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Abstract: Cancer is one of the most common families of diseases today with millions of new patients
every year around the world. Bladder cancer (BC) is one of the most prevalent types of cancer
affecting both genders, and it is not known to be associated with a specific group in the population.
The current treatment standard for BC follows a standard weekly Bacillus Calmette–Guérin (BCG)
immunotherapy-based therapy protocol which includes BCG and IL-2 injections. Unfortunately,
due to the biological and clinical complexity of the interactions between the immune system, treat-
ment, and cancer cells, clinical outcomes vary significantly among patients. Unfortunately, existing
models are commonly developed for a non-existing average patient or pose strict, unrealistic, expec-
tations on the treatment process. In this work, we propose the most extensive ordinary differential
equation-based biological model of BCG treatment to date and a deep learning-based scheduling
approach to obtain a personalized treatment schedule. Our results show that resulting treatment
schedules favorably compare with the current standard practices and the current state-of-the-art
scheduling approach.

Keywords: personalized BCG treatment; personalized scheduling of treatment; cancer treatment;
personalized clinical treatment

MSC: 68U07; 92-04; 65C99

1. Introduction

Cancer is one of the most widespread illnesses in the world and is considered to be
one of the leading causes of death globally [1]. To be exact, according to the Natural Health
Society, cancer is a condition where cells in a specific part of the body grow and reproduce
uncontrollably and can invade and destroy surrounding healthy tissue. Thus, there are mul-
tiple types of cancer, each one orients in a different organ and has unique bio-clinical proper-
ties and dynamics [2]. Bladder cancer (BC) is one form of cancer that is known to influence
a large portion of the population, both genders, and a wide range of ages alongside being
very aggressive [3]. Current estimations of BC patients stand at more than 600,000 new
cases worldwide during 2022 alone with only a 77% 5-year survival rate (for the full statis-
tics see https://www.cancer.net/cancer-types/bladder-cancer/statistics#:~:text=The%20
general%205%2Dyear%20survival,the%20bladder%20wall%20is%2096%25, accessed on
1 February 2023).

The survival rate of BC patients depends on many factors, including BC type and
stage and, crucially, the course of treatment. In this work, we focus on the non-invasive
(superficial) BC where the cancer cells do not spread beyond the inner layer of the bladder.
This particular case is highly common with up to 80% of all BC cases diagnosed at a
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non-invasive stage [4]. For this case, several treatment protocols were proposed [5,6].
Currently, the immunotherapy treatment suggested by [7] that follows weekly injections
of Bacillus Calmette–Gérin (BCG) accompanied by IL-2 injections is considered the golden
standard, obtaining the highest success rates over a broad spectrum of clinical states [8,9].
Originally, BCG was developed as a vaccine to prevent tuberculosis and later adopted for
BC. Nonetheless, a large portion of the patients that receive a standard BCG treatment
course is affected in disfavored ways [10]. For example, nearly four out of five patients will
have recurrence after the conclusion of the BCG treatment [11].

One promising avenue for improving the BCG treatment protocol is changing the
currently practiced “one-size-fits-all” weekly injection schedule with a more personalized
scheduling approach. Specifically, one could potentially bring about a better-tailored sched-
ule for the injections at the individual patient’s level and lead to better clinical outcomes [12].
In order to derive such a personalized injection schedule one must be able to predict and
simulate, to an acceptable level of accuracy, the bio-clinical state of a patient following
a given schedule. As such, it is common to rely on grounded mathematical models and
computer simulations [13–17]. Indeed, in the wider scope of cancer treatment, several
studies have proposed novel drug administration scheduling algorithms in order to obtain
better clinical outcomes. For instance, [18] used the reinforcement learning natural actor–
critic approach [19] and the ordinary differential equation-based model proposed by [20]
for tumor growth during chemotherapy treatment to obtain an optimal drug injection
schedule. The authors’ objective was set to minimize the tumor cell population and the
drug amount while maintaining adequate population levels of healthy immune cells, thus
obtaining the desired clinical goal. Similarly, [21] develop a finite-horizon Markov decision
process model for cancer chemotherapy treatment planning. The authors focused on gastric
and gastroesophageal cancers and provided some level of personalization by taking into
consideration the patients’ toxicity levels which are known to have a significant effect on
the treatment success. They show that their model and approach yield better outcomes
compared to the standard non-personalized treatment schedule.

To the best of our knowledge, only a single work has considered personalizing the
BCG-based treatment schedule [22]. The authors have examined the possibility of us-
ing a dynamic injections schedule by adopting a Markovian model. In this work, we
improve the scheduling approach by leveraging deep learning techniques, utilizing the
same bio-mathematical modeling used by [22]. Through a realistic numerical simulation,
we demonstrate the great potential clinical benefits of the proposed scheduling approach
for several real-world clinical cases and a few representative cases taken from the lit-
erature. Specifically, our personalized scheduling approach is shown to lead to better
clinical outcomes compared to the existing parties (i.e., weekly injections) and the existing
state-of-the-art approach.

The remaining of this article is organized as follows: In Section 2, we present the bio-
logical background and introduce our mathematical model of the BCG-based treatment for
BC. In Section 3, we present the scheduling objective and our proposed approach for person-
alizing the BCG-based treatment schedule. In Section 4, we evaluate the proposed approach
and compare it with the existing treatment practice and the state-of-the-art scheduling
approaches through a numerical simulation over several real-world and representative
clinical cases. In Section 5, we discuss the main results arising from the work, its limitations,
and propose possible future work directions.

2. Biological Model

Our following mathematical formulation relies on the extensive prior literature which
proposed and analyzed several biological models to describe the biological process under-
lying the BCG-based immunotherapy treatment for BC with increasing levels of complexity,
capturing biological and clinical properties with great levels of detail and, presumably,
accuracy [23–29]. These and similar models describe, in a mathematical manner, the change
in several cell populations over time due to (spatio-)temporal interaction between these cell
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populations [30–33]. Generally speaking, the main line of work for modeling BCG-based
treatment for BC, which we also follow in this work, is proposed by [30]. The authors
used a system of ordinary differential equations that represents the cell population sizes
of several cell types over time. In particular, they divide the cell population into three
main groups: healthy, cancer, and immune-related cells and described their interaction.
In addition, special attention was placed on the distinction between BCG-infected and
non-BCG-infected cells.

It is believed that BCG can eliminate tumors by attaching to the urothelium and
triggering an inflammatory response. This inflammation attracts innate immune cells,
which then recruit CTLs and natural killer cells to attack the tumor cells. Bacteria from the
BCG vaccine can also enter antigen-presenting cells (APCs) in the urothelium, stimulating
the production of inflammatory cytokines such as IL-2. Additionally, BCG infection can
occur in residual cancer cells that were not detected during surgery, leading to presentation
of bacterial antigens on the tumor surface. The APCs then present tumor antigens, which
can cause CTLs to mature and track bacteria antigens, or capture tumor cells based on their
tumor-associated antigens.

Following the same modeling approach, we consider the ensuing system of 10 ordinary
differential equations that capture the interactions between the BCG-based treatment and
an immune system in cancer’s microenvironment, as shown below in Equation (1). In
words, the first equation describes the dynamical rate of BCG change over time (B(t)). The
second equation describes the immune system’s cells capable of phagocytosis (also known
as APC cells) population size over time (A(t)). The third equation describes the amount of
tumor Ag-activated APC (AT(t)). The fourth equation describes the BCG-activated APC
cells over time (AB(t)). The fifth equation describes the effector CTLs cells that react to
the BCG infection (EB(t)). The sixth equation describes the effector cells reacting with
tumor Ag (ET(t)). The seventh equation describes the IL-2 treatment influence on the
in vivo dynamics over time (I2(t)). The eighth equation describes the amount of BCG-
infected tumor cells over time (Ti(t)). The ninth equation describes the amount of BCG
uninfected tumor cells (Tu(t)). Finally, the last equation describes the amount of TGF-β,
the transforming growth factor-beta, over time (Fβ(t)).

dB(t)
dt

= Pb(St0,t−1, t)− p1 A(t)B(t)− p2B(t)Tu(t)− µBB(t), (1a)

dA(t)
dt

= γ + νA(t)B(t)− p1 A(t)B(t)− µA A(t)− p3EB(t)Ti(t)A(t), (1b)

dAT(t)
dt

= p3EB(t)Ti(t)A(t)− λAT(t)Tu(t)
I2(t)

I2(t) + gI
− βAT(t)− µA1 AT(t), (1c)

dAB(t)
dt

= p1 A(t)B(t)− βAB(t)− µA1 AB(t), (1d)

dEB(t)
dt

=
βB AB(t)I2(t)

AB(t) + g
− p3Ti(t)ET(t)− µEEB(t), (1e)

dET(t)
dt

=
βT AT(t)I2(t)

AT(t) + g
− p3Tu(t)ET(t)− µEET(t), (1f)

dI2(t)
dt

=
(

AB(t) + AT(t) + EB(t) + ET(t)
)(

q1 − q2
I2(t)

I2(t) + gI

)
+ PI(St0,t−1, t)− µI2 I2(t), (1g)

dTi(t)
dt

= p2B(t)Tu(t)− p4EB(t)Ti(t), (1h)
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dTu(t)
dt

= rTu(t)
(
1− Tu(t)

K
)
− p2B(t)Tu(t)−

(
λAT(t)Tu(t) + αET(t)Tu(t)

αT,βFβ + eT,β

Fβ + eT,β

) I2(t)
I2(t) + gI

gT
Tu(t) + gT

, (1i)

dFβ(t)
dt

= αβ,TTu(t)− µβFβ(t), (1j)

where Pb : R11 → R+ and Pi : R11 → R+ are the dynamical BCG and IL-2 injection
policies, respectively, and St0,t−1 ∈ R10×t−1−t0 is the 10-dimensional state of the dynamics
between the beginning time of the treatment (t0) and up to last step in time (t− 1). The
proposed model is adopted from [22] while the injection terms in Equations (1a) and (1g)
are altered to the Pb and Pi functions. Parameter values are adopted from [22], the existing
state-of-the-art in this context, and summarized in Table 1. A schematic view of the model
is shown in Figure 1.

APC (A)

BCG APC
(A  )

Tumor APC
(A  )T B

Tumor CTL
(E  )T

BCG CTL
(E  )B

Uninfected 
tumor (T  )u

BCG-infected 
tumor (T  )i

BCG (B)IL-2 (I2)

Figure 1. Our schematic view of the biological model proposed by [22].

Table 1. The model’s parameter definitions and average values as adopted from [22].

Parameter Description Average Value

µA APC half life (t−1) 3.8 · 102

µA1 Activated APC half life (t−1) 1.38 · 10−1

µE1 Effector cells mortality rate W/O IL-2 (t−1) 1.9 · 10−1

µE2 Effector cells mortality rate IL-2 (t−1) 0.034
muB BCG half life (t−1) 0.1
p1 The rate of BCG binding with APC (cells−1t−1) 1.25 · 10−4

p2 Infection rate of tumor cells by BCG (cells−1t−1) 2.8 · 10−8

p3
Rate of E deactivation after binding with infected tumor cells
(cells−1t−1) 1.03 · 10−10

p4
Rate of destruction of infected tumor cells by effector cells
(cells−1t−1) 1.1 · 10−6

λ Production rate of TAA-APC (t−1) 1 · 10−6

βB
Recruitment rate of effector cells in response to signals released by
BCG-infected and activated APC (cells−1t−1 I−1

2 )
1.45 · 108

βT
Recruitment rate of effector cells in response to signals released by
TAA-infected and activated APC (cells−1t−1 I−1

2 )
1.51 · 106
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Table 1. Cont.

Parameter Description Average Value

γ Initial APC cell numbers (cells−1t−1) 4.7 · 102

ν Rate of recruited additional resting APCs (cells−1t−1) 2.6 · 10−7

r Tumor growth rate (t−1) 4.8 · 10−3

b Bio-effective dose of BCG b0 = 2.8 · 10−6

β
Migration rate of TAA-APC and bacteria activated APC to the lymph
node (cells−1t−1) 3.4 · 10−2

α Efficacy of an effector cell on tumor cell (cells−1t−1) 3.7 · 10−6

g Michaelis–Menten constant for BCG activated CTLs and for TAA-
CTLs (cells) 1.0 · 1013

gT Michaelis–Menten constant for tumor cells (cells)
K Maximal tumor cell population (cells) 5.2 · 103

q1 Rate of IL-2 production IU (cells−1t−1) 1.0 · 1011

q2
The proportion of IL-2 used for differentiation of effector cells IU
(cells−1t−1) 7.0 · 10−3

µI2 Degradation rate (t−1) 1.2 · 10−3

θ
Recruitment rate of Tumor-Ag-activated APC cells in response to sig-
nals released after binding effector cells, that react to BCG infection,
with infected tumor cells (cells)

1.15 · 101

αβ,T The release term per tumor cell (cellst−1) 1.0 · 10−2

αT,β Michaelis-Menten saturation dynamics (1)
eT,β Michaelis constant (1) 1.38 · 10−4

µβ The constant rate, accounts for degradation of Fβ (t−1) 6.9 · 10−1

gI Michaelis–Menten constant for IL-2 (cells) 10,000
i2 Rate of external source (1) i0 = 4 · 10−6

3. Personalized BCG-Based Treatment Scheduling

According to [7], the treatment process for BC, as in many other types of cancer,
should be divided into two phases: an active phase of t1 days in which treatment is
actively administered and a “waiting period” of t2 days at the end of which the “long-
term” clinical outcomes could be assessed. Thus, the overall treatment process consists of
t∗ := t1 + t2 days where the treatment itself should be administered only between t0 and t1.
Following [34,35], in our work, we set t1 and t2 to be 56 and 180 days.

In order to adequately pursue optimal scheduling of treatment, one must first for-
mulate an objective. Arguably, the obvious candidate for such an objective should be
the clinical success of the treatment. Following [36], clinical success is defined for a given
patient as a binary term which assumes the value of 1 if and only if Ti(t∗) + Tu(t∗) = 0 and
maxt(A(t)) < 2A(t0). In words, the treatment is considered to be successful if the cancer
cell population is eliminated and the maximal immune system’s response throughout the
process is not too excessive since the latter is likely to lead to death. Unfortunately, directly
optimizing for this objective is questionable as it does not account for “partial success”
(i.e., a great reduction in cancer cell population size), increased immune system’s response
(which is not life threatening, i.e., less than 2A(t0)), the high costs and limited availability
of BCG and IL-2, etc.

To overcome the above limitation, in this work we draw inspiration from [18] by
considering the problem to be multi-objective where one seeks to reach an optimal clinical
state at the end of the treatment course while minimizing the administered substances
and the immune system’s response in the process. Obviously, these objectives are inher-
ently incompatible. We formally represent this complex objective using the following
optimization problem:

min
Pb ,Pi

ω1
(
Ti(t∗) + Tu(t∗)

)
+ ω2

Nb

∑
j=0

bj + ω3

Ni

∑
j=0

ij + ω4(max
t

(A(t))− A(t0)), (2)

where Nb and Ni are the total number of BCG and IL-2 injections administered during the
treatment process, respectively. bj and ij are the amount of BCG and IL-2 injected in the
j-th injection, respectively. {ωi}4

i=1 ≥ 0 are the weights assigned to the different objectives
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(commonly ∑4
i=1 ωi = 1, we refer to the assigned values as the weighting scheme). t0 stands

for the time at the beginning of the treatment. Ti(0) and Tu(0) are the BCG-infected and
uninfected cancer cells. Naturally, both types are to be minimized. A(t) is the APC cells
population size at time t, which is used to indicate the immune system’s response to the
treatment. Obviously, any excess in autoimmune response is to be minimized as well.

We refer to the first term of the objective (Equation (2)) as the Cancer cell population
(as it measures the total number of tumor cells at the end of the treatment course), the
second term as the Administered BCG, the third term as the Administered IL-2 and the last
term as Immune system’s response, or ISR for short.

For convenience, we assume that time and drug dosages are bounded and discretized
in steps denoted ∆t, ∆b and ∆i, respectively. For our implementation, we assume that time
is discretized on an hourly basis and drugs are discretized to be a tenth of the basic amount
currently in practice (see [7])—namely, ∆t = 1, ∆b = 0.1b0 and ∆i = 0.1i0. Furthermore,
we assume that each BCG and IL-2 injection dosage is bounded by an amount three times
larger than the standard injection dosages b0 and i0 as a higher dosage in a single injection
would likely result in unwanted clinical outcomes and therefore can be treated as unfeasible
(see [34] for additional details).

Naïvely, one can iterate over the entire schedule space (i.e, all possible schedules)
and obtain an optional schedule for each individual patient. However, such computation
is somewhat impractical due to the large schedule space size (i.e., there are 1,209,600 =
(30 ·30 · 24 · 56) possible schedules for each individual—namely, 30 possible dosages of
BCG, 30 possible dosages of IL-2 over 24 h times 56 days). In order to overcome this
limitation, we adopt a well-established machine learning-based approach, which has been
successfully implemented in the past for similar healthcare settings [37–41], and tailor it
to the scheduling task at hand. Specifically, we leverage an advanced machine learning
algorithm, recurrent neural networks (RNN) with long-short term memory (LSTM), which
showed very promising results in similar clinical planning and scheduling tasks [42–44], to
learn and generalize an approximated optimal scheduling policy with relatively negligible
computation time in deployment.

In order to adequately implement an RNN model, one needs to define the input and
output spaces, along with a “loss function” which determines what a “desired” policy
looks like.

We define two input spaces, resulting in two RNNs: a “semi-personalized” (SP)
space and a “personalized” (P) space. The resulting RNNs are referred to as the “Semi-
personalized RNN” and the “Personalized RNN”, respectively.

Starting with the SP input space, we define the following input space where at time t:

SSP
t := [t, B(t), A(t), AT(t), AB(t), EB(t), ET(t), I2(t), Ti(t), Tu(t), Fβ(t)].

As such, the input to our semi-personalized RNN model is 11 dimensions.
The above input space is considered to be “semi-personalized” since it does not

explicitly account for each patient’s p3, γ, ν, which are part of Equation (1). Specifically, the
above input space does personalize the treatment scheduled to a certain extent, since it is
tailored to the patient’s initial clinical condition unlike the current practice, yet it does not
fully realize the personalization potential since these important parameters are set to the
average of the population (taken from [22]). In order to assess the role these parameters
play in determining an optimal treatment schedule, we further define the P input state
space to the following:

Sp
t := [t, B(t), A(t), AT(t), AB(t), EB(t), ET(t), I2(t), Ti(t), Tu(t), Fβ(t), p3, γ, ν].

It is important to note that p3, γ, and ν are relatively simple to obtain from a clin-
ical perspective, yet their importance in determining an optimal schedule is an open
clinical question.
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For both RNNs, the output space is defined to be all allowed dosages of BCG and/or
IL-2 for each injection and the “do nothing” option. Since issuing an amount equal to zero
at time t is identical to not issuing an injection at all at that time, the output of the model is
a two-dimensional array, [b, i], such that b ∈ [0, ∆b, . . . , 3b0] and i ∈ [0, ∆i, . . . , 3i0] are the
amounts of BCG and IL-2 issued to be injected at that time, respectively. Overall, 302 action
options at each time step.

In order to ensure that the desired scheduling policy is learned, we introduce a unique
loss function based on Equation (2) to both RNNs. Specifically, given the simulated bio-
clinical state of the patient after t∗ days since the beginning of treatment using Equation (1)
and the RNN’s action decisions, we compute the objective’s value. In the following, we
vary the values of w1 to w4 coefficients (i.e., the weighting scheme) in the objective function
to explore different clinical preferences and, as a result, scheduling policies. If not stated
otherwise, we report the simple uniform case where wi = 0.25. To obtain an optimal neural
architecture for the RNNs, we used the AutoKeras library [45] which utilizes an automatic
machine learning approach [46]. Namely, this library finds the optimal neural architecture
and its associated weights.

In order to maintain the biological validity of our experiments, we obtained the records
of 10 patients diagnosed with BC and treated with the standard (i.e., weekly) BCG with
IL-2 treatment protocol (provided as supplementary material). The normal distribution
of the tumor growth rate (p3), the immune system’s APC cells natural recurrent (γ), and
BCG-immune system response (ν) are obtained by fitting a normal distribution to the
obtained data. Equation (1) is solved over time using the numerical method proposed
by [47]. If not stated otherwise, we used the ∆t = 1 (i.e., 1 h) for our evaluation.

4. Evaluation

In the following, we rely on the evaluation metrics introduced and discussed in
Section 3. Namely, the cancer cell population, administered BCG, administered IL-2, ISR,
and arguably most importantly, the clinical success. Note that the cancer cell population and
ISR of one patient cannot be directly compared to another since both do not account for the
initial clinical state of each patient (i.e., the cancer cell population size and ISR at t = 0).
Instead, we report the normalized values for both metrics which are naturally defined,
respectively, below:(

Ti(0) + Tu(0)− Ti(t∗)− Tu(t∗)
)

Ti(0) + Tu(0)
and

(
maxt(A(t))− A(t0)

)
A(t0)

.

If not stated otherwise, we train both models with the objective presented in Equation (2)
with the uniform weighting scheme (i.e., w1 = w2 = w3 = w4 = 0.25).

4.1. RNN Models

The automatic search for optimal RNN architectures has resulted in two six-layered
architectures with the following layers: (1) an input layer with 11 dimensions for the
non-personalized RNN and 14 dimensions for the personalized RNN; (2) a fully connected
(FC) layer with a ReLu activation function and eight neurons; (3) an LSTM layer with eight
neurons; (4) a fully connected (FC) layer with a ReLu activation function and eight neurons;
(5) a fully connected (FC) layer with a ReLu activation function and four neurons; and (6)
a fully connected (FC) layer that operates also as an output layer with two neurons. A
schematic view of the RNN model’s architecture is shown in Figure 2. This architecture does
not seem to significantly change for a number of reasonably selected weighting schemes
such as the ones examined in Table 2) and temporal discretization options (i.e., different ∆t)
such as the ones examined in Figure 3. The optimization algorithm Adam was used with a
learning rate of 0.0062 and a batch size of 8, both selected by simple trail and error.



Mathematics 2023, 11, 1192 8 of 13

Semi-personalized: 11 dim
Personalized: 14 dim

Input
Semi-personalized: 8 dim
Personalized: 8 dim

FC
Semi-personalized: 8 dim
Personalized: 8 dim

LSTM

ReLu

Semi-personalized: 8 dim
Personalized: 8 dim

FC

ReLu

Semi-personalized: 4 dim
Personalized: 4 dim

FC

ReLu

Semi-personalized: 2 dim
Personalized: 2 dim

FC

Figure 2. A schematic view of the RNN model’s architecture, as obtained using the AutoKeras library [45].

4.2. Learning Process

First, recall that one has to determine the level of temporal details (i.e., different ∆t).
Figure 3 presents the learning performance of the RNNs based on 1, 4, 24 (1 day), and 168
(1 week) hours of discretization where the x-axis is the number of epochs and the y-axis is
the clinical success of the treatment provided by the RNN. A logarithmic relation between
the number of epochs and treatment success rate is evident. Moreover, as the level of
temporal discretization is higher (i.e., ∆t is smaller) the treatment success rate is higher
as well. Last, the personalized version of the RNN model (marked by ‘P’ and green lines)
is converging to a higher success rate plateau compared to the non-personalized version
(marked by ‘SP’ and blue lines).

From Figure 3 it is also apparent that greater temporal detail entails greater clinical
success. Specifically, despite the fact that the current standard treatment protocol operates
on a weekly basis, scheduling using a finer-grained temporal detail encompasses significant
potential clinical benefits.

4.3. Comparison

We compared the performance of the trained RNNs, using a 1-hour temporal dis-
cretization, against the baseline (weekly) injections schedule (Morales et al. [7]) and the
current state of the art (Guzev et al. [22]).

Table 2 compares the four scheduling approaches using three representative weighting
schemes. Specifically, each row presents a different weighting scheme ranging from a
uniform weighting scheme to a highly clinically-biased weighting scheme (where the
clinical components of Equation (2) are over-weighted by a factor of 4).

Starting with the cancer cell population metric, the baseline approach brings about the
least favorable outcomes followed by the existing state of the art. Specifically, the existing
state of the art provides an improvement over the baseline across the three examined
weighting schemes (0.336, 0.315 and 0.401 vs. 0.417 achieved by the baseline). However,
both RNNs, and especially the personalized RNN, provide an additional improvement
across the three weighting schemes with cancer cell population scores as low as 0.176.
Considering the administered BCG and IL-2, the baseline always administers 6 of each
across weighting schemes and patients. This is not the case for the three alternatives, which
significantly vary across patients and weighting schemes. As one could expect, both RNNs
administer more substances as the weights are more clinically-biased with greater standard
deviation, aligned with one’s expectation of personalization. At the same time, in the
uniform weighting case, both RNNs administer less substances compared to the alternatives.
The state-of-the-art approach seems to administer less IL-2 compared to the baseline across
weighting schemes yet it varies significantly in its administered BCG. Specifically, it does
not seem to present a monotonic pattern as it administrates more substances compared to
the alternatives in the uniform case and even more in the slightly clinically-biased objective.
However, it presents the smallest amount of drug administration in the more clinically-
biased case. This inconsistent pattern may be attributed to the Markovian model adopted by
Guzev et al. [22] which obviously is incompatible with dynamics underlying the biological



Mathematics 2023, 11, 1192 9 of 13

process (see Equation (1)). Considering the ISR, we could not detect a clear and consistent
pattern, with a different scheduling approach scoring the highest across the three weighting
schemes. One possible explanation to this phenomenon is the high non-linear dependency
between the ISR and the treatment as indicated by Equation (1). Finally, considering
the clinical success metric, arguably the most important one in practice, we find that the
baseline provides the least favorable results which are seconded by the existing state of
the art. Specifically, the existing state of the art provides only a minor improvement over
the baseline (4%, 5%, and 6% across the examined weighting options) while the proposed
RNNs provide a much more significant improvement (Semi-personalized RNN–9%, 10%,
and 11%; Personalized RNN–12%, 13%, and 13.5%).

0 100 200 300 400 500 600 700 800 900 1000
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
in

ica
l s

uc
ce

ss

(P) t = 1h
(P) t = 4h
(P) t = 24h
(P) t = 168h
(SP) t = 1h
(SP) t = 4h
(SP) t = 24h
(SP) t = 168h

Figure 3. The RNN models’ performance over the learning process. Each series denoted a different
level of temporal discretization. Green series, denoted P, represent the personalized version of the
RNN and the blue ones, denoted SP, represent the semi-personalized version.

Table 2. A comparison between the proposed Personalized and Semi-personalized RNN models
with the two baseline model’s Morales et al. [7] and Guzev et al. [22]. The results are shown as mean
± standard deviation. Recall, b0 and i0 are the standard BCG and IL-2 injection amount proposed
in [22].

Objective
Configuration

Model Cancer Cell
Population

Administered
BCG

Administered
IL-2

ISR Clinical
Success

w1 = w4 = 0.25 Baseline [7] 0.417± 0.08 (6.00± 0.00)b0 (6.00± 0.00)i0 1.46± 0.07 0.642

w2 = w3 = 0.25 Guzev et al. [22] 0.336± 0.10 (6.13± 0.42)b0 (5.64± 0.22)i0 1.42± 0.09 0.681

Semi-personalized RNN 0.324± 0.07 (5.87± 0.61)b0 (5.69± 0.29)i0 1.63± 0.12 0.731

Personalized RNN 0.302± 0.07 (5.70± 0.58)b0 (5.52± 0.35)i0 1.58± 0.14 0.767

w1 = w4 = 0.33 Baseline [7] 0.417± 0.08 (6.00± 0.00)b0 (6.00± 0.00)i0 1.46± 0.07 0.642

w2 = w3 = 0.17 Guzev et al. [22] 0.315± 0.08 (6.24± 0.52)b0 (5.94± 0.22)i0 1.49± 0.1 0.692

Semi-personalized RNN 0.229± 0.07 (6.02± 0.70)b0 (5.89± 0.19)i0 1.51± 0.12 0.740

Personalized RNN 0.176± 0.07 (6.06± 0.74)b0 (5.96± 0.21)i0 1.52± 0.13 0.773

w1 = w4 = 0.4 Baseline [7] 0.417± 0.08 (6.00± 0.00)b0 (6.00± 0.00)i0 1.46± 0.07 0.642

w2 = w3 = 0.1 Guzev et al. [22] 0.401± 0.07 (5.78± 0.43)b0 (5.69± 0.31)i0 1.39± 0.06 0.703

Semi-personalized RNN 0.274± 0.06 (6.26± 0.58)b0 (6.18± 0.22)i0 1.35± 0.08 0.758

Personalized RNN 0.242± 0.06 (6.30± 0.61)b0 (6.19± 0.24)i0 1.37± 0.08 0.779
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4.4. Schedule Profiling

In order to better understand the apparent advantage of the RNNs over the baseline,
as demonstrated in Table 2, we focus on three representative BC cases taken from [24]
which correspond to mild, moderate, and severe BC clinical presentations. These cases
differ in their initial cancer cell population size—Tu(0). For each case, we calculate the
schedules derived by the baseline and the RNNs which use a uniform weighting scheme
and a 1-hour temporal discretization. The resulting schedules are graphically presented in
Figure 4.
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Figure 4. The treatment schedule derived for each of the examined cases. The x-axis represents time
(in days), and the y-axis represents the administered BCG. Grey bars are associated with the baseline
approach, blue with the semi-personalized RNN, and green with the personalized RNN. (a) Mild
case (Tu(0) = 2 · 106). (b) Moderate case (Tu(0) = 7 · 106). (c) Severe case (Tu(0) = 2 · 107).

As can be seen in Figure 4, the baseline approach, per definition, prescribes a regular
weekly schedule of fixed injections with a regular dosage of 1b0 (six injections overall).
That is not the case for the RNNs which produce schedules that vary temporally, in the
number of injections and in the prescribed dosages, aligned with one’s expectation of
personalization. First, consecutive injections are provided in non-standard intervals which
range from less than 24 h to more than 7 days. The number of injections varies as well with
both RNNs scheduling more injections compared to the baseline, with the personalized
RNN scheduling 8–9 injections and the semi-personalized RNN scheduling 10–11 injections.
Similarly, the dosage of each injection varies over time and across the initial clinical state of
the patient. Interestingly, as one might expect, larger average dosages are prescribed by
the RNNs for more severe cases, ranging from an average of ∼0.4b0 injection dosage for
the mild case to ∼0.9b0 injection dosage for the severe case. This is clearly not the case for
the baseline.

5. Discussion and Conclusions

In this article, we study the task of optimal injection scheduling for bladder cancer
(BC) using BCG and IL-2 immunotherapy treatment. To represent the bio-clinical dynamics
during the BCG and IL-2 treatment of the BC, we utilized the temporal biological model
that uses a set of ordinary differential equations proposed by [22]. Based on this model we
propose and evaluate a novel deep learning-based approach for deriving a personalized
schedule. Based on real-world patient cases, as well as additional representative ones taken
from the literature, we demonstrate the potential benefits of our proposed approach com-
pared to the existing practices [7] and the current state-of-the-art scheduling approach [22].
Specifically, our results show that patients can significantly benefit from a more flexible
and personalized temporal scheduling of injections which is associated with better clinical
outcomes. The proposed approach requires little to negligible computational power at
deployment and can be readily adjusted to accommodate different objectives.

However, the proposed approach and its evaluation are not without limitations. First,
despite using the most extensive bio-clinical model we know of to date (see Section 2), it
does not take the spatial component of the dynamics into account which is known to have a
significant impact on both simulating the in vivo dynamics by themselves and the influence
of the BCG treatment [48,49]. As such, more accurate future models may provide slightly
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different results. Second, the derived scheduling policy is obtained in the form of a deep
neural network, a machine learning instance that is notorious for being hard to interpret
in clinical and even layman’s terms [50]. Having that said, deep learning is currently at
the forefront of many clinical applications in practice [51–55], and significant research is
currently being conducted in order to mitigate this limitation.
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