• Decreasing Criticality (DC): high-criticality tasks are

allocated before low-criticality tasks; for tasks with the
same criticality level, they are sorted in non-increasing
order of their utilizations; again, uHI

i and uMIN
i are used

for high- and low-criticality tasks, respectively;
Here, task sets are generated following a similar method as

used in [11]. The high (or desired low) utilization of a high- (or
low-) criticality task is randomly generated within [0.05, 0.5].
Then, for high-criticality tasks, their low utilization are cal-
culated based on the ratio of high over low utilizations being
randomly generated within [1, 8]; for low-criticality tasks, their
minimum utilizations are set as 1

k of their corresponding
desired low utilizations. It turns out that even with k = 1,
more task sets can be scheduled under P-EDF compared to
Global EDF-VD. Therefore, we set k = 1 (i.e., uMIN

i = uLO
i )

for low-criticality tasks in this work. Moreover, for each data
point, 10, 000 task sets are generated. Also, prob(HI) denotes
the probability of a task having high-criticality.

Figure 1 shows the acceptance ratio of generated task sets
under P-EDF with different partitioning heuristics and Global
EDF-VD (denoted as GLO) with varying normalized system
utilization, which is defined as Ubound

m . Here, U bound =
max{UΓ(H,H), UΓ(H,L)+UΓ(L,L)} [11] and we consider
m = 8 and m = 16. For the cases of 8-core systems (i.e.,
m = 8), we consider prob(HI) = 0.2, 0.5 and 0.8, and
the results are shown in Figures 1a, 1b, and 1c, respectively.
Figure 1d further shows the results for the case of m = 16
and prob(HI) = 0.8, that is, doubling the number of cores
compared with Figure 1c. Since the results for BF-heuristics
are very close to those for FF-heuristics, we only show the
results for FF and WF heuristics under P-EDF.

From the results, we can see that many more task sets can be
scheduled under P-EDF with the partitioning heuristics under
consideration when compared to Global EDF-VD. For P-EDF,
not surprisingly, FF performs better than WF since it aims
at scheduling more tasks in systems with a given number of
cores. Moreover, different task orderings (DC vs. DU) have
very little impact on the schedulability of P-EDF when FF
heuristic is used for core selection.

When using WF for core selection, P-EDF performs better
with the Decreasing Utilization (DU) ordering of tasks (and
is very close to that of FF) since it is well-known such a
heuristic can achieve more balanced workload among cores
and thus increase the schedulability of the tasks [12]. However,
when WF is combined with the Decreasing Criticality (DC),
P-EDF performs worse in terms of schedulability. The reason
is that the DC heuristic aims at balancing high- and low-
criticality workload on cores under WF instead of increasing
its schedulability. However, as shown Section VI, better im-
provements for the execution frequencies (i.e., service levels)
of low-criticality tasks can be obtained under P-EDF with WF
and DC, especially for the local early-release scheme where
task migrations are not allowed.

The different mixtures of high- and low-criticality tasks (i.e.,
different settings of prob(HI)) also have some effects on a
task set’s schedulability, where task sets with balanced number
of high- and low-criticality tasks (i.e., prob(HI) = 0.5) have
worse schedulability. When there are more cores in a system
(e.g., m = 16), as shown in Figure 1d, Global EDF-VD has
slightly worse schedulability. For P-EDF, WF with DC also
performs slightly worse, but other heuristics perform better as
there are more chances to fit tasks on more cores.

V. GLOBAL EARLY-RELEASE FOR P-EDF

The schedulability conditions for a set of E-MC tasks
under P-EDF represented in Equation (1) provides worst-case
guarantees for low-criticality tasks and high-criticality tasks’
high computation demands. However, high-criticality tasks
rarely utilize their high WCETs [24] and a large amount of
dynamic slack can be expected at runtime. Such slack can
be exploited to execute low-criticality tasks more frequently
and thus to improve their service levels with proper slack
reclamation and early-release management [22].



In what follows, we first review the essential ideas of early-
release of low-criticality tasks (Section V-A) and present a
motivational example to show that task migrations can further
improve low-criticality tasks’ service levels (Section V-B).
Details for both local and global early-release schemes under
P-EDF (i.e., without and with task migrations, respectively) are
given in Section V-C. By taking task migration overheads into
consideration, we describe the multicore-aware and migration-
constrained early-release schemes in Section V-D.

A. Ideas of Early-Release for Low-Criticality Tasks

r i

ci

LO

i
pjpmax

iir r i pmax

i
+ +j

iir p + +

Fig. 2: Early-release of a low-criticality task instance [22].

Suppose that a low-criticality task τi (i.e., ζi = LO) has
its last instance released at time ri as illustrated in Figure 2.
We further assume that this instance finishes its execution at
time t, which is no later than an early-release point pji of
task τi (that is, there are ri < t ≤ ri + pji and 1 ≤ j ≤
ki). When no early-release is considered, the next instance of
task τi should be released at time ri + pmax

i , which satisfies
τi’s minimum service requirement. However, if early-release
is enabled and task τi releases the next instance at its early-
release point ri+pji , the deadline of this new instance will be
ri + pji + pmax

i as shown in Figure 2.
Intuitively, such an early-release of a task instance intro-

duces extra workload into the system. Therefore, to avoid
overloads that affect the execution of high-criticality tasks,
judicious slack management is required for such early-release
decisions [22]. Specifically, if such an early-released instance
will be executed on task τi’s host core, we have that τi
can get its own share of pji · uMIN

i for the interval [ri +
pmax
i , ri + pji + pmax

i ] [7]. Hence, to provide cLO
i time units

for task τi’s new instance before its deadline ri + pji + pmax
i

on its host core, the amount of local slack needed will be
SL = cLO

i − pji · uMIN
i [22].

B. A Motivational Example: Benefits of Task Migrations

Suppose that the example E-MC task set with four tasks
as shown in Table I will be executed on a dual-core system.
We further assume that there are Γ1 = {τ1, τ3} and Γ2 =
{τ2, τ4} for the task-to-core mapping. That is, tasks τ1 and
τ3 are mapped to the first core, while tasks τ2 and τ4 to the
second core. Therefore, we have:

UΓ1(H,H) + UΓ1(L,MIN) = 20/25 + 2/12 = 29/30 < 1

UΓ2(H,H) + UΓ2(L,MIN) = 8/11 + 2/10 = 102/110 < 1

From Theorem 1, we know that the example task set is E-
MC schedulable with the above task-to-core mapping under
P-EDF. That is, when the tasks on each core are scheduled
under EDF, both the high WCETs of high-criticality tasks and

the minimum service requirements of low-criticality tasks can
be guaranteed. The partial schedule of the task set within the
interval [0, 30] under P-EDF is shown in Figure 3a. Here, for
the high-criticality tasks τ1 and τ2, we assume that their first
two instances use their low WCETs while the third instance
of task τ2 uses its high WCET.

From the schedule, we can see that the over-provisioned
high WCETs for high-criticality tasks can generate lots of
slack at runtime. In particular, there are 18 units of slack time
(10 units on core one and 8 units on core two that are marked
as “idle”) in the schedule of this dual-core system within the
interval of [0, 30]. We should mention that the slack time also
includes those generated from the spare capacities2, which are
1
30 and 4

55 on cores one and two, respectively.
If the early-release EDF (ER-EDF) technique [22] is ap-

plied on each core independently, where a low-criticality task
can only reclaim the slack time on its host core with no task
migration being considered (i.e., local early-release, L-ER),
Figure 3b shows the partial schedule of the task set within the
interval [0, 30] under P-EDF. On the first core, task τ3 releases
its third, forth and fifth instances (labeled as “L-ER”) early at
time 16, 20 and 24, respectively, by effectively reclaiming the
slack time generated by the high-criticality task τ1. Compared
to the P-EDF schedule with no early-release in Figure 3a,
two more task instances of τ3 can be executed within [0, 30].
Similarly, task τ4 releases early once at time 7 on the second
core.

Note that, to regulate the releases of task instances, a low-
criticality task can only release its instances (early) at one
of its early-release points [22]. Therefore, not all slack on
a core may be reclaimed by its low-criticality tasks due to
the time-dependent availability of slack [26] as well as the
alignment of low-criticality tasks’ early-release points. Hence,
from Figure 3b, we can see that there are still 14 units of
unused slack time (6 and 8 units on cores one and two,
respectively).

Moreover, due to unevenly distributed high-criticality tasks
among the cores, at an early-release point of a low-criticality
task, it is possible that other cores have plenty of available
slack while the amount of reclaimable slack on the task’s
host core is not enough. For such cases, if task migrations
are allowed, a low-criticality task can have its early-released
instance be temporarily migrated and executed on another core
by properly reclaiming the core’s slack time. Figure 3c further
shows the schedule of the example task set under P-EDF with
global early-release (G-ER) that allows task migrations.

Here, at time 14 (an early-release point of τ4), there is not
enough slack on τ4’s host core two. However, the slack time
on core one is enough to temporarily execute an instance of τ4,
should it release and migrate the instance to core one at time
14. Therefore, task τ4 has its third instance J(4, 3) be executed
on core one (marked as “G-ER”) as shown in Figure 3c.
Similarly, the forth instance J(4, 4) of τ4 can also be released

2Here, two wrapper-tasks WT1(c = 1, p = 30) and WT2(c = 4, p = 55)
are created, for cores one and two, respectively, to periodically introduce the
spare capacity as dynamic slack into the system [22], [26].
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a. The schedule of the example task set under P-EDF with no early-release.
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b. The schedule of the example task set under P-EDF with local early-release.
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c. The schedule of the example task set under P-EDF with global early-release that allows task migrations.

Fig. 3: Different schedules for the example E-MC task set within the interval [0, 30) on a dual-core system.

early and executed on core one. Note that compared to the
schedule in Figure 3b, where J(4, 4) is released at time 27
and executed after time 30, J(4, 4) is able to release at time
21 and be executed before time 30. Moreover, the total idle
time (wasted slack) within the interval under consideration is
also reduced to 12 from 14.

C. Global Early-Release considering Task Migrations

Note that, for an E-MC feasible task-to-core mapping under
P-EDF, the high computation demands of high-criticality tasks
are guaranteed on their host cores. Thus, there is no migration
needed (or allowed) for such high-criticality tasks at runtime.
Moreover, due to the time-dependent availability of slack
time [26], the amount of available slack time on cores at
any given time can have quite large variation. Such variation
may also come from unbalanced high- and low-criticality
workload on cores in the task-to-core mapping as shown in
Section VI. Hence, it is possible that, at an early-release point
of a low-criticality task, other cores have enough reclaimable
slack while the task’s host core does not. Therefore, for low-
criticality tasks, the global early-release with task migrations
can achieve better improved service levels when compared
to applying ER-EDF on each core independently (i.e., local
early-release).

Algorithm 1 summarizes the formal steps of the global
early-release scheme for P-EDF, which will be invoked at
an early-release point (t = ri + pji ) of a low-criticality task
τi on its host core Cx. We assume that the wrapper-task
mechanism is exploited on each core to manage their slack
times independently [22], [26]. The available slack at time t
on core Cx is saved in its slack queue SQx(t). Note that the
algorithm can be invoked simultaneously on multiple cores.
Therefore, proper synchronization is needed when accessing

Algorithm 1 : P-EDF with Global Early-Release

1: Input: τi, Cx and t = ri + pji (an ER point of τi);
2: dnewi = t+ pmax

i ; //deadline of τi’s new instance
3: SL = cLO

i − pji · uMIN
i ; //local slack needed on core Cx

4: if (SL ≤ CheckSlack(SQx(t), dnewi )) then
5: ReclaimSlack(SQx(t), SL);//local early-release on Cx

6: Enqueue(ReadyQx, τi); //add τi to Cx’s ready queue
7: else
8: SG = cLO

i ; //slack needed for global early-release
9: if (∃y, SG ≤ CheckSlack(SQy(t), dnewi ) ∧y ̸= x) then

10: ReclaimSlack(SQy(t), SG);//global early-release
11: Enqueue(ReadyQy , τi); //migrate τi to core Cy

12: AddSlack(SQx(t), p
j
i · uMIN

i , dnewi );//slack on Cx

13: else
14: SetTimer(ri + pj+1

i );//set next ER time for τi
15: end if
16: end if

the global data structures (such as the cores’ slack and ready-
task queues), which are not shown for simplicity.

In the algorithm, the expected deadline of task τi’s next
instance is first obtained assuming it is released at time t (line
2). This deadline will be used to properly reclaim the slack
time either locally on core Cx or globally on other cores.
Note that, under the EDF scheduling, a task instance may
only reclaim the slack time that is available no later than the
deadline of the task instance [26].

Considering the overhead of task migrations (which will be
addressed in more detail in the next section), it is preferable
for task τi being executed locally on its host core Cx. Thus,
the amount of local slack needed SL for τi to release the



next instance at time t on core Cx is determined next (line
3). If there is enough reclaimable slack on core Cx, task
τi will reclaim the slack properly with the help of function
ReclaimSlack() [26] and add its new instance to Cx’s ready
task queue ReadyQx (lines 5 and 6).

However, if the amount of reclaimable slack for τi is not
enough on core Cx, τi will turn to other cores for possible
global early-release of its next instance. Note that the objective
is not to permanently migrate task τi (and all its future
instances) to other cores. Instead, our goal is to find a core Cy

with available slack that is enough to temporarily execute τi’s
next instance only. Once this instance completes its execution
on Cy, future instances of τi are still assumed to be released
on its host core Cx.

Based on the above design principle, we can find that the
amount of slack needed for τi’s next instance on any other core
will be SG = cLO

i (line 8), which is different from the amount
of local slack needed on Cx. Note that there is no reserved
time share for task τi on other cores and all time needed for
executing τi’s next instance has to come from the reclaimable
slack. If there exists a core Cy that has enough reclaimable
slack for τi at time t, the next instance of τi will be added to
the ready task queue ReadyQy after properly reclaiming the
slack on core Cy (lines 10 and 11). In this case, task τi’s own
share (in the amount of pji · uMIN

i ) on core Cx will become
slack and needs to be added to Cx’s slack queue (line 12).

In case there is no core that has enough reclaimable slack
for task τi at its early-release time t, a timer is set for the
next early-release time point of τi (line 14). If t is the last
early-release point for task τi, we assume that pki+1

i = pmax
i

and the next instance of τi will be released normally (i.e.,
pmax
i time units after its last release time ri).

Analysis of P-EDF with Global Early-Release: From [22]
we know that, with proper slack reclamation, the early-release
of τi’s next instance on its host core Cx does not introduce
any extra workload on Cx and it will not cause any deadline
miss for (especially high-criticality) tasks on Cx. Based on
the results in [7], [26] and following the similar reasonings
as in [22], when the next instance of task τi is temporarily
migrated to another core Cy after reclaiming the slack time
properly, no additional workload will be introduced to core Cy

and there is no deadline misses as well. Therefore, for a given
E-MC feasible task-to-core mapping under P-EDF, the global
early-release scheme (as shown in Algorithm 1) can guarantee
that there is no deadline miss for any task at runtime.

D. Multicore/Cache-Aware Migration-Constrained G-ER

As mentioned earlier, due to migration overheads, a low-
criticality task is given preference to release its instances
locally on its host core. However, when the reclaimable
slack on the host core is not enough, Algorithm 1 does not
address the problem of choosing the most appropriate core for
migrating the low-criticality task.

Note that, due to different levels of caches shared between
the cores on a multicore chip [23], the overheads for task

L1

Core 2 Core 3

L2 L2

L3

Core 1Core 0

L3

L2 L2

Core 4 Core 5 Core 6 Core 7

Memory Bus

L1 L1 L1 L1 L1 L1 L1

Fig. 4: An example cache architecture for a 8-core chip.

migrations between different cores can have quite big varia-
tions due to invalidation and repopulation of caches at different
levels. For instance, Figure 4 shows an architecture for a 8-
core chip, where two neighbor cores share an L2 cache, the
first (last) four cores share L3 cache while all cores share
the off-chip memory. Therefore, the overhead for migrating a
task between two neighbor cores is relatively small compared
to migration between other cores. In fact, the overhead of
accessing higher-level caches increases exponentially (1-2
cycles to access L1 cache, 5-10 cycles for L2 cache, etc) [13].

In this section, by specifically taking such overhead varia-
tions for task migrations into consideration, we propose the
multicore/cache-aware and migration-constrained (MAMC)
global early-release scheme. Our model assumes that the
number of neighbor cores decreases with the closeness of the
shared caches. For example, Figure 4 shows that each core
has one core as its level-1 neighbor, two cores as its level-
2 neighbors, four cores as its level-3 neighbors and so on.
That is, in general, there are 2N−1 cores as a core’s level-N
neighbors and the overhead of migration is αN−1 · X . The
MAMC global early-release scheme described below does not
depend on this specific neighbor organization of cores and can
be applied to any architecture of the cores.

Note that, once the multicore architecture is known and
different levels of neighbors are identified for all cores, Algo-
rithm 1 can be easily adapted to be a multicore-aware, cache-
aware, and migration-constrained global early-release scheme
for P-EDF. Specifically, a low-criticality task τi considers first
the closest neighbors at lower levels for early-release (line
9), due to their low migration overheads for τi. For cores
belonging to the same neighbor level, arbitrary orders can be
used.

To incorporate the migration overheads into Algorithm 1,
the amount of needed slack for global early-release SG needs
to be adjusted as SG = cLO

i + 2 · αN−1X for the level-N
neighbor cores of Cx. For cases where the migration overheads
are prohibitive, it is easy to limit task migrations between cores
within a certain neighbor level.

VI. EVALUATION AND DISCUSSION

In this section we evaluate the performance of the proposed
global early-release technique for P-EDF on improving the
service level of low-criticality tasks through extensive simu-
lations. For comparison, in addition to the local early-release
(that does not consider task migrations) for P-EDF, we also
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Fig. 5: Performance of the schemes with varying normalized system utilization for prob(HI) = 0.5; prob(cLO
i ) = 0.9;

implemented the Global EDF-VD (denoted as GLO), the state-
of-the-art mixed-criticality multiprocessor scheduler [11]. For
Global EDF-VD, whenever a high-criticality task τi takes
more time than its CLO

i and causes the system to enter high-
level execution mode at runtime, it will discard all (current
and future) low-criticality tasks until there is no active high-
criticality task in the ready queue (at that time, the system can
safely switch back to the low-level execution mode) [11].

E-MC tasks are generated following a similar approach
in [11], as described in Section IV-B. In addition, the periods
of tasks are generated between 50 and 200, following a
uniform distribution. The high and low WCETs of tasks are
obtained according to their utilizations. Considering the better
schedulability of tasks under P-EDF, for low-criticality tasks,
their maximum periods are set the same as their periods as
discussed in Section IV-B. Moreover, we assume that each
low-criticality task has 10 early-release points, which are
uniformly distributed before its (maximum) period.

We use the average (execution) frequency improvement
for low-criticality tasks as the performance metric [22]; the
baseline is executing tasks according to their (maximum)
periods with no early-release. For each data points, 100 task
sets are generated and each task set runs to time 100, 000. Due
to the close performance values for P-EDF with FF and BF,
we omit the latter.

A. Effects of Normalized System Utilization

We evaluate the performance of the proposed local “*-L”
and global “*-G” early-release schemes for P-EDF, and com-
pare them against Global EDF-VD “GLO” for interesting val-
ues of normalized system utilization (i.e., Ubound

m ∈ [0.2, 0.6]).
In Section IV-B, we showed that, when Ubound

m > 0.6, the
schedulability of P-EDF decreases sharply with most of the
partitioning heuristics.

We set prob(HI) = 0.5 (i.e., the numbers of low- and high-
criticality tasks in a given task set are roughly the same) in this
part of simulations. The effect of different task mixtures with
varying prob(HI) will be evaluated in next section. Moreover,
considering the fact that high-criticality tasks rarely overrun
and use their high-level WECTs, without being specified
otherwise, we have the probability of these tasks taking their
low-level WCETs as prob(cLO) = 0.9.

For 8-core systems (i.e., m = 8), Figure 5a shows the

execution frequency improvements for low-criticality tasks,
where the one corresponding to pmax

i (which actually equals
to pi in this work) is used as the baseline. To see the effects of
different ordering of tasks, the figure contains only the results
for P-EDF with FF heuristics in addition to that of Global
EDF-VD. From the results, we can clearly see that the early-
release techniques can significantly improve the execution
frequencies (and thus the service levels) for low-criticality
tasks under P-EDF.

When the normalized system load is low (e.g., Ubound

m <
0.3), the schedulability condition for Global EDF can be
satisfied and Global EDF-VD will behave the same as Global
EDF without canceling tasks during runtime [11]. In contrast,
due to task cancellation in Global EDF-VD, the execution
frequency of low-criticality tasks can be severely affected,
reduced to around 50% on 8-core systems. Note that no result
is shown for Global EDF-VD when Ubound

m > 0.4 since most
task sets are not schedulable; see Section IV-B.

Moreover, for P-EDF, much better frequency improvements
can be obtained for low-criticality tasks with the global early-
release scheme when comparing to that of the local early-
release scheme. The reason is that, by allowing low-criticality
tasks to reclaim slack and migrating to other cores, the global
early-release scheme provides more opportunities for such
tasks to exploit slack time in the system and release their
instances more frequently.

In addition, for the impact of different task orderings, DU
for FF performs slightly better than DC when the local early-
release is adopted. This is due to the uneven distribution of
tasks among cores under FF with DC, where the “first” cores
get most of the high-criticality tasks while other cores get all
low-criticality tasks. For such cases, low-criticality tasks can
still reclaim some slack that comes from the spare capacity
on each core. However, the impact of different task orderings
diminish when global early-release is adopted, because it
allows tasks to migrate and reclaim slack on other cores.

Figure 5b shows the results for P-EDF with WF heuristics.
For easy comparison, we show GLO and the global early-
release under P-EDF with FF and DC. The performance
difference between local and global early-release under P-EDF
is much smaller because low- and high-criticality tasks are
distributed among cores more evenly under WF (especially
with DC ordering of tasks). Again, due to the ability of
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Fig. 6: Frequency improvement with varying prob(HI) for
Ubound

m = 0.4 and prob(cLO) = 0.9.

reclaiming slack across cores with task migrations, for the
global early-release scheme, the performance of P-EDF with
WF for different task orderings is slightly better than that of
FF heuristic.

For 16-core systems (i.e., m = 16), Figure 5c further shows
the frequency improvement for low-criticality tasks under P-
EDF with WF heuristics. The results follow the same trend as
those for 8-core systems. However, notice the sharp decrease
in performance for GLO, where most of low-criticality tasks
may be cancelled when the normalized system utilization is
0.4. This is because systems with more cores have more high-
criticality tasks for the same system utilization. Therefore,
when tasks are executed under Global EDF-VD, it is more
likely for the system to get into the high-level execution mode
and canceling more low-criticality tasks.

Figure 5d further shows the percentage of idle time in 8-
core systems under different schemes. Not surprisingly, there
is more idle time under Global EDF-VD since there is no
slack reclamation. Moreover, when low-criticality tasks are
cancelled, there is even more idle time. For P-EDF, more slack
time can be reclaimed in the global early-release scheme and
there is less idle time in the system when compared to that of
the local early-release scheme.

B. Effects of Task Mixtures with Varying prob(HI)

We evaluate the effect of task sets mix on the frequency
of execution of low-criticality tasks (i.e., sensitivity analysis
on prob(HI)). From last section, it can be seen that different
orderings of tasks have quite limited impacts on the perfor-
mance of P-EDF. Therefore, in the remaining experiments, we
consider the DC ordering of tasks only, fixed Ubound

m = 0.4
and prob(cLO) = 0.9. Figure 6ab show the frequency im-
provement of low-criticality tasks under P-EDF for systems
with 8 and 16 cores, respectively.

We can see that, when there are more high-criticality tasks
(i.e., larger prob(HI)), the performance of the local and global
early-release schemes under P-EDF with different mapping
heuristics increase slightly because more slack may be ex-
pected at runtime. Moreover, the global early-release scheme
performs very closely with different mapping heuristics but
always better than that of the local early-release scheme.

For Global EDF-VD, it is quite interesting to see that there
is no task cancellation at low or high values of prob(HI).

 1

 1.5

 2

 2.5

 3

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

F
R

E
Q

 IM
P

R
O

V
M

E
N

T

prob(cLO)

WF-DC-G
WF-DC-L
FF-DC-G
FF-DC-L

 1

 1.5

 2

 2.5

 3

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

F
R

E
Q

 IM
P

R
O

V
M

E
N

T

prob(cLO)

WF-DC-G
WF-DC-L
FF-DC-G
FF-DC-L

a. m = 8; b. m = 16;

Fig. 7: Frequency improvement with varying prob(cLO) for
Ubound

m = 0.4 and prob(HI) = 0.5.

The reason is that, when there are many more high- (or low-)
criticality tasks in a task set, the schedulability condition of
Global EDF can be satisfied and Global EDF-VD will act as
Global EDF that will not cancel any task at runtime. However,
when the numbers of high- (or low-) criticality tasks get close
to each other (i.e., towards prob(HI) = 0.5), Global EDF-VD
will rely on the virtual deadlines of high-criticality tasks and
low-criticality tasks will be cancelled if necessary [11].

C. Effects of High-Criticality Tasks’ Runtime Behaviors

With fixed Ubound

m = 0.4 and prob(HI) = 0.5, Figures 7a
and 7b further show the performance of P-EDF with both local
and global early-release schemes as the runtime behaviors of
high-criticality tasks change (i.e., by varying prob(cLO)) for
systems with 8 and 16 cores, respectively. Intuitively, when
prob(cLO) increases, more high-criticality tasks will take their
low WCETs and more slack can be expected. With Ubound

m =
0.4 and prob(HI) = 0.5, the amount of slack generated by
high-criticality tasks is quite limited and most slack reclaimed
by low-criticality tasks actually comes from the spare capacity
(60% on average) on each core. Therefore, P-EDF performs
slightly better as prob(cLO) increases.

D. Effects of Migration Overheads and Constraints

In this section, we further evaluate the impact of migration
overheads on the performance of the global early-release
scheme with various migration constraints under P-EDF. The
overhead for migrating a task instance between different cores
has been discussed in Section V-D. We fix α = 5 and vary
the value of X from 0 to 8 (i.e., from no overhead to high
overhead). For comparison, the local early-release scheme
(denoted as “*-L”) that does not consider task migration is also
included. Moreover, “*-Nk” denotes the scheme that allows
tasks to migrate to no beyond its host’s level-k neighbor cores.

For systems with 8 cores, Figure 8a first shows the perfor-
mance of P-EDF with FF when different migration constraints
are considered. With the model of neighbor cores considered
in Section V-D, “*-N3” essentially represents the scheme that
allows tasks to migrate globally. We can see that, when tasks
have the opportunity to migrate to higher levels of neighbor
cores and thus better chance for early release, the performance
of P-EDF generally becomes better. However, such benefits
decrease quickly as the migration overhead increases (recall
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Fig. 8: The impacts of migration overheads on the global early-release; Ubound/m = 0.4, prob(HI) = 0.5, prob(cLO) = 0.9;

the exponential increased overhead for migrating to higher
level of neighbor cores).

In addition, when the WF task mapping heuristic is adopted,
Figure 8b shows that the schemes that enable task migrations
to higher levels of neighbor cores can even perform worse
due to higher overhead costs. Similar results can be found
for systems with 16 cores as shown in Figure 8c. When
the migration overhead is high, the local early-release can
performs better than the global peers.

To further investigate the behaviors of migrating tasks,
Figure 8d shows where the low-criticality tasks are executed
when the global early-release scheme is considered for P-
EDF with WF in 16-core systems. G-Nor denotes the portion
of low-criticality tasks that are released normally; G-ER-L
denotes the ones released early on their host cores; G-ER-Nk
denotes those released early on their host’s level-k neighbor
cores. As expected, when the migration overhead gets larger,
the majority (more than 75%) of the task instance of low-
criticality tasks will be released normally or early and executed
on their host cores and the percentage of task instances
executed on other cores is quite low.

VII. CONCLUSIONS

In existing mixed-criticality scheduling framework, low-
criticality tasks will be cancelled to provide necessary compu-
tation capacity for high-criticality tasks in the worst case. To
address such service interruption problem for low-criticality
tasks, we have studied the Elastic Mixed-Criticality (E-MC)
task model, where the minimum service requirements of low-
criticality tasks are guaranteed by their maximum periods.

In this paper, we address the problem of scheduling Elastic
Mixed-Criticality (E-MC) tasks in multicore systems. We
investigate and empirically evaluate the schedulability of
partitioned-EDF (P-EDF) by considering various task-to-core
mapping heuristics. Then, with and without task migrations be-
ing considered, we propose both global and local early-release
(ER) schemes to improve the service levels of low-criticality
tasks at runtime. In addition, we explore the multicore-aware
and migration constrained global-ER schemes by considering
varied migration overheads between different cores. Our simu-
lation results show that, compared to the state-of-the-art Global
EDF-VD scheduler, P-EDF with various partitioning heuristics
can lead to many more schedulable E-MC task sets. Moreover,
our proposed global and local ER schemes can significantly

improve the service levels of low-criticality tasks, while Global
EDF-VD may severely and negatively affect them by canceling
most of their task instances at runtime (especially for systems
with more cores). Furthermore, by allowing task migrations,
global-ER schemes can dramatically improve low-criticality
tasks’ service levels for partitionings that have unbalanced
high- and low-criticality tasks on the cores.
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