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Abstract. In this paper, multi-step crossover (MSX) and a local search
method are unified as a single operator called MSXF. MSX and MSXF
utilize a neighborhood structure and a distance measure in the search
space. In MSXF, a solution, initially set to be one of the parents, is
stochastically replaced by a relatively good solution in the neighbor-
hood, where the replacement is biased toward the other parent. After a
certain number of iterations of this process, the best solution from those
generated is selected as an offspring. Using job-shop scheduling problem
benchmarks, MSXF was evaluated in a GA framework as a high-level
crossover working on the critical path of a schedule. Experiments showed
promising performance for the proposed method.

1 Introduction

It is well known that GAs are not well suited for fine-tuning structures which
are very close to optimal solutions and that it is essential to incorporate local
search methods, such as neighborhood search, into GAs. The result of such
incorporation is often called Genetic Local Search (GLS) [1]. In this framework,
an offspring obtained by a recombination operator, such as a crossover, is not
included in the next generation directly but is used as a “seed” for the subsequent
local search. The local search moves the offspring from its initial point to the
nearest locally optimal point, which is included in the next generation.

In solving combinatorial optimization problems such as job-shop scheduling
problems (JSSP), it is often more difficult to define a crossover operator which
recombines solutions and make global changes to them than a transition operator
of a neighborhood search which only modifies a solution locally. In fact, it is
rather easy to construct an example of neighborhood search for JSSP by using
naturally introduced job permutations and it can even be enhanced by limiting
the permutations on the critical path. Unfortunately the same method cannot
help build an effective crossover operator, which prevents us from applying GAs.
Recently, MSX [2] was proposed as one such high-level crossover.

Given a local search method with the appropriate neighborhood structure,
MSX can be defined using the same neighborhood structure in the problem
space. Using the same information as the local search uses, it can locate a
good, new starting point for the subsequent local search. MSX can be defined
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in a problem-independent manner and can be implemented easily even if the
problem to be solved is complicated.

In this paper, Multi-Step Crossover Fusion (MSXF), originating from MSX,
is proposed as a new high-level crossover which is fused with a local search. In
MSXF, a solution, initially set to be one of the parents, is stochastically replaced
by a relatively good solution from the neighborhood, where the replacement is
biased toward the other parent. The biased stochastic replacement is described
briefly as follows:

1. All the members in the neighborhood are indexed in ascending order accord-
ing to the distance from the other parent.

2. A member is selected from the neighborhood randomly, but a smaller index
is preferred. It is then probabilistically accepted according to its evaluation
value.

3. If it is rejected, its index is changed to the biggest one in the neighborhood
and process returns to step 2.

4. Otherwise the current solution is replaced by the selected one.

After a certain number of iterations of this process, the best one among the
generated solutions is selected as an offspring. MSXF can be viewed as a recom-
bination operator in which local search functionality is built in. In other words,
it acts as a single operator unifying MSX and a local search.

MSXF has been applied to JSSP, employing a critical path-based neighbor-
hood called the CB neighborhood. The CB neighborhood has been proved to be
one of the most powerful neighborhoods for JSSP through extensive experimen-
tal studies [3]. A GA with such a tailored high-level MSXF (GA/MSXF) was
evaluated with well-known benchmark problems of Muth and Thompson [4].

2 Background

2.1 Neighborhood Search

Neighborhood search is a widely used local search technique to solve combinato-
rial optimization problems. A solution x is represented as a point in the search
space, and a set of solutions associated with x is defined as neighborhood N(x).
N(x) is a set of feasible solutions capable of being reached from x by exactly
one transition, a single perturbation of x.

The outline of a neighborhood search for minimizing V (x) is described in
Algorithm 1, where x denotes a point in the search space and V (x) denotes its
evaluation value. The criterion used in Step 1 of Algorithm 1 is called the choice
criterion by which the neighborhood search can be categorized [5]. For example,
a descent method selects a point y ∈ N(x) such that V (y) < V (x). A stochastic
method probabilistically selects a point according to the Metropolis Criterion,
i.e., y ∈ N(x) is selected with probability 1 if V (y) < V (x); otherwise, with
probability:

P (y) = exp(−∆V/T ), where ∆V = V (y) − V (x) . (1)



Algorithm 1. Neighborhood search

• Select a starting point: x = x0 = xbest.
do

1. Select a point y ∈ N(x) according to the given criterion
based on the value V (y). Set x = y.

2. If V (x) < V (xbest) then set xbest = x.

until some termination condition is satisfied.

Here P is called the acceptance probability. Simulated Annealing (SA) is a
method in which parameter T (called the temperature) decreases to zero follow-
ing an annealing schedule as the iteration step increases. It is therefore very
simple and easy to implement neighborhood search, although an extremely long
time is taken to find the global optima. This time requirement prevents the
search process from being trapped in a deep local optimum.

2.2 Multi-step Crossover

In a simple GA framework, the main role of the crossover operator is to func-
tion as a search engine; by piling up good building-blocks, better strings can be
constructed. But in GLS, local search plays the leading role and the crossover,
together with the selection operator, works as a navigation engine and helps find
new starting points for the subsequent local search. Multi-step crossover (MSX)
is designed to be successful under such a GLS framework [2].

MSX is constructed by using the distance measure and the neighborhood
structure in the search space. Let the parent solutions be p1 and p2, and let
N(p) be the neighborhood of p. Set x = p1. MSX modifies x in the direction of
p2 as follows: first each point y ∈ N(x) is ranked by the distance d(y, p2) between
y and p2; the smaller the distance, the higher the rank. Then x is replaced by
y with a relatively high rank, i.e., a small d(y, p2). Repeating this step modifies
x in a step-by-step manner and brings x close to p2. In the process, x loses the
characteristics of p1 and gradually obtains those of p2. After a certain number
of iterations, the resulting new solutions contain elements of both p1 and p2

although in different ratios.
In combinatorial optimization problems, it is computationally effective to

limit the search to a subspace of the solution space without excluding a global
optimum. In a neighborhood search, this can be done by limiting the size of
the neighborhood to a fraction of the total available moves, while keeping the
connectivity property. The subspace is called a higher-level solution space. MSX
can be viewed as a high-level crossover in GLS in the sense that a new solution
generated by MSX necessarily resides in the same higher-level space as the local
search uses.



3 Multi-Step Crossover Fusion

Although preliminary experiments in [2] using JSSP benchmarks demonstrated
the good performance of a GA with the MSX (GA/MSX), some computational
drawbacks were found. Firstly the descent method which is used as a local search
method in GA/MSX is too simplistic. Secondly, a lot of individuals are gener-
ated and evaluated during the MSX steps without contributing directly toward
improving the solution quality. To reduce the computational time and improve
the solution quality, MSX’s functionality is incorporated into a neighborhood
search algorithm and these two separate operators are fused together into a sin-
gle unified operator called MSXF. The neighborhood search algorithm used for
the base algorithm of MSXF is not a simple decent method this time, but a
more efficient stochastic one. Although SA is one of the well-known stochastic
methods and has been successfully applied to many problems as well as to JSSP,
it would be unrealistic to use a full SA for our purpose, because it is too time
consuming to run SA many times in a GA run. A restricted method with a fixed
temperature parameter T = c might be a good alternative. Then the acceptance
probability used in Algorithm 1 is rewritten as:

Pc(y) = exp

(
−∆V

c

)
, where ∆V = V (y) − V (x) (c : constant) . (2)

MSX’s functionality can be incorporated into Algorithm 1 by adding more ac-
ceptance bias in favor of y ∈ N(x) with a small d(y, p2). The acceptance bias
in MSXF is controlled by sorting N(x) members in ascending order of d(yi, p2)
so that yi with a smaller index i has a smaller distance d(yi, p2). Here d(yi, p2)
can be estimated easily if d(x, p2) and the direction of the transition from x to
yi are known, and it is not necessary to generate and evaluate yi. Then yi is
selected from N(x) randomly, but with a bias in favor of yi with a small index
i. The outline of MSXF is described in Algorithm 2.

In place of d(yi, p2), one can also use σ(d(yi, p2)− d(x, p2))+ rε to sort N(x)
members in Algorithm 2. Here σ(x) denotes the sign of x: σ(x) = 1 if x > 0,
σ(x) = 0 if x = 0, σ(x) = −1 otherwise. A small random fraction rε is added to
randomize the order of members with the same sign.

The termination condition can be given, for example, as the fixed number of
iterations in the outer loop. MSXF is not applicable if the distance between p1

and p2 is too small compared to the number of iterations. In such a case, a mu-
tation operator called Multi-Step Mutation Fusion (MSMF) is applied instead.
MSMF can be defined in the same manner as MSXF except for one point: the
bias is reversed, i.e., sort the N(x) members in descending order of d(yi, p2) in
Algorithm 2.

4 Job-shop Scheduling and GA/MSXF

4.1 Job-shop Scheduling Problem

The n×m minimum-makespan general job-shop scheduling problem can be de-
scribed by a set of n jobs that is to be processed on a set of m machines.



Algorithm 2. Multi-Step Crossover Fusion (MSXF)

• Let p1, p2 be parent solutions.
• Set x = p1 = q.
do • For each member yi ∈ N(x), calculate d(yi, p2).

• Sort yi ∈ N(x) in ascending order of d(yi, p2).
do 1. Select yi from N(x) randomly, but with a bias in favor of yi with a

small index i.
2. Calculate V (yi) if yi has not yet been visited.
3. Accept yi with probability one if V (yi) ≤ V (x), and with Pc(yi)

otherwise.
4. Change the index of yi from i to n, and those of yk (k ∈ {i+1, i+2, . . . , n})

from k to k − 1.
until yi is accepted.
• Set x = yi.
• If V (x) < V (q) then set q = x.

until some termination condition is satisfied.
• q is used for the next generation.

Each job has a technological sequence of the machines to be processed. Each
operation requires the exclusive use of each machine for an uninterrupted du-
ration called processing time. The time required to complete all jobs is called
makespan. The objective when solving or optimizing this general problem is to
determine the processing order of the operations for each machine that minimizes
the makespan.

Job-shop scheduling problems are not only NP-hard , but are extremely
difficult to solve optimally. To solve JSSP, exhaustive search algorithms based
on branch and bound methods have been studied. Recently, approximation
algorithms such as simulated annealing (SA), genetic algorithms (GAs) and tabu
search have also been applied with good success [6, 7, 8, 3, 9].

Job-shop scheduling problems are often described by a disjunctive graph
G = (V, C ∪ D), where

– V is a set of nodes representing the operations of all jobs together with two
special nodes, a source (0) and a sink ?, representing the beginning and end
of the schedule, respectively.

– C is a set of conjunctive arcs representing the technological sequences of
operations.

– D is a set of disjunctive arcs representing pairs of operations that must be
performed on the same machines.

The processing time for each operation is the weighted value attached to the
corresponding nodes.

Scheduling defines the ordering between all operations that must be pro-
cessed on the same machine, i.e., to fix precedences between operations. In the
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Figure 1. Disjunctive graph G of a 3 × 3 problem

disjunctive graph model, this is done by turning all undirected (disjunctive) arcs
into directed ones. The set of all directed arcs selected from disjunctive arcs is
called a selection.

A selection S defines a feasible schedule if and only if the resulting directed
graph is acyclic. In such a case, S is called a complete selection. A complete
selection and its corresponding feasible schedule can be used interchangeably
and represented by the same symbol S.

Makespan is given by the length of the longest weighted path from source to
sink in this graph. This path P is called the critical path and is composed of a
sequence of critical operations. A sequence of consecutive critical operations on
the same machine is called a critical block.

The distance between two schedules S and T can be measured by the number
of differences in the processing orders of operations on each machine [7]. In other
words, it can be calculated by summing the disjunctive arcs whose directions
are different between S and T . We call this distance the disjunctive graph (DG)
distance.

4.2 Neighborhood Structures for JSSP

A set of solutions of JSSP can be mapped to the space of bit-strings by marking
each disjunctive arc as 1 or 0 according to its direction [7]. The DG distance and
the Hamming distance in the mapped space are equivalent, and the neighborhood
of a schedule S is a set of all (possibly infeasible) schedules whose DG distances
from S are exactly one. This approach is simple and straightforward but not
very efficient.

More efficient methods can be obtained by introducing a transition operator
that exchanges a pair of consecutive operations only on the critical path and
forms a neighborhood [10]. We call this the adjacent swapping (AS) neighbor-
hood. DG distances between a schedule and members of its AS neighborhood are
always one, so the AS neighborhood can be considered a subset of the bit-string
neighborhood described above.

Another neighborhood using a transition operator on the critical path is
proposed in [11]. The transition operator permutes the order of operations in a



critical block by moving an operation to the beginning or the end of the critical
block, thus forming the CB neighborhood. The distances between a schedule and
its CB neighbors can vary depending on the position of the moving operation.

A schedule’s makespan may often be reduced by shifting an operation to left
without delaying other jobs. When no such shifting can be applied to a schedule,
it is called an active schedule. An optimal schedule is clearly active so it is safe
and efficient to limit search space to the set of all active schedules. An active
schedule is generated by the GT algorithm proposed in [12]. An extension of the
CB neighborhood using the GT algorithm is proposed in [2], which is called the
active CB neighborhood. It has been experimentally shown in [13] that SA using
the active CB neighborhood is very powerful. Thus, the active CB neighborhood
may as well be investigated in the context of GA.

4.3 GA/MSXF for Job-shop Scheduling

The MSXF is applied to JSSP using the active CB neighborhood and the DG
distance previously defined. Algorithm 3 describes the outline of the GA/MSXF
routine for JSSP using the steady state model proposed in [14, 15]. To avoid
premature convergence even under a small-population condition, an individual
whose fitness value is equal to someone in the population is not inserted to the
population in step 4.

Algorithm 3. GA/MSXF for JSSP

• Initialize population: generate a set of randomly generated schedules and
apply the local search to each member of the set.

do 1. Select two schedules p1, p2 from the population randomly with some bias
depending on their makespan values.

2. If the DG distance between p1, p2 is shorter than some predefined small
value, apply MSMF to p1 and generate q.

3. Otherwise, apply MSXF to p1, p2 using the active CB neighborhood
N(p1) and the DG distance, and generate a new schedule q.

4. If q’s makespan is shorter than the worst in the population, and no
one in the population has the same fitness value as q, replace the worst
individual with q.

until some termination condition is satisfied.
• Output the best schedule in the population.

A given problem of JSSP can be converted to another problem by reversing all
the technological sequences. The new problem is equivalent to the old one in the
sense that, reversing the job sequences of any feasible solution from the original
problem results in a feasible solution for the reversed problem with the same
critical path and makespan. It can be seen, however, that an active schedule
from the original problem is not necessarily active in the reversed problem. we



call a schedule left active if it is an active schedule for the original problem and
right active if it is for the reversed problem. Using only the left (or right) active
schedules may bias the search toward the wrong direction, therefore a mechanism
to search in the space of both left and right active schedules is introduced in the
GA/MSXF as follows. First, there are equal number of left and right active
schedules in the initial population. The schedule q generated from p1 and p2 by
MSXF ought to be left (or right) active if p1 is left (or right) active, but with
some probability (0.1 for example) this property is reversed.

5 Experimental Results

The performance of GA/MSXF was tested by running several simulation tri-
als with well-known benchmark problems originated by Muth and Thompson
(MT) [4].

Table 1. Performance comparisons using MT benchmark problems

Prob Method Best Avg Var Pop cpu time machine runs

MT10×10 CBSA 930 930.8 2.4 – 44m36s SS2 10
GA/GT+ECO 930 963 14 2025 5m SS2 200

Opt. 930 PGA+SBP 930 947 8.2 100 2.3m SS10 200
GVOT 949 977 ? 500 25m SUN4 ?

GA/MSX 930 934.5 5.1 500 11m39s SS10 10
GA/MSXF 930 930 0 10 1m28s DECα 10

MT20×5 CBSA 1178 1178 0 – 38m18s SS2 5
GA/GT+ECO 1181 1213 16 5041 30m SS2 200

Opt. 1165 PGA+SBP 1165 1188 10.3 100 2.3m SS10 200
GVOT 1189 1215 ? 500 25m SUN4 ?

GA/MSX 1165 1177.3 4.2 100 10m54s SS10 10
GA/MSXF 1165 1165 0 10 1m22s DECα 10

Pop: population size, cpu time: average cpu time, machine: the machine used
for the experiments, runs: number of runs, SS2(SS10): SUN SPARC Station
2(10), DECα: DEC Alpha 600 5/266

Table 1 summarizes the makespan performance of the GA/MSXF method to-
gether with our previous GA/MSX method, a simulated annealing method using
the CB neighborhood structure (CBSA) [3], and other GA methods published
so far in literature for MT10×10 and MT20×5 problems. The GA methods
include GA/GT+ECO [16], PGA+SBP [17] and GVOT [18]. For GA/MSXF,
population size = 10, constant temperature c = 10 and the number of iterations
for each MSXF = 1000 are used. The GA/MSXF experiments were performed
on a DEC Alpha 600 5/226 which is about 4 times faster than a Sparc Station
10, and the programs were written in the C language. It should be noted that
all of the GA/MSXF experiments successfully found optimal solutions in about
one and a half minutes for both problems.



Figure 2 shows all of the solutions (in small dots) generated by an application
of (a) MSXF and (b) a stochastic local search computationally equivalent to (a)
for comparison. Both (a) and (b) started from the same solution (the same
parent p1), but in (a), transitions were biased toward the other solution p2. The
x-axis represents the number of disjunctive arcs whose directions are different
from those of p2 on machines with odd numbers, i.e., the DG distance was
restricted to the odd machines. Similarly the y-axis representing the DG distance
was restricted to the even machines.
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Figure 2. Distribution of solutions generated by an application of (a) MSXF
and (b) a short-term stochastic local search

6 Conclusion

The multi-step crossover fusion (MSXF) has been proposed as a unified operator
of a local search method and a recombination operator in GLS. MSXF uses a
neighborhood structure and a measure of distance in the problem space. Starting
from one parent, MSXF carries out a local neighborhood search with a limited
number of iterations, where the search direction is navigated by the other parent.
MSXF searches for a good solution in the problem space by concentrating its
attention on the area between the parents.

We applied GA/MSXF to the job-shop scheduling problem, one of the most
difficult NP-hard combinatorial optimization problems. Preliminary experi-
ments demonstrated that GA/MSXF outperforms GA/MSX which has been
proved to be superior to other GA methods. Further research including the ap-
plication of GA/MSXF to more difficult JSSP benchmark problems or to other
kinds of combinatorial problems is necessary to show the full capabilities of
MSXF.
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