
Scheduling Cilk Multithreaded Parallel
Programs on Processors of Different Speeds

M. A. Bender and M. O. Rabin. "Scheduling Cilk Multithreaded Parallel Programs on Processors of
Different Speeds." Proceedings of the 12th Annual ACM Symposium on Parallel Algorithms and

Architectures (SPAA), pages 13-21, 2000.

Presented by Svetlena Taneva

References

� Online Scheduling of Parallel Programs on Heterogeneous Systems with
Applications to Cilk, by M. A. Bender and M. O. Rabin.
Theory of Computing Systems Special Issue on SPAA '00, 35: 289-304, 2002.

� The Cilk Project Website, available at:
http://supertech.lcs.mit.edu/cilk/papers/index.html

� Cilk-5.3 Reference Manual, by Supercomputing Technologies Group.
June 2000, available at: http://supertech.lcs.mit.edu/cilk/manual-5.3.2.pdf

� Lecture notes from MIT’s Theory of Parallel Systems course, available at:
http://theory.lcs.mit.edu/classes/6.895/fall03/

This is NOT about�

� Cilk implemention
� Resource scheduling
� Inter-program concurrency

The topic is�

� How to schedule one (parallel) program on multiple
processors

Outline

� Glance at the architecture
� What does Cilk code look like?
� Define the problem
� Introduce concepts
� Present an ideal scheduler
� The standard algorithm
� The enhanced algorithm

What is Cilk?

� An algorithmic multithreaded language
! Guaranteed efficient performance

� Expose parallelism & exploit locality
� Runtime system takes care of scheduling

! Load balancing
! Paging
! Communication

Retrospect

� Theory
! Scheduling multithreaded computations
! Work-stealing

Introduction to Cilk

The way it works

Example: Fibonacci

cilk int fib (int n)
{

if (n < 2) return n;
else

{
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);
}

}

Compiling the Fibonacci

The Problem

� Execute parallel Cilk programs, on a collection of
processors of different and possibly changing speeds

� Factors to be considered:
! Efficiency
! Preemptions
! Migration cost
! Centralized vs. distributed

The Parallel Setting

� Constraints
i. Rapid decisions
ii. Partial knowledge
iii. Only local state is visible

Solution

� A distributed scheduling algorithm in which each
processor maintains an estimate of its own speed,
where communication between processors has a
cost and all scheduling is done online

! Processor speed fairly consistent
! May change occasionally

Outline

� Review concepts & background theory
� Heterogeneous settings
� The Cilk Scheduler
� The Efficiency & Practicality Issues

! Maximum Utilization Schedule
! High Utilization Schedule

� Enhanced Cilk Scheduler

Background

� Asynchronous Parallel Computing
! Correctness and steadiness guaranteed
! Too pessimistic

� Scheduling Theory
! Constant processor speeds
! Global/powerful/offline

� The above provide an insight
� Model of this paper is a bridge between the two

Concepts

� Heterogeneous processors � of different speeds
� Homogeneous processors � identical processors
� Makespan

The Heterogeneous Setting

� Greedy schedules � no idling allowed
� Homogeneous processors � comparable makespans
� Heterogeneous processors � there may be an

unbounded ratio between makespan of best & worst
schedule

"Find a scheduler that uses a heterogeneous setting
as efficiently as if it was homogeneous

DAG

a node = a thread
an edge = dependencies
subroutine = a group of tasks

What is a thread?

A maximal sequence of instructions that ends with a
spawn, sync, or return

(either explicit or implicit) statement.

Threads are�

� ready �if all of its predecessors in G have been
executed

� executed
� waiting for predecessors to complete
� preempted
� migration � the state of the system is moved from

one processor to a different one

Back to Fibonacci

cilk int fib (int n)
{

if (n < 2) return n;
else

{
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);
}

}

Goal

� Schedule a parallel program represented as a DAG
to minimize the makespan

! NP-hard problem
! Approximation algorithms
! Approximation ratio not reliable for heterogeneous

settings

Notation

� 1�.p processors
� πave = πtot / p avg speed of the processors
� W1 total work (total number of nodes)
� W∞ critical path length (# of nodes in longest chain)
� Tp time to execute the dag on p processors

(makespan)

Ideal scheduler (1)

� Greedy scheduler

! Execute anything that is ready
in any order
utilizing as many processors as you have ready tasks

∞+≤ W
P

WTp
1

Ideal scheduler (2)

� Busy Leaves scheduler (to reduce space)

1. If empty, get a new process A from the pool

Ideal scheduler (2)

� Busy Leaves scheduler (to reduce space)

1. If empty, get a new process A from the pool

2. If A spawns a thread B, return A to the pool and commence work on B

Ideal scheduler (2)

� Busy Leaves scheduler (to reduce space)

1. If empty, get a new process A from the pool

2. If A spawns a thread B, return A to the pool and commence work on B

3. If A stalls, return A to the pool.

Ideal scheduler (2)

� Busy Leaves scheduler (to reduce space)

1. If empty, get a new process A from the pool

2. If A spawns a thread B, return A to the pool and commence work on B

3. If A stalls, return A to the pool

4. If B returns, check if parent�s children have
returned. If so, and if A still in the pool,
commence work on A.

Ideal scheduler (3)

� Small number of migrations/steals

! This would give us the following bound:

)(# ∞≤ PWOsteals

)(1
∞+≤ WO

P
WTp

So we want�

1. To be greedy
2. To be busy
3. And to steal moderately

Goal revisited

� Develop a distributed scheduler that approximates the
performance of an "ideal" global scheduler

The strategy is�

� Online greedy scheduling
� Work-stealing
� NOT work-sharing

The strategy is�

� Online greedy scheduling
� Work-stealing
� NOT work-sharing

u0

!spawn

The strategy is�

� Online greedy scheduling
� Work-stealing
� NOT work-sharing

u0us ua

sharing

The strategy is�

� Online greedy scheduling
� Work-stealing
� NOT work-sharing

us

ua

stealing
ua

xx

L M O P

G

Q

H JI K

FED

B C

A

The computational difference

Cilk program

Main Data Structure

� Ready DEQUE

push pop

stack end

queue endsteal/delete

Work Stealing

� Distributed algorithm
� �Work-Stealing�

1. Choose a victim

2. Attempt to steal until
successful

3. Steal oldest thread and
begin working on it

⇒

u0

u1

�

u2

uk-1

uo

u2

uk

u1

�

uk-1

Work Stealing (2)

� But how do we decide which thread to we steal?
! Closest to beginning of DAG, but�
! Not necessarily the root

α

β

Cilk Scheduling Algorithm

• A processor works on a thread until:
! The thread spawns another thread

⇒

usuo

u2

uk

u1

�

u2

uk

u1

�

ua

Cilk Scheduling Algorithm (2)

• A processor works on a thread until:
! The thread returns/terminates

- If deque is nonempty, POP
- If deque is empty, try to execute
thread's parent
- If thread's parent is busy, work-steal

⇒

ua

u2

uk

u1

�

us

u2

uk

u1

�

ua

α

β

Cilk Scheduling Algorithm (3)

• A processor works a thread until:
! The thread reaches a sync point

If there exists outstanding children and the
computation cannot proceed, then the processor
worksteals

At a glance

1. Choose a victim

2. If its deque is empty, attempt to steal again

3. Otherwise, steal the top thread and execute it
until:

i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point

Literature �
Maximum Utilization Schedule

if i ready threads, i < p
then assign threads to i fastest processors

- Preemptive
- approximation algorithm ()pO

Generalization �
High Utilization Schedule

1. if i ready threads, i < p
then assign threads to i fastest processors

2. if i ≥ p
then all processors work

if i ready threads, i < p
then the fastest idle processor is at most β times

faster than the slowest busy processor

" almost optimal; practical

Performance

� Theorem 2: any maximum utilization schedule has
makespan

� Theorem 4: Any high utilization schedule has
makespan

! For parallel programs � almost optimal

aveave

W
p

1p
p
WT 1

p
ππ

∞

 −+≤

aveave

1
p

W
p

1p
p
WT

π
β

π
∞

 −+≤

work steals

If nothing makes sense�

� Work W1

� Critical path length W∞

Enhancing the Cilk Scheduler

� Migrations
! Steals
! Muggings

� Design assumptions:
! each processor steals rate proportional to its speed
! steals completed in time proportional to the speed of

the processor
� Can manipulate times for steals and muggings for

efficiency

This is where we started

1. Choose a victim

2. If its deque is empty, attempt to steal again

3. Otherwise, steal the top thread and execute it
until:

i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point

Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

us

ua

Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

us ua

Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

3. If deque = empty &
victim is working on a thread &
its speed is β times slower

then mug it and take the thread

ua

You�re
slow!

Enhanced Cilk Scheduler

1. Choose a victim

2. If deque != empty
then steal

3. If deque = empty &
victim is working on a thread &
its speed is β times slower

then mug it and take the thread

ua

You�re
slow!

Enhanced Cilk Scheduler

i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point
iv. The processor is mugged

-- its thread is migrated to another processor
-- this processor attempts to work steal

A processor works on a thread until:

At a Glance

1. Choose a victim

2. If deque != empty, then steal

3. If deque = empty & victim is SLOW & working on a
thread then mug it

4. If you got a thread, work on it until:
i. The thread spawns another thread
ii. The thread returns/terminates
iii. The thread reaches a sync point
iv. The processor is mugged

5. " Otherwise, there is a failed steal attempt; try to steal again!

What�s better�

� Less migrations ⇒ cheaper!
� Ability to adjust efficiency
� Keep spirit of original algorithm

Discussed was�

� DAGs
� Cilk and programming in Cilk
� Ideal scheduler (greedy, busy, stealing)
� Work-stealing
� Standard and enhanced Cilk scheduler

Contributions

� New analysis to maximum utilization scheduler
! prove a bound on the makespan and number of

preemptions
! Generalize algorithm and define the high utilization

scheduler
� New algorithm for scheduling Cilk multithreaded

parallel programs on heterogeneous processors

Questions?

