Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment

Presenters: Forrest Iandola and Ilge Akkaya
(thanks to Marco Di Natale and Tarek Abdelzaher)

C.L. Liu1, James W. Layland2
1MIT and UIUC
2NASA JPL
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment

(The Liu-Layland Bound)

Presenters: Forrest Iandola and Ilge Akkaya
(thanks to Marco Di Nitale and Tarek Abdelzaher)

C.L. Liu1, James W. Layland21 MIT and UIUC
2 NASA JPL
Outline

Goals
 Synthesize Marco Di Nitale’s discussion of the Liu-Layland bound
 Review the key takeaways on this topic

Roadmap
 State the Liu-Layland bound
 Do some short examples, build up intuition
 …and move on!
Is a task set schedulable?

Schedulability analysis strategies

- Utilization bounds (easy but pessimistic)
 - Lower utilization -> easier to meet deadlines
 - Higher utilization -> harder to meet deadlines
- Exact analysis (optimal, but NP-hard)
- Heuristics
Is a task set schedulable?

Schedulability analysis strategies

- Utilization bounds (easy but pessimistic)
 - Lower utilization -> easier to meet deadlines
 - Higher utilization -> harder to meet deadlines
- Exact analysis (optimal, but NP-hard)
- Heuristics
The Liu-Layland Bound

- Utilization bound for n periodic tasks:
 \[U = n\left(2^{\frac{1}{n}} - 1\right) \]
- For $n=2$ tasks, $U = 0.83$
- As n goes to infinity, $U = 0.69$

- Assumption: fixed-priority scheduling
The bound is NOT “if and only if.”

- If system utilization is within the bound, it is *guaranteed* to be schedulable.
- If system utilization exceeds the bound, it *may* be schedulable.

\[U = \sum_i \frac{C_i}{P_i} \]
Key insight: Blocking time

- 2 tasks, both arrive at the same time
- Notice that the lower-priority task waits for a long time
Liu-Layland bound:

\[U = n \left(2^{\frac{1}{n}} - 1 \right) \]

Assuming worst-case arrival and blocking times leads to less-than-100% utilization bound.

If a system exceeds the bound, it may still be schedulable.