
/

/

NASA-TM-I08120 .,,<., - . _ ,<,/ L.

......>",:-eLI..

i/_..........<,Go

Scheduling and Rescheduling with

Iterative Repair

MONTE ZWEBEN

EUGENE DAVIS

BRIAN DAUN

MICHAEL DEALE

AI RESEARCH BRANCH, MAIL STOP 269-2

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94025, USA

::i: :,].! i iiU! i".(L !A{<

i 77D<_I:) r r>

!.:i.: _iJi }i (_ J.: i

., i¸ i < : : i: i_

,:! i̧ __>

l_l_a Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-92-16

April, 1992

Scheduling and Rescheduling with

Iterative Repair

Monte Zweben

Eugene Davis*

Brian Daunt

Michael Dealet

NASA Ames Research Center

M.S. 269-2

Moffett Field, California 94035

zweben@ksc.arc.nasa.gov

Abstract

This paper describes the GERRY scheduling and rescheduling sys-

tem being applied to coordinate Space Shuttle Ground Processing.

The system uses constraint-based iterative repair, a technique that

starts with a complete but possibly flawed schedule and iteratively

improves it by using constraint knowledge within repair heuristics.

In this paper we explore the tradeoff between the informedness and

the computational cost of several repair heuristics. We show empiri-

cally that some knowledge can greatly improve the convergence speed

of a repair-based system, but that too much knowledge, such as the

knowledge embodied within the MIN-CONFLICTS lookahead heuristic,

can overwhelm a system and result in degraded performance.

*Recom Technologies

t Recom Technologies

t Lockheed Space Operations Company

Introduction

Space Shuttle ground processing encompasses the inspection, repair, and re-

furbishment of space shuttles in preparation for launch. The Kennedy Space

Center (KSC) ground processing team frequently modifies the schedule in

order to accommodate unanticipated events, such as unavailability of special-

ized personnel, unexpected delays, and the need to repair newly discovered

problems. If the Space Shuttle ground processing turnaround time could be

shortened, even by a small percentage, m_lllons of dollars would be saved.

This paper presents GERRY, a general scheduling system being applied to the

Space Shuttle ground processing problem.

GERRY is a novel approach to scheduling that uses constraint-based iter-

afire repair [1]. Iterative repair methods such as [1, 2, 3, 4, 5, 6, 7] differ

from constructive scheduling methods in that they begin with a complete,

but possibly flawed, set of assignments and then iteratively modify or repair

those assignments to improve the overall schedule. Constructive scheduling

methods [8, 9] incrementally extend valid, partial schedules until a complete

schedule is synthesized or until backtracking is required.

In this paper we explore the tradeoff between the informedness and the

computational cost of repair heuristics. We show empirically that knowledge

can greatly improve the convergence speed of a repair-based system, but we

also show that too much knowledge can overwhelm a system and result in

degraded performance.

Problem Class: Fixed Preemptive Scheduling

Scheduling is the process of assigning times and resources to the tasks of

a plan. Scheduling assignments must satisfy a set of domain constraints.

Generally, these include temporal constraints, milestone constraints, and re-

source requirements. Temporal constraints relate tasks to other tasks; e.g.,

end(T1) < start(T2). Milestone constraints relate tasks to fixed metric

times; e.g., end(T1) < 11/23/90 12 00 00. A resource requirement consists

of a type and quantity of a resource; e.g., this task needs 4 mechanical tech-

nicians, 3 cranes. Each resource requirement has a corresponding capacity

constraint which states that the resource must not be overallocated.

The Space Shuttle domain also requires the modeling of state variables.

State variables are conditions that can change over time; examples include the

positions of switches, the configuration of mechanical parts, and the status

of orbiter sub-systems. Tasks might be constrained by the state conditions

(a state requirement) and they might cause a change in the state conditions

(a state effect). A state requirement asserts that a state variable must have

a certain value during a task's scheduled time. For example, in the Space

Shuttle domain, certain tasks cannot be performed unless the payload bay

doors are in designated positions. State effects are changes that tasks impose

upon state variables such as the opening of the payload bay doors. The

persistence of each effect is specified by the user.

Preemption is an additional complicating factor introduced by the Space

Shuttle problem. In preemptive scheduling, each task is associated with a

calendar of legal work periods that determine when the task must be per-

formed. For example, suppose a task has a duration of 16 hours and a

calendar indicating that only the first shift of each non-weekend day is legal.

Given that the first shift of the day extends from 8:00 am to 4:00 pro, if the

task is started on Monday at 8:00 am, then it will be suspended at the end

of the shift (at 4:00 pro). It would restart on Tuesday at 8:00 am and would

complete the same day at 4:00 pro. If the task had been started on Friday,

however, it would not complete until the following Monday at 4:00 pro.

Preemption effectively splits a task into a set of subtasks. Resource and

state constraints are annotated as to whether they should be enforced for

each individual subtask (and not during the suspended periods between sub-

tasks) or during the entire time spanning from the first subtask until the

last (including suspended periods). Labor is a resource type that is not typ-

ically required during the suspended periods; in contrast, heavy machinery

is difficult to relocate and thus may remain allocated during the suspended

periods.

Preemptive scheduling requires additional computational overhead since

for each task-time assignment, the preemption times must be computed and

the appropriate constraint manipulation must be performed.

In summary, the input to a scheduling problem is a set of tasks, each

with a work duration, a work calendar, a set of temporal constraints, a set of

resource requirements, and a set of state requirements and effects. A solution

to the problem is a decomposition of each task into its preempted subtasks,

where each subtask is assigned a start time, an end time, and a resource pool

for each resource request. A solution is satisfied if each subtask is consistent

3

with its preemption work calendar and if all temporal, resource, and state

constraints are satisfied.

Iterative Repair versus Constructive Meth-

ods

In previous work we concentrated on constructive methods [10, 11] which

were difficult to adapt to the Space Shuttle problem. Space Shuttle ground

processing is predominately a rescheduling problem; to reschedule with a

constructive method, the system must remove some tasks from the schedule

and then restart the scheduling process. Unfortunately, determining which

tasks to unschedule is not straightforward. As a result we opted for a repair

method that patches an existing schedule when exogenous events occur, thus

circumventing the need to unschedule tasks. Further, even though a task

is unaffected by an exogenous event, it may be possible to provide a better

schedule by reconsidering its assignments. For example, placing an unaffected

task much later in the schedule might cause little perturbation and allow

many tasks (which are affected by the exogenous events) to fit in its place.

Unfortunately, this opportunity would be missed if the unaffected tasks are

not considered in the rescheduling process.

We also found it difficult to use constructive methods since Space Shut-

tle problems are over-constrained. For instance, milestones may be overly

ambitious and impossible to meet when considering the other constraints.

Additionally, the other constraints may be too conservative. For example,

suppose there are two tasks each requiring a quality assurance officer. If these

two tasks are physically proximate, then one of the officers might be able to

handle both jobs, thus relieving the other officer for other procedures. When

the problem is over-constrained, a constructive method must exhaust all pos-

sibilities before it can infer that constraints must be relaxed. Repair-based

methods attempt to iteratively improve solutions regardless of whether the

problem is over-constrained or not and terminate with a set of assignments

that is as close to a solution as could be derived in the time allotted.

Since repair methods search through a space of complete schedules, "global"

constraints and optimization criteria can be cheaply evaluated. If one only

has a partial schedule, then the evaluation of global criteria can only be ap-

4

proximated. For example, suppose that in a particular domain it is desirable

to minimize the use of labor resources on the weekend (which is a global op-

timization criterion) and that a particular machine is not allowed to change

configuration more than a certain number of times per month (which is a

global constraint). The evaluation of this criterion and constraint is easily

calculated with a complete schedule but can only be estimated (based on the

remaining tasks and possible times) with a partial schedule.

Repair methods also have their shortcomings. One problem is that repair

methods could suffer from local minima in the sense that they can cycle

indefinitely through a set of unsatisfactory solutions. Another problem is

that repair methods are usually not complete and therefore not guaranteed

to encounter the best possible solutions.

Constraint-Based Iterative Repair

Constraint-based iterative repair begins with a complete schedule of unac-

ceptable quality and iteratively modifies it until its quality is found to be

satisfactory. The quality of a schedule is measured by the cost function:

cost(s) = _,,,,,o_a,aint, penaltyc,(s) * weighte,, which is a weighted sum of

constraint violations. The penalty function of a constraint returns a non-

negative number reflecting the degree to which the constraint is violated.

The weight function of a constraint returns a non-negative number repre-

senting the importance or utility of a constraint.

In GERRY, repairs are associated with constraints. Local repair heuris-

tics that are likely to satisfy the violated constraint can then be encoded

without concern for how these repairs would interact with other constraints.

Of course, local repairs do occasionally yield globally undesirable states, but

these states, if accepted (see below), are generally improved upon after mul-

tiple iterations.

Repairing any violation generally involves moving a set of tasks to differ-

ent times; at least one task participating in the constraint violation is moved,

along with any other tasks whose temporal constraints would be violated by

the move. In other words, all temporal constraints are preserved after the

repair. We use the Waltz constraint propagation algorithm over time in-

tervals [12, 13] to carry this out (thus enforcing a form of arc-consistency

[14, 15]). The algorithm recursively enforces temporal constraints until there

5

are no outstanding temporal violations. This scheme can be computationally

expensive, since moving tasks involves checking resource constraints, calcu-

lating preemption intervals, etc.

At the end of each iteration, the system re-evaluates the cost function to

determine whether the new schedule resulting from the repairs is better than

the current solution. If the new schedule is an improvement, it becomes the

current schedule for the next iteration; if it is also better than any previous

solution, it is cached as the best solution so far. If it is not an improvement,

it is either accepted anyway with some probability described below, or it is

rejected and the changes axe not kept. When the changes are not kept, it is

hoped that repairs in the next iteration will select a different set of tasks to

move and the cost function will improve.

The system sometimes accepts a new solution that is worse than the

current solution in order to escape local minima and cycles. This stochastic

technique is referred to as simulated annealing [16]. The escape function for

accepting inferior solutions is: Escape(s, s', T) = e -Io°st(s)-o°st(s')l/T where

T is a "temperature" parameter that is gradually reduced (i.e. cooled during

the search process. When a random number between 0 and 1 exceeds the

value of the escape function, the system accepts the worse solution. Note

that escape becomes less probable as the temperature is lowered.

In GERRY, the types of constraints that can contribute to the cost function

include the resource and state constraints. 1

Resource Constraints

The penalty of a resource capacity constraint is 1 if the resource is overal-

located. If K simultaneous tasks overallocate the resource, then all K tasks

are considered violated. One of these tasks will be selected in an attempt to

repair as many of the K violations as possible. The heuristic used to select

this task considers the following information.

Fitness: Move the task whose resource requirement most closely matches the

amount of overallocation. A task using a significantly smaller amount

1We have also experimented with a number of other optimization constraints, the

description of which are beyond the scope of this paper. In [17], we demonstrate the

ability to reduce perturbation in rescheduling problems. We have also demonstrated the

ability to reduce the number of weekends in a schedule resulting in lower overtime labor

costs.

is not likely to have a large enough impact on the current violation

being repaired. A task using a far greater amount is more likely to be

in violation wherever it is moved.

Temporal Dependents: Move the task with the .fewest number of temporal

dependents. Moving a task with many dependents is likely to cause

temporal constraint violations and result in many task moves.

Distance of Move: Move the task that does not need to be shifted signifi-

cantly from its current time. A task that is moved a greater distance is

more likely to cause other tasks to move as well, increasing perturbation

and potentially causing more constraint violations.

For each of the tasks contributing to the violation, the system considers

moving the task to its next earlier and next later times such that the re-

source is available, rather than exploring many possible times. This reduces

the computational complexity of the repair to be linear in the number of

tasks and, like the "distance to move" criterion above, tends to minimize

perturbation.

Each candidate move is scored using a linear combination of the fitness,

temporal dependents, and distance to move heuristic values. This calculation

is evaluable in time proportional to the number of tasks. The repair then

chooses the move stochastically by converting each score into a probability,

and a method is selected based on these probabilities. After the repair is per-

formed, the Waltz algorithm moves other tasks in order to preserve temporal

constraints.

In summary, this repair strategy only considers two possible moves for a

task participating in a violation: one earlier and one later. The evaluation

criterion used to select a repair is based upon three computationally inex-

pensive heuristic criteria: degree of fitness, number of temporal dependents,

and distance to move.

State Constraints

When a required state is not set correctly, the penalty of the associated state

constraint returns 1. To repair a state constraint, either the task with the

violated state requirement is reassigned to a time when the state variable

takes on the desired value, or a new task that achieves the correct state at

the appropriate time is added to the schedule. The insertion of new tasks

is analogous to the operations performed by traditional planning systems

[18, 19, 20].

Specifically, the system selects from the following possible repairs:

1. Insert a new task that sets the state correctly from the start-time to

the end-time of the violated task.

2. Move the violated task forward to a time where the constraint is satis-

fied.

. Move the violated task forward to a time where the state can be changed

(by a new task) without causing additional state violations. Then insert

the new task, thus changing the state for at least the duration of the

violated task. 2

4. Move the violated task backward to a time where the constraint is

satisfied.

5. Move the violated task backward to a time where the state can be

changed without causing additional state violations. Then insert the

new task with an effect that will change the state for the violated task.

If the first method is successful, it is selected. If it is not applicable, then

one of the other methods will be selected stochastically. Each is given a score

based on the distance that the task must be moved to fix the violation and

whether any temporal dependents would have be moved.

To summarize, constraint-based iterative repair begins with a complete

but flawed schedule and isolates the violated constraints. Tasks are moved

according to the repairs associated with the violated constraints. A new

schedule is accepted if the new cost is lower than the previous cost, or if

a random number exceeds the value of the escape function; otherwise it is

rejected and new repairs are attempted on the previous schedule. The process

repeats until the cost of the solution is acceptable to the user, or until the

user terminates the repair cycle. The system may also terminate itself if a

prespecified number of iterations have been attempted or if a prespecified

CPU time bound has been reached.

2The persistence of the effect is a function of the attribute in question. For example,

when the power onboard the orbiter is turned on, it remains on for an entire 8 hour shift

because it is costly to repeatedly cycle the power.

8

Informedness versus Computational Cost

Repair methods differ in the amount of knowledge they exploit to modify a

solution. Using knowledge is not free - computational overhead is incurred

to evaluate and use repair knowledge. More informed methods also tend

to be more expensive. This is analogous to the utility problem of machine

learning [21] which states that learning can degrade the performance of a

problem solver if the learned knowledge is not useful. Similarly, a knowledge-

intensive repair method could degrade the problem solver if the method is

overly expensive and does not provide enough heuristic power to compensate

for its expense.

One can view a repair method as a generate-and-test process. The gener-

ator takes as input a schedule and suggests possible modifications. The tester

then selects and performs one of the suggested modications. Knowledge can

be exploited in both the repair generator and the repair tester. For exam-

ple, in GERRY, the generator incorporates constraint knowledge to greatly

restrict the possible tasks and times to consider. Then the system biases

a stochastic choice with heuristics such as fitness, number of temporal de-

pendents, and the distance to move. In contrast, the MIN-CONFLICTS repair

method [2] uses a more computationaUy expensive value selction heuristic

for repairs. Once a task is selected for repair, the MIN-CONFLICTS heuristic

tries all possible times and selects the time that minimizes the number of

remaining constraint violations. Ties are broken randomly. A system us-

ing MIN-CONFLICTS exploits lookahead, whereas GERRY exploits constraint

knowledge. This lookahead procedure is quite effective at choosing the best

repair, but it does incur substantial computational expense. This tradeoff is

the subject of our investigation.

Experiments

In our experiments we intend to show that no one repair method is superior

to all others on a particular class of scheduling problems. To investigate

this tradeoff we contrasted four different repair methods. These methods are

listed below in order of increasing informedness.

random repair: The system randomly selects a task to reassign and then

selects a random assignment for that task between its earliest and latest

9

start times.

random constraint repair: The system behaves identically to the ran-

dom repair method except that it only repairs tasks associated with

violated constraints. This repair exploits the blame assignment qual-

ity of constraint representations because it focuses the repairs on those

tasks involved in constraint violations.

heuristic repair: The system repairs ten random constraints per iteration

using the heuristic constraint knowledge discussed earlier to generate

and select candidate repairs.

lookahead repair: The system uses the same constraint knowledge as the

heuristic repair method to generate repairs but then instead of scoring

them, it performs lookahead. It tries each generated repair and selects

the one resulting in the lowest cost. This method is a form of the MIN-

COFLICTS heuristic that exploits constraint knowledge to restrict the

candidates for lookahead.

We compare these methods on both scheduling and rescheduling problems

and on both artificially generated and actual Space Shuttle data.

Problem Generation

Our random problem generator creates data sets according to the following

criteria and default values/ranges. The default values are in parentheses and

default ranges are in brackets.

Number of tasks: The total number of tasks in the problem set.

Resource requirement probability: The probability that a given task re-

quires resources. (.5)

Number of resource requirements: For a task that requires resources,

the number of requirements that a task requests. [1 3]

State requirement probability: The probability that a given task has

state requirements. (.5)

10

Number of state requirements: For a task that will have state require-

ments, the number of state requirements that a task requests. [1 2]

State effect probability: The probability that a given task has state ef-

fects. (.4)

Number of state effects: For a task that will have state effects, the num-

ber of state effects that a task causes. [1 2]

Probability of persistence: The probability that a state effect will persist

from the start to the end of the task (0.7) or from the end of the task

until some other effect clips the state (0.3)

The number of resource classes: The number of resource classes a task

can request. [3 3]

The

The

Task

number of attributes: The number of attributes that can be con-

strained or affected by tasks. [2 2]

number of states: The number of legal states for each attribute. [2

2]

duration: The work time required for a task. [1 hour to 24 hours]

Parallelism: The degree of parallelism in the schedule. Higher degrees of

parallelism make resource and state conflicts more likely. Parallelism

ranges from .1 (paraJlel) to .9 (serial). (.3)

Due Date: The milestone of the schedule is set to some amount past the

earliest schedule possible (relaxing all resource and state constraints).

The amount is calculated as a percentage of the length of the earliest

schedule. For example, a due date at x% means that if time Tota, t is

the start of a schedule and Tca,zy-_,d is the earliest possible end of the

schedule, then the due date is set at

The quantity of each resource request is uniformly drawn from the capac-

ity of the resource. The state required for each state requirement is uniformly

drawn from the possible states of the attribute.

11

All of the scheduling (as opposed to rescheduling) experiments used the

artificially generated problems. The two independent variables varied were

the number of tasks and the due dates. We show the effectiveness of the

various methods as problems get larger (in terms of numbers of tasks) and

as they get more constrMned (in terms of tighter due dates).

Four problems were generated, each with a different number of tasks (20,

50, 100, 500). The 20-task and 50-task problems used the default settings

described above. Since the random repair strategies only shuffle tasks and

do not insert new tasks, it is generally impossible for them to solve problems

with state requirements. Consequently, the 100-task and 500-task problems

did not contain state requirements or effects so that we could experiment

with the random strategies. The 100-task and 500-task problems each drew

from five different resource classes and five attributes (which is slightly larger

than the default settings).

Experiments were run while fixing the finM tasks's due date at three

different settings: "underconstrained," "moderate," and "overconstrained."

The percentages corresponding to these qualitative measures were 30%, 50%,

and 70% for the 20-task problem, 50%, 100%, and 150%, for the 50-task

problem, 30%, 50%, and 100% for the 100-task problem, and finally, 150%,

200%, and 250% for the 500-task problem.

All of the rescheduling experiments used Space Shuttle data. One data

set, corresponding to the STS-43 mission of the orbiter Atlantis, contains only

resource constraints. There are 414 tasks, 620 temporM constraints, and 3436

resource constraints in the initial STS-43 schedule. In the other Space Shut-

tle dataset, corresponding to the STS-50 mission of the orbiter Columbia,

there are only state constraints. The initiM STS-50 schedule contains 1453

tasks, 1761 temporal constraints, 11639 state requirements and 4064 state

effects. The integrity of our datasets is improving over time as we acquire

more knowledge from the Kennedy Space Center experts. A rescheduling

experiment is generated by moving 10 pending tasks (either later - 90% or

earlier - 10%) by a random amount (at most a week). Then the scheduler is

invoked to resolve any conflicts created the moves. The STS-43 experiments

compared all four repair methods and the STS-50 experiments omitted the

random strategies (because of state constraints).

In our experiments, we found that an effective cooling strategy for the

random techniques is not necessarily effective for more informed repair meth-

ods. Consequently, for each method, we employed the cooling strategy that

12

performed best experimentally. For the random techniques, the initial tem-

perature was the initial cost and the temperature for the ith iteration was:

Ti = .95Ti-1. For the heuristic and lookahead techniques, the starting tem-

perature was 100 and after a few iterations it was reduced to 75. When the

cost was less than 10, the temperature remained constant at 25.

All experiments were run on a Sun SPARCstation 2 with 32MB of mem-

ory. Each experiment ran until there were no outstanding violations or a

30-minute CPU time bound was reached. Since the repair functions are

probabilistic, we calculated average results over at least 10 repeated trials

for each experiment. In the next section we present the results of these

experiments.

Empirical Results

In Figure 1 we graph the average best cost as a function of time for the

four generated problems. In these graphs, the "moderate" milestone set-

ting was used. This figure shows how each technique fares as problem size

grows. In the smaller problems, the lookahead technique is competitive with

heuristic repair; however, in larger problems lookahead falls behind due to

its increasing evaluation expense. The random repair technique is a clear

improvement over the purely random technique, but does not have sufficient

heuristic power to converge within the time bound.

Figure 2 shows average best cost against time for the 50-task problem

with increasingly tighter due dates. These graphs show that as the problem

becomes more constrained, the lookahead technique fares relatively better on

average. In the highly constrained graph, we can see a "crossover" behavior,

wherein the heuristic repair technique quickly brings the cost to a low value,

but has a hard time going much further. In contrast, the lookahead technique

requires more time to get to the same low cost, but can find better schedules

more efficiently beyond that point.

Figure 3 shows representative behavior from our rescheduling tests on

STS-43 and STS-50. In the STS-43 tests, the heuristic repair technique

was superior, while in the STS-50 tests, heuristic repair's advantage is not as

clear. We believe that the competitiveness of lookahead on STS-50 is because

there are fewer candidate repairs to explore on average when repairing a

state constraint as opposed to a resource constraint. Consequently, it is

computationaUy less expensive to perform this limited form of lookahead.

13

Figure 4 presentsdata for the entire experimental suite (averagedover

the repeated trials) for heuristic repair and lookahead. Average times to

solution are presented for those runs that reached a zero cost before the 30-

minute time bound. For problems that did not converge on every run, the

table shows the percentage of runs that did not reach a cost of zero and

the average best cost found for those non-converging runs. Again, the data

shows that for most of the experiments run, especially the larger problems,

heuristic value selection outperforms value selection through lookMlead.

Conclusions and Future Work

Our experiments suggest that our overall constraint framework and the knowl-

edge encoded in this framework constitute an effective search tool, especia]ly

on large problems. The framework is modular and extensible in that one

can declare new constraints as long as their weight, penalty, and repair func-

tions are provided. Surprisingly, simple random shuffling of tasks associated

with violated constraints can produce reasonable performance on problems

of moderate size and difficulty. Lookahead techniques are especially effective

on more difficult and smaller problems, but do not fare as well on large prob-

lems. Our repair method was superior to the other methods on the Space

Shuttle rescheduling problems.

In future experiments, we hope to better characterize the components of

repair informedness and computational complexity. We are currently eval-

uating candidate metrics of problem difficulty that could be used to guide

the selection of repair heuristics. Additionally, we are developing machine

learning techniques that allow systems to learn when to switch dynamically

between heuristics [22].

With respect to the Space Shuttle application, the system is in daily use in

support of the Space Shuttle Columbia. The KSC project team updates and

publishes schedules 4 times daily under strict real-time constraints. At the

current time we publish violation reports and suggest "decontticted" sched-

ules to Wayne Bingham, Vehicle Operations Chief. He then decides whether

to accept the proposed schedule modifications. Our most significant barrier

is gathering accurate models of tasks in an electronic form. We plan to fully

deploy the system by the end of the year.

14

Related Work

Our work was heavily influenced by previous constraint-based scheduling

[8, 23, 9] and rescheduling efforts [24].

ISiS [8] and GERRY both have metrics of constraint violation (the penalty

function in GERRY) and constraint importance (the weight function in GERRY).

In contrast with our repair-based method, ISiS uses an incremental, beam

search through a space of partial schedules and reschedules by restarting the

beam search from an intermediate state.

OPIS [23, 24], which is the successor of ISIS, opportunistically selects a

rescheduling method. It chooses between the ISIS beam search, a resource-

based dispatch method, or a repair-based approach. The dispatch method

concentrates on a bottleneck resource and assigns tasks to it according to

its dispatch rule. The repair method shifts tasks until they are conflict-free.

These "greedy" assignments could yield globally poor schedules if used incor-

rectly. Consequently, OPIS only uses the dispatch rule when there is strong

evidence of a bottleneck and only uses the repair method if the duration of

the conflict is short. In contrast, GERRY uses the simulated annealing search

to perform multiple iterations of repairs, possibly retracting "greedy" repairs

when they yield prohibitive costs.

Our use of simulated annealing was influenced by the experiments per-

formed in [25, 26]. In contrast with our constraint-based repair, their repairs

were generally uninformed.

The repair-based scheduling methods considered here are related to the

repair-based methods that have been previously used in AI planning systems

such as the "fixes" used in Hacker [27] and, more recently, the repair strategies

used in the GORDIUS[28] generate-test-debug system, in the PRIAR plan

modification system [29], and the CHEF cased-based planner [30].

In [2], it is shown that the MIN-CONFLICTS heuristic is an extremely pow-

erful repair-based method. For any violated constraint, the MIN-CONFLICTS

heuristic chooses the repair that minimizes the number of remaining conflicts

resulting from a one-step lookahead. However, in certain circumstances this

lookahead could be computationally prohibitive, as demonstrated in the ex-

periments discussed above. Also, the technique used in [2] can only escape

local minima by restarting.

Our technique is also closely related to the Jet Propulsion Laboratory's

OMP scheduling system [3]. OMP uses procedurally encoded patches in an

15

iterative improvement framework. It stores small snapshots of the scheduling

process (called chronologies) which allow it to escape cycles and local minima.

Miller et al. [31],Currie andTare [32],and Drummond and Bresina [33]

describe other efforts that deal with resource and deadline constraints.

Acknowledgements

Thanks to Ellen Drascher and Mark Yvanovich for the superb user interface

they implemented and to Donna Kantz and DanieUe Schnitzius, for all their

knowledge engineering and operational testing at KSC. Special thanks to

Eric Clanton, Flow Manager of the orbiter Endeavour, and Wayne Bingham,

Vehicle Operations Chief of the orbiter Columbia, for their patience and

help in our Space Shuttle application effort. Thanks to Steve Minton for

his assistance throughout these experiments and for review of the paper.

Thanks also to Peter Friedland, Mark Drummond, and John Bresina for

careful review of this paper.

References

[1]

[2]

[3]

[4]

[5]

Zweben, M., Deale, M., Gargan, R., "Anytime Rescheduling," in Pro-

ceedings of the DARPA Workshop on Innovative Approaches to Planning

and Scheduling, 1990.

Minton, S., Phillips, A., Johnston, M., Laird., P., "Solving Large Scale

CSP and Scheduling Problems with a Heuristic Repair Method," in

Proceedings of AAAI-90, 1990.

Biefeld, E. and Cooper, L., "Bottleneck Identification Using Process

Chronologies," in Proceedings of IJCAI-91, (Sydney, Austrailia), 1991.

Lin, S, Kernighan, B., "An Effective Heuristic for the Travelling Sales-

man Problem," Operations Research, vol. 21, 1973.

Kurtzman, C.R. and Aiken, D.L., "The Mfive space station crew ac-

tivity scheduler and stowage logistics clerk," in Proceedings the AIAA

Computers in Aerospace VII Conference, (Monterey, CA), 1989.

16

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Johnson, D.S. and Aragon, C.R. and McGeoch, L.A. and Schevon, C.,

"Optimization by simulated annealing: An experimental evaluation,

Part II," Journal of Operations Research, 1990.

P. Morris, "Solutions without exhaustive search: An iterative descent

method for binary constraint satisfaction problems," in Proceedings the

AAAI-90 Workshop on Constraint-Directed Reasoning, (Boston, MA),

1990.

Fox, M., Constraint-Directed Search: A Case Study of Job Shop Schedul-

ing. Los Altos, CA: Morgan Kaufmann Publishers, Inc., 1987.

Sadeh, N. and Fox, M. S., "Preference Propagation in Tempo-

ral/Capacity Constraint Graphs," tech. rep., The Robotics Institute,

Carnegie Mellon University, 1989.

Zweben, M. and Eskey, M., "Constraint Satisfaction with Delayed Eval-

uation," in Proceedings of the Eleventh International Joint Conference

on Artificial Intelligence, (Detroit, MI), 1989.

Eskey, M. and Zweben, M., "Learning Search Control for a Constraint-

Based Scheduling System," in Proceedings of AAAI-90, (Boston, MA),

1990.

Waltz, D., "Understanding Line Drawings of Scenes with Shadows," in

The Psychology of Computer Vision (P. Winston, ed.), McGraw-Hill,

1975.

Davis, E., "Constraint Propagation with Interval Labels," Artificial In-

telligence, vol. 32, no. 3, 1987.

Mackworth, A.K., "Consistency in Networks of Relations," Artificial

Intelligence, vol. 8, no. 1, 1977.

Freuder, E. C., "A Sufficient Condition for Backtrack-Free Search," J.

ACM, vol. 29, no. 1, 1982.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., "Optimization by Simulated

Annealing," Science, vol. 220, no. 4598, 1983.

17

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Zweben, M., Davis, E., Daun, B., Deale, M., "Rescheduling with Iter-

ative Repair," in Proceedings of the AAAI 1992 Spring Symposium on

Practical Approaches to Scheduling and Planning, (Stanford University),

1992.

Fikes, R.E., Hart, P.E., and Nilsson, N.J., "Learning and Executing

Generalized Robot Plans," Artificial Intelligence, vol. 3, 1972.

D. E. Wilkins, "Domain independent planning: Representation and plan

generation," Artificial Intelligence, vol. 22, 1984.

Chapman, D., "Planning for Conjunctive Goals," Artificial Intelligence,

vol. 32, no. 4, 1987.

Minton, S., Learning Effective Search Control Knowledge: An

Explanation-based Approach. PhD thesis, Carnegie Mellon University,

1988.

Zweben, M., Davis, E., Daun, B., Drascher, E., Deale, M., Eskey, M.,

"Learning To Improve Constraint-Based Scheduling," Artificial Intelli-

gence, vol. To Appear, 1992.

Fox, M. and Smith, S., "A Knowledge Based System for Factory Schedul-

ing," Expert System, vol. 1, no. 1, 1984.

Ow, P., Smith S., Thiriez, A., "Reactive Plan Revision," in Proceedings

AAAI-88, 1988.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C, "Opti-

mization By Simulated Annealing:An Experimental Evaluation, Part

I (Graph Partioning)," Operations Research, 1990.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C, "Opti-

mization By Simulated Annealing:An Experimental Evaluation, Part II

(Graph Coloring and Number Partioning)," Operations Research, 1990.

Sussman, G.J., A Computational Model of Skill Acquisition. PhD thesis,

AI Laboratory, MIT, 1973.

18

[28]

[29]

Simmons, R.G., "Combining Associational and Causal Reasoning to

Solve Interpretation and Planning Problems," tech. rep., MIT Artifi-

cial Intelligence Laboratory, 1988.

Kambhampati, S., "A Theory of Plan Modification," in Proceedings of

AAAI-90, 1990.

[30] Hammond, K. J., "CHEF: A Model of Case-Based Planning," in Pro-

ceedings of AAAI-86, 1986.

[31] Miller, D., Firby, R. J., Dean, T., "Deadlines, Travel Time, and Robot

Problem Solving," in Proceedings of AAAI-88, (St. Paul, Minnesota),

1988.

[32]

[33]

Cuttle, K., and Tare, A., "O-Plan: The Open Planning Architecture,"

Artificial Intelligence, vol. 52, no. 1, 1991.

Drummond, M. and Bresina, J., "Anytime Synthetic Projection: Maxi-

mizing the Probability of Goal Satisfaction ," in Proceedings of AAAI-90,

1990.

19

_o

O

_o

45 I I I I

40

35

3O

25

20

15

10

5

0

I

Heuristic Repair
Lookahead -+---

0 i00 200 300 400 500

CPU Time (seconds)

600

Figure I: Results of scheduling randomly generated problems of different sizes with

moderately constrained due dates. (a) 20-task problem.

c)
Cq

&J

O
O

©

300 , i , ,

25O

2OO

150

I00

5O

%
%

I
I
|
I

I

!

Heuristic Repair -_--
Lookahead -+---

0 i00 200 300 400 500 600

CPU Time (seconds)

Figure I: Results of scheduling randomly generated problems of different sizes with

moderately constrained due dates. (b) 50-task problem.

_J
o]
O
<9

_J

®

300

25O

200

150

i00

5O

0
0

I I

Heuristic Repair -e--

Lookahead -_--

Random Repair -B--.

Random Constraint Repair--x-

eq

I00 " 200 300 400 500 600

CPU Time (seconds)

Figure I: Results of scheduling randomly generated problems of different sizes with

moderately constrained due dates. (c) 100-task problem.

0
0

j.3
[5
©

3600

3400

32O0

3000

2800

2600

2400

2200

2000

1800

1600

1400

I I I I I

"_1 I I I-I--I--I--I-_

+,
+,

- < tl--_

'_ I I ,_-F-_l.__l...+_.k

- \ "+-k. -

""o_. Heuristic Repair -o--

_ _ Lookahead -+--"
Random Repair -o--.-

0

I I I I I

i00 200 300 400 500

CPU Time (seconds)

Figure I: Results of scheduling randomly generated problems of different sizes

moderately constrained due dates. (d) 500-task problem.

600

with

300 t , , '

J
In
0
C)

_J
In

25O

2OO

150

i00

5O

0

,-+-+
%
l
l

%

I
I
I
|
I
!

I

Heuristic Repair -e--
Lookahead -+---

|
I
I
I
I
I
I
I

0

\

l
l

\ '\

i00 200 300 400 500 600

CPU Time (seconds)

Figure 2: Results of scheduling the 50-task problem with different due dates.

(a) 50% (overconstrained).

"-I"

¢q

4J
O]
0
<9

_J
U]
G]
Pq

300

250

200

150

i00

5O

0

I
I
I
I

I
I
I
I

I
I
I

I

Heuristic Repair -e--
Lookahead -+---

l
I

\

l
l
l
l
l
l

\

0

I 1

i00 200 300 400 500

CPU Time (seconds)

Figure 2: Results of scheduling the 50-task problem with different due dates.

(b) 100Z (moderately constrained).

600

_o

O
<0

_J
£0

3O0

25O

200

150

i00

5O

+-+-
I
l
I
I
I

/ 'I
I

I I I
I

Heuristic Repair -e--
Lookahead -+--"

l
I

l
l
I
I
l
l
l
l

_, -
\

I 'ii _

' ¢ ° _ _ _o c o o_-+o o o e ^ ^¢

÷_+++-+ ÷+-++ +-+_-+-++_+++_++ +_+++_+÷+_++_

0

I I I I I

i00 200 300 400 500

CPU Time (seconds)

Figure 2: Results of scheduling the 50-task problem with different due dates.

(c) 150% (underconstrained).

_D

eq

600

009

-.J

"E+/-S,T,S (_) "uTemop guTss_oo=d
puno=D gl2_nqs _o_ds _q_l mo=7 sun= 2uTlnp_qos_= _AT2_2u_s_=d_ll :E _=ngT_l

(spuoo_s) _UIT,L fldD

00_ oo_ oo_ oo_ oo_

-T-__

.... _+'_k _-'*

°. °. ,° o......... ° o. oo °° . -... , °. _

_×x × x x x _ x x_ x × × × × x × _ x x _ _ _ _ _.x._..x..x.×. '_-+'÷+,,,

×x_××_-×_'k

]BBBBBBGBBB

- GB_BBBBBB_

GGGGGGGG_

• "E]-E188

. =T_d_H 3uTe=qSUOD _opueH

---B- _T_d_H _opueH

.-_- pee_e_ooH

+x.×

X

, ×
X

%

"%
I
, ×
| °,,
t
, k

•_ ' "x
1

E] F'qE]_ _ ".

19FIFII

-I--+-t--_--F-F +-+-F

0

0

0_

- OP

- 09

- 08

OOI

0gI

t_
(D
[D
_t

0
0

Ct

O

zo

©

35

30

25

20

15

i0

5

0

0

I I I I I

Heuristic Repair -e--
Lookahead -+---

i00 200 300 400 500

CPU Time (seconds)

Figure 3: Representative rescheduling runs from the Space Shuttle Ground

Processing domain. (b) STS-50.

600

Problem Due Initial

Name Date Cost

20 Tasks 30 42

20 Tasks 50 42

20 Tasks 70 42

50 Tasks 50 297

50 Tasks 100 297

50 Tasks 150 297

100 Tasks 30 322

100 Tasks 50 322

100 Tasks 100 322

500 Tasks 150 3465

500 Tasks 200 3465

500 Tasks 250 3465

STS-431 51

STS-432 128

STS-433 95

STS-434 158

STS-435 63

STS-436 104

STS-437 100

STS-43s 159

STS-439 109

STS-431o 135

STS-501 90

STS-502 32

STS'5% 58

STS-504 62

STS-505 25

STS-506 11

STS-507 64

STS-50s 19

STS-509 110

STS-501o 36

Average Time to

Solution (sec)

Normal Lookahead

15 43

14 29

328 229

98 195

1072

663 470

65 130

13 93

467 816

25 157

573 423

26 148

16 107

62 188

32 271

254 439

306 508

532 721

111 179

90 328

24

22

37

14

17

67

17

20

27

62

Percent

Timeouts

Normal

100

55

5

100

0

0

100

15

0

100

100

100

0

10

0

0

0

0

0

0

0

0

Lookahead

100

60

20

100

35

26

85

0

0

100

100

100

0

10

0

20

0

0

0

0

0

0

0

30

0

100

0

0

0

0

0

100

Average Cost

at Timeout

Normal

55

38

7

1007

902

892

20

10

0

100

0

0

0

0

0

100

4

Lookahead

37

1

1

16

.

2053

2103

1975

Figure 4: Experimental Results: CPU Time for problems that

converge, percentage of problems that do not converge, and

average cost at timeout for non-converging problems.

29

