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This is NOT about�

� Cilk implemention
� Resource scheduling
� Inter-program concurrency



The topic is� 

� How to schedule one (parallel) program on multiple 
processors



Outline

� Glance at the architecture
� What does Cilk code look like?
� Define the problem
� Introduce concepts
� Present an ideal scheduler
� The standard algorithm
� The enhanced algorithm



What is Cilk?

� An algorithmic multithreaded language
! Guaranteed efficient performance

� Expose parallelism & exploit locality
� Runtime system takes care of scheduling

! Load balancing
! Paging
! Communication



Retrospect

� Theory
! Scheduling multithreaded computations
! Work-stealing



Introduction to Cilk



The way it works



Example: Fibonacci

cilk int fib (int n) 
{ 

if (n < 2) return n; 
else 

{ 
int x, y; 
x = spawn fib (n-1); 
y = spawn fib (n-2); 
sync; 
return (x+y); 
} 

}



Compiling the Fibonacci



The Problem

� Execute parallel Cilk programs, on a collection of 
processors of different and possibly changing speeds

� Factors to be considered:
! Efficiency
! Preemptions
! Migration cost
! Centralized vs. distributed



The Parallel Setting

� Constraints
i. Rapid decisions
ii. Partial knowledge
iii. Only local state is visible



Solution

� A distributed scheduling algorithm in which each 
processor maintains an estimate of its own speed, 
where communication between processors has a 
cost and all scheduling is done online

! Processor speed fairly consistent
! May change occasionally



Outline

� Review concepts & background theory
� Heterogeneous settings
� The Cilk Scheduler
� The Efficiency & Practicality Issues

! Maximum Utilization Schedule
! High Utilization Schedule

� Enhanced Cilk Scheduler



Background

� Asynchronous Parallel Computing
! Correctness and steadiness guaranteed
! Too pessimistic

� Scheduling Theory
! Constant processor speeds
! Global/powerful/offline

� The above provide an insight
� Model of this paper is a bridge between the two



Concepts

� Heterogeneous processors � of different speeds
� Homogeneous processors � identical processors
� Makespan



The Heterogeneous Setting

� Greedy schedules � no idling allowed
� Homogeneous processors � comparable makespans
� Heterogeneous processors � there may be an 

unbounded ratio between makespan of best & worst 
schedule

"Find a scheduler that uses a heterogeneous setting 
as efficiently as if it was homogeneous



DAG

a node = a thread
an edge = dependencies
subroutine = a group of tasks



What is a thread?

A maximal sequence of instructions that ends with a 
spawn, sync, or return

(either explicit or implicit) statement.



Threads are�

� ready �if all of its predecessors in G have been 
executed

� executed
� waiting for predecessors to complete
� preempted 
� migration � the state of the system is moved from 

one processor to a different one



Back to Fibonacci

cilk int fib (int n) 
{ 

if (n < 2) return n; 
else 

{ 
int x, y; 
x = spawn fib (n-1); 
y = spawn fib (n-2); 
sync; 
return (x+y); 
} 

}



Goal

� Schedule a parallel program represented as a DAG 
to minimize the makespan

! NP-hard problem 
! Approximation algorithms 
! Approximation ratio not reliable for heterogeneous 

settings



Notation

� 1�.p    processors
� πave = πtot / p   avg speed of the processors
� W1 total work (total number of nodes) 
� W∞ critical path length (# of nodes in longest chain)
� Tp time to execute the dag on p processors

(makespan)



Ideal scheduler (1)

� Greedy scheduler

! Execute anything that is ready
in any order
utilizing as many processors as you have ready tasks

∞+≤ W
P

WTp
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Ideal scheduler (2)

� Busy Leaves scheduler (to reduce space)

1. If empty, get a new process A from the pool
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Ideal scheduler (2)

� Busy Leaves scheduler (to reduce space)

1. If empty, get a new process A from the pool

2. If A spawns a thread B, return A to the pool and commence work on B

3. If A stalls, return A to the pool.



Ideal scheduler (2)

� Busy Leaves scheduler (to reduce space)

1. If empty, get a new process A from the pool

2. If A spawns a thread B, return A to the pool and commence work on B

3. If A stalls, return A to the pool

4. If B returns, check if parent�s children have 
returned. If so, and if A still in the pool, 
commence work on A.



Ideal scheduler (3)

� Small number of migrations/steals

! This would give us the following bound:

)(# ∞≤ PWOsteals
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So we want�

1. To be greedy
2. To be busy
3. And to steal moderately



Goal revisited

� Develop a distributed scheduler that approximates the 
performance of an "ideal" global scheduler



The strategy is�

� Online greedy scheduling
� Work-stealing
� NOT work-sharing
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The strategy is�

� Online greedy scheduling
� Work-stealing
� NOT work-sharing
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sharing



The strategy is�

� Online greedy scheduling
� Work-stealing
� NOT work-sharing
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Cilk program



Main Data Structure

� Ready DEQUE

push pop

stack end

queue endsteal/delete



Work Stealing

� Distributed algorithm
� �Work-Stealing�

1. Choose a victim

2. Attempt to steal until 
successful

3. Steal oldest thread and 
begin working on it
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Work Stealing (2)

� But how do we decide which thread to we steal?
! Closest to beginning of DAG, but�
! Not necessarily the root



α

β

Cilk Scheduling Algorithm

• A processor works on a thread  until:
! The thread spawns another thread

⇒
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Cilk Scheduling Algorithm (2)

• A processor works on a thread until:
! The thread returns/terminates

- If deque is nonempty, POP
- If deque is empty, try to execute 
thread's parent
- If thread's parent is busy, work-steal
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Cilk Scheduling Algorithm (3)

• A processor works a thread until:
! The thread reaches a sync point

If there exists outstanding children and the 
computation cannot proceed, then the processor 
worksteals



At a glance

1. Choose a victim

2. If its deque is empty, attempt to steal again

3. Otherwise, steal the top thread and execute it 
until:

i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point



Literature �
Maximum Utilization Schedule

if i ready threads, i < p
then assign threads to i fastest processors

- Preemptive
- approximation algorithm ( )pO



Generalization �
High Utilization Schedule

1. if i ready threads, i < p
then assign threads to i fastest processors

2. if i ≥ p
then all processors work

if i ready threads, i < p
then the fastest idle processor is at most β times 

faster than the slowest busy processor

" almost optimal; practical



Performance

� Theorem 2: any maximum utilization schedule has
makespan

� Theorem 4: Any high utilization schedule has
makespan 

! For parallel programs � almost optimal
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If nothing makes sense�

� Work W1

� Critical path length W∞



Enhancing the Cilk Scheduler

� Migrations
! Steals
! Muggings

� Design assumptions:
! each processor steals rate proportional to its speed
! steals completed in time proportional to the speed of 

the processor
� Can manipulate times for steals and muggings for 

efficiency



This is where we started

1. Choose a victim

2. If its deque is empty, attempt to steal again

3. Otherwise, steal the top thread and execute it 
until:

i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point



Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

us

ua



Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

us ua



Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

3. If deque = empty & 
victim is working on a thread &
its speed is β times slower

then mug it and take the thread

ua

You�re 
slow!



Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

3. If deque = empty & 
victim is working on a thread &
its speed is β times slower

then mug it and take the thread

ua

You�re 
slow!



Enhanced Cilk Scheduler

i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point
iv. The processor is mugged

-- its thread is migrated to another processor
-- this processor attempts to work steal

A processor works on a thread until:



At a Glance

1. Choose a victim

2. If deque != empty,  then steal

3. If deque = empty & victim is SLOW & working on a 
thread then mug it

4. If you got a thread, work on it until:
i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point
iv. The processor is mugged 

5. " Otherwise, there is a failed steal attempt; try to steal again!



What�s better�

� Less migrations ⇒ cheaper!
� Ability to adjust efficiency
� Keep spirit of original algorithm



Discussed was�

� DAGs
� Cilk and programming in Cilk
� Ideal scheduler (greedy, busy, stealing)
� Work-stealing
� Standard and enhanced Cilk scheduler



Contributions

� New analysis to maximum utilization scheduler
! prove a bound on the makespan and number of 

preemptions
! Generalize algorithm and define the high utilization 

scheduler
� New algorithm for scheduling Cilk multithreaded 

parallel programs on heterogeneous processors



Questions?


