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SCHEDULING CONTROL FOR QUEUEING SYSTEMS WITH
MANY SERVERS: ASYMPTOTIC OPTIMALITY

IN HEAVY TRAFFIC1

BY RAMI ATAR

Technion–Israel Institute of Technology

A multiclass queueing system is considered, with heterogeneous service
stations, each consisting of many servers with identical capabilities. An opti-
mal control problem is formulated, where the control corresponds to schedul-
ing and routing, and the cost is a cumulative discounted functional of the
system’s state. We examine two versions of the problem: “nonpreemptive,”
where service is uninterruptible, and “preemptive,” where service to a cus-
tomer can be interrupted and then resumed, possibly at a different station.
We study the problem in the asymptotic heavy traffic regime proposed by
Halfin and Whitt, in which the arrival rates and the number of servers at each
station grow without bound. The two versions of the problem are not, in gen-
eral, asymptotically equivalent in this regime, with the preemptive version
showing an asymptotic behavior that is, in a sense, much simpler. Under ap-
propriate assumptions on the structure of the system we show: (i) The value
function for the preemptive problem converges to V , the value of a related
diffusion control problem. (ii) The two versions of the problem are asymptot-
ically equivalent, and in particular nonpreemptive policies can be constructed
that asymptotically achieve the value V . The construction of these policies is
based on a Hamilton–Jacobi–Bellman equation associated with V .

1. Introduction. We consider a queueing system with a fixed number of cus-
tomer classes and a fixed number of service stations, each consisting of many
servers with identical capabilities. Only some stations can offer service to each
class, and the service rates depend on the class and on the station. Customers have
a single service requirement and leave the system after it is met. They may also
abandon while waiting to be served [see Figure 1(a)]. Arrivals are modeled as re-
newal processes, while service and abandonments occur according to exponential
clocks. Scheduling of jobs, which amounts to selecting what customer each server
serves at each time, is considered as control. The goal is to minimize an expected
cumulative discounted functional of general performance criteria, including queue
lengths of different classes, number of customers in each of the stations and num-
ber of servers that are idle at each station. This paper analyzes the scheduling
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control (SC) problem in a central limit theorem (CLT) asymptotic regime. In par-
ticular, as proposed first by Halfin and Whitt [8], system parameters are rescaled
in such a way that the arrival rates and the number of servers at each station are
proportional to a parameter n, and the system is kept in heavy traffic as n becomes
large. See [7] for motivation for this model and parametric regime, in particular in
relation to call center models.

One important feature of a CLT approach is that the non-Markovian structure
of the SC problem becomes Markovian as weak limits are taken formally. In par-
ticular, a diffusion control (DC) problem arises in the limit, that is accessible by
control-theoretic tools. In [2] we studied the dynamic programming partial differ-
ential equation (PDE) of Hamilton–Jacobi–Bellman (HJB) type for the DC prob-
lem and characterized the value function as its unique solution. It is natural to
ask whether the value function for the SC problem converges to that of the DC
problem.

In fact, this question must be formulated more carefully. One could consider
two versions of the problem (that formally yield two different DC problems): one
in which only nonpreemptive scheduling is possible, and one where it is allowed
to use preemptive policies, where service to a customer can be interrupted and
then resumed, possibly at a different station (it is the DC problem associated with
preemptive scheduling that was analyzed in [2]). Interestingly, these two versions
show identical asymptotic behavior in some cases of the problem, and they show
different behavior in other cases: In the single-station case, it was proved in [3]
that, in both versions of the problem, the value function for the SC problem con-
verges to that of the same DC problem. These results should be regarded as a
simplification that shows in the limit, because the DC problem that is associated
formally with nonpreemptive scheduling lies in higher dimension. On the other
hand, we will present a heuristic argument suggesting that for a particular two-
station system one does not expect the value function in both versions of the prob-
lem to have identical limits. Hence one would like to understand when the two
versions of the problem behave the same asymptotically.

To indicate what prevents the two-station example from undergoing the same
simplification, we need the following terminology. A class-station pair (i, j) is said
to be an activity if servers of station j are capable of serving class-i customers [in
Figure 1, (1,A) is an activity, and (2,A) is not]. A distinction between two kinds
of activities is made in terms of an underlying static fluid model (introduced in Sec-
tion 2): The fluid model has a positive fraction of the customer population in some
activities and a zero fraction in others. Such activities are referred to as basic and,
respectively, nonbasic activities (cf. [10]). Roughly, the population of customers
in basic and nonbasic activities in the queueing model is typically O(n) and, re-
spectively, O(n1/2). Now, while under a heavy traffic assumption single-station
systems have only basic activities; the two-station example alluded to above has
a nonbasic activity. As explained in detail in Section 2.7, the simplification will
not occur in the presence of an activity having only O(n1/2) customers. Aiming at
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extending the results, that show simplification of the single-station nonpreemptive
problem to the multistation setting, we are led to impose the assumption that, in
fact, all activities are basic. In this paper we find that under this condition, a sim-
plification indeed takes place.

It follows from a result of Williams [14] that if all activities are basic, then the
graph, having classes and stations as vertices and activities as edges, is necessarily
a tree [as, e.g., in Figure 1(b)]. We refer to this structural condition by saying that
the system is treelike. As in [2], the results of this paper will therefore apply to
treelike systems only.

The main results are the following. Under appropriate assumptions, the pre-
emptive SC problem’s value converges to the value of the DC problem. Moreover,
preemptive and nonpreemptive scheduling control policies (SCPs) are constructed,
that asymptotically achieve the DC problem’s value. These results establish the va-
lidity of the DC problem as the correct asymptotic description of the problem, as
well as the asymptotic equivalence of the preemptive and nonpreemptive problems.

In a preemptive SC problem, one can consider the vector representing the num-
ber of customers of each class present in the system as “state,” and the vector
representing the number of customers at each activity as “control” (at least in
the Markovian case, i.e., under the assumption that arrivals are Poisson). In fact,
“state” and “control” for the DC problem stand for the formal weak limits of pre-
cisely these quantities. The results of [2] regarding the DC problem assert that
there exists an optimal Markov control policy, sometimes referred to as an optimal
feedback function. Namely, there is a function mapping state to control, that can
be used to define the control process as a feedback from the state process, in such
a way that the DC problem’s value is achieved. In this paper, the preemptive SC
problem is solved, roughly, by dynamically setting the population in the activities
equal to the image of the system’s state under the feedback function for the DC
problem. In the nonpreemptive version of the problem one does not have direct
control over the population in the activities, and therefore a scheme as above can-
not be applied. Instead one must affect the population in the activities indirectly
by appropriate decisions of job allocations. To this end, a kind of tracking mech-
anism is introduced, that roughly works as follows. One continuously computes
the desired value of the population in all activities as the image of the state under
the feedback function. One declares activities for which the actual population is
greater than desired as “overpopulated.” Overpopulated activities are then blocked
in the sense that new jobs are only assigned through activities that are not over-
populated. As a result, the population decreases rapidly in overpopulated activities
and increases rapidly in other activities. The main difficulty dealt with in this pa-
per consists of estimating the difference between the desired and actual values so
as to show that tracking is maintained. The proof requires two different types of
arguments: one has to do with tightness of the processes involved, and the other
regards estimates on their large time behavior. Although the methods of [3] are
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used in various places in the proof, the main difficulty alluded to above is far more
complicated in the multistation case.

We point out that in the more “standard” CLT regime, where the capacity of each
server is scaled up rather than the number of servers, a diffusion model for a similar
queueing system has been studied by Harrison and López [10]. A reduction, quite
different from the one alluded to above, takes place in this regime, that in fact
makes the diffusion model one-dimensional. Recently, a number of works have
developed policies that are asymptotically optimal in this regime, for models as
in [10] as well as more general ones [1, 4, 13].

The organization of the paper is as follows. In Section 2 we introduce the proba-
bilistic queueing model, the scaling and some assumptions regarding work conser-
vation. We then describe the DC problem and the HJB equation, propose SCPs for
the queueing model that are based on the HJB equation and state the main result
regarding asymptotic optimality of these policies. Finally we discuss the roles of
the main assumptions. Section 3 contains the proofs.

Notation and terminology. Vectors in R
k are considered as column vectors.

For x ∈ R
k (resp., x ∈ R

k×l) let ‖x‖ = ∑
i |xi | (resp.,

∑
i,j |xi,j |). For two column

vectors v,u, v · u denotes their scalar product. The symbols ei denote the unit
coordinate vectors and e = (1, . . . ,1)′. The dimension of e may change from one
expression to another, and for example, e ·a+e ·b = ∑

i ai +∑
j bj even if a and b

are of different dimension. Write N = {1,2, . . .}, Z+ = {0,1,2, . . .}, R+ = [0,∞).
The class of twice continuously differentiable functions on R

I is denoted by C2.
The class of bounded functions in C2 is denoted by C2

b , and Cpol denotes the class
of functions f in C2 satisfying a polynomial growth condition: there are constants
c and r such that |f (x)| ≤ c(1 + ‖x‖r ), x ∈ R

I . For E a metric space, we denote
by D(E) the space of all cadlag functions (i.e., right-continuous and having left
limits) from R+ to E. We endow D(E) with the usual Skorohod topology (cf. [5]).
If Xn, n ∈ N, and X are processes with sample paths in D(E), we write Xn ⇒ X

to denote weak convergence of the measures induced by Xn [on D(E)] to the
measure induced by X. For a collection A of random variables, σ {A} denotes the
sigma-field generated by this collection. If X is an R

k- or an R
k×l-valued process

(or function on R+) and 0 ≤ s ≤ t < ∞, ‖X‖∗
s,t = sups≤u≤t ‖X(u)‖, and if X takes

real values, |X|∗s,t = sups≤u≤t |X(u)|. Also, ‖X‖∗
t = ‖X‖∗

0,t and |X|∗t = |X|∗0,t . The
notation X(t) and Xt are used interchangeably. For a locally integrable function
f : R+ → R denote I f = ∫ ·

0 f (s) ds. In case that f is vector- or matrix-valued,
I f is understood elementwise. For y ∈ R

k+ denote by [[y]] the element y′ ∈ Z
k+

having y′
i = 	yi
 for i = 1, . . . , k − 1, and y′

k = 	yk
+ ∑k
i=1(yi −	yi
). Note that

e · [[y]] = e · y, and

‖y − [[y]]‖ ≤ 2k.(1)

Finally, we need the following elementary graph-theoretic terms: A tree is an undi-
rected, acyclic, connected graph; and the diameter of a graph is the distance be-
tween the two vertices that are farthest apart.
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2. Setting and results.

2.1. Queueing model. The model under study has I customer classes and J

service stations [see Figure 1(a)]. At each service station there are many indepen-
dent servers of the same type. Each customer requires service only once and can
be served indifferently by any server at the same station, but possibly at different
rates at different stations. Only some stations can offer service to each class. When
referring to the physical location of customers we say that they are in the buffer,
or in the queue if they are not being served, and we say that they are in a certain
station if they are served by a server of the corresponding type. There is one buffer
per customer class and one station per server type. While a customer is in the queue
it may abandon the system at rate depending on the class.

A complete probability space (�,F,P ) is given, supporting all stochastic
processes defined below. Expectation with respect to P is denoted by E. The
processes will all be indexed by the parameter n ∈ N, that will eventually be taken
to infinity. The classes (buffers) are labelled as 1, . . . , I and the types (stations)
as I + 1, . . . , I + J :

I = {1, . . . , I },
J = {I + 1, . . . , I + J }.

For j ∈ J let Nn
j be the number of servers at station j . Let Xn

i (t) denote the total
number of class-i customers in the system at time t . Let Yn

i (t) denote the number
of class-i customers in the queue at time t . Let Zn

j (t) denote the number of idle
servers in station j at time t . And let �n

ij (t) denote the number of class-i customers
in station j at time t . Let Xn = (Xn

i )i∈I, Yn = (Y n
i )i∈I, Zn = (Zn

j )j∈J , �n =
(�n

ij )i∈I,i∈J . Straightforward relations are expressed by the following equations,

FIG. 1. (a) A system with four classes and three stations. (b) The corresponding graph T .
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holding for all i ∈ I, j ∈ J and t ≥ 0:

Yn
i (t) + ∑

j∈J

�n
ij (t) = Xn

i (t),(2)

Zn
j (t) + ∑

i∈I

�n
ij (t) = Nn

j ,(3)

Yn
i (t) ≥ 0, Zn

j (t) ≥ 0,(4)

Xn
i (t) ≥ 0, �n

ij (t) ≥ 0.(5)

To define arrival processes, let, for each i ∈ I, {Ǔi(k), k ∈ N} be a sequence of
strictly positive i.i.d. random variables with EǓi(1) = 1 and squared coefficient of
variation (EǓi(1))−2 Var(Ǔi(1)) = C2

U,i ∈ [0,∞). Assume also that the sequences
are independent. Let

Un
i (k) = 1

λn
i

Ǔi(k),(6)

where λn
i > 0. With

∑0
1 = 0, define

An
i (t) = sup

{
l ≥ 0 :

l∑
k=1

Un
i (k) ≤ t

}
, t ≥ 0.(7)

It is assumed that the number of arrivals up to time t is An
i (t). Note that the first

class-i customer arrives at Un
i (1), and the time between the (k − 1)st and kth

arrival of class-i customers is Un
i (k).

To model service times as exponential independent random variables, let Sn
ij ,

i ∈ I, j ∈ J, be Poisson processes with rate µn
ij ∈ [0,∞) (where a zero-rate

Poisson process is the zero process). These processes are assumed to be mutu-
ally independent, and independent of the arrival processes. Let T n

ij (t) denote the
time up to t devoted to a class-i customer by a server, summed over all type-j
servers and note that

T n
ij (t) =

∫ t

0
�n

ij (s) ds, i ∈ I, j ∈ J, t ≥ 0.

The number of service completions of class-i customers by all type-j servers by
time t is Sn

ij (T
n
ij (t)). Note that this indeed models independent servers with ex-

ponential service times: Conditioned on �n
ij = k, the time until the next service,

when k servers are busy, is exponential with parameter proportional to k. Similarly,

let Rn
i (t) be Poisson processes of rate θn

i ∈ [0,∞) and let
◦
T

n
i (t) denote the time

up to t a class-i customer spends in the queue, summed over all customers. Then

◦
T

n
i (t) =

∫ t

0
Yn

i (s) ds,
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and we assume that Rn
i (

◦
T

n
i (t)) class-i customers have abandoned until t . Through-

out, the initial conditions, that we denote by X
0,n
i := Xn

i (0), are assumed to be
deterministic. We have

Xn
i (t) = X

0,n
i + An

i (t) − ∑
j

Sn
ij

(∫ t

0
�n

ij (s) ds

)
− Rn

i

(∫ t

0
Yn

i (s) ds

)
,

(8)
i ∈ I, t ≥ 0.

The processes An, Sn and Rn will collectively be referred to as the primitive
processes.

2.2. Scheduling. Scheduling decisions are made by continuously select-
ing �n, subject to appropriate constraints. Scheduling is regarded as preemptive
if service to a customer can be stopped and resumed at a later time, possibly in
a different station. Formally this is expressed by stating that the process � may
be selected subject only to (2)–(12) holding. Note that according to this defini-
tion, customers can be moved instantaneously not only between a service station
and the buffer, but also between different service stations that offer service to the
corresponding class. Scheduling is regarded as nonpreemptive if every customer
completes service with the server it is first assigned. More precisely, consider the
processes Bn

ij (t), i ∈ I, j ∈ J, where Bn
ij (0) = 0, and Bn

ij increases by k each time
k class-i jobs are moved to station j from the buffer or from another station (to
start or resume service), and decreases by k each time k such jobs are moved from
station j back to the buffer or to another station. Then Bn

ij can be expressed as

Bn
ij (t) = �n

ij (t) − �
0,n
ij + Sn

ij

(∫ t

0
�n

ij (s) ds

)
.(9)

To define nonpreemptive scheduling in terms of the model equations (2)–(12), we
will require that � is selected subject to (2)–(12) and such that Bn

ij are nondecreas-
ing processes. This is summarized in the following.

DEFINITION 1. Let initial data X0,n and primitive processes An, Sn and Rn

be given.

(i) We say that �n is a preemptive resume scheduling control policy (P-SCP)
if �ij have cadlag paths (i ∈ I, j ∈ J), and there exist processes Xn,Y n and Zn

such that (2)–(12) are met. Xn is said to be the controlled process associated with
initial data X0,n and P-SCP �n.

(ii) We say that �n is a nonpreemptive scheduling control policy (N-SCP) if it
is a P-SCP and Bn

ij of (9) have nondecreasing paths.

We collectively refer to P-SCPs and N-SCPs as scheduling control policies
(SCPs).
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A word on terminology: The reader may notice that these definitions make non-
preemptive policies a special case of preemptive ones, unlike the usual use of these
terms in the literature, where they are mutually exclusive. Indeed, the term “pre-
emptive” is usually used to indicate that service to a customer is necessarily inter-
rupted if a customer of higher priority arrives, whereas “nonpreemptive” is used
when interruptions are not allowed. In the current context, however, the term “pre-
emptive” indicates only that it is possible to interrupt service to a customer, and
so it is natural that a policy under which no interruption occurs is regarded as a
special case.

Let ζ = (X0,n;n ∈ N) and p = (�n,n ∈ N) denote a sequence of initial con-
ditions, and respectively, SCPs. We denote by P

p
ζ the measure under which, for

each n, Xn is the controlled process associated with X0,n and �n. Expectation
under P

p
ζ is denoted by E

p
ζ .

We need a notion of SCPs that do not anticipate the future. Unlike in a
Markovian setting, in the presence of renewal processes such a notion has to take
into account that the time of the next arrival is correlated with information from
the past, and hence should not be regarded as innovative information (see also [3]).
Denote

τn
i (t) = inf{u ≥ t :An

i (u) − An
i (u−) > 0}, i ∈ I.

Set

F n
t = σ {An

i (s), S
n
ij (T

n
ij (s)),R

n
i (

◦
T

n
i (s)),�

n
ij (s),

(10)
Xn

i (s), Yi(s),Zj (s) : i ∈ I, j ∈ J, s ≤ t}
and

Gn
t = σ

{
An

i

(
τn
i (t) + u

) − An
i (τ

n
i (t)),

Sn
ij

(
T n

ij (t) + u
) − Sn

ij (T
n
ij (t)),(11)

Rn
i

( ◦
T

n
i (t) + u

) − Rn
i (

◦
T

n
i (t)) : i ∈ I, j ∈ J, u ≥ 0

}
.

DEFINITION 2. We say that a scheduling control policy is admissible if:

(i) for each t , F n
t is independent of Gn

t ;
(ii) for each i, j and t , the process Sn

ij (T
n
ij (t) + ·) − Sn

ij (T
n
ij (t)) [resp.,

Rn
i (

◦
T

n
i (t) + ·) − Rn

i (
◦
T

n
i (t))] is equal in law to Sn

ij (·) [Rn
i (·)].

2.3. Fluid and diffusion scaling. We now introduce some assumptions regard-
ing the asymptotic behavior of the parameters as n → ∞. To this end, consider the
graph T having vertex set I ∪ J with a vertex for each class and a vertex for each
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type, and an edge set E , with an edge joining a class and a type if the corresponding
service rate is nonzero:

E = {(i, j) ∈ I × J :µn
ij > 0}.

It is assumed that the graph does not depend on the parameter n. We denote i ∼ j

and j ∼ i if (i, j) ∈ E . By assumption we have

�n
ij = 0, i �∼ j.(12)

A buffer-station pair (i, j) is said to be an activity if (i, j) ∈ E .

Scaling of parameters. There are constants λi > 0, θi ≥ 0, i ∈ I, and µij ≥ 0,
(i, j) ∈ I × J where µij > 0 whenever i ∼ j , such that

n−1λn
i → λi, µn

ij → µij , θn
i → θi(13)

and

n−1Nn
j → νj .

Note that µij = 0 for i �∼ j , since we had µn
ij = 0 for i �∼ j . Setting

µ̄ij = νjµij , i ∈ I, j ∈ J,

a central assumption on the limit parameters, indicating that the sequence of sys-
tems is asymptotically critically loaded, is stated below (cf. [9, 10]).

Linear program. Minimize ρ subject to∑
j∈J

µ̄ij ξij = λi, i ∈ I,(14)

∑
i∈I

ξij ≤ ρ, j ∈ J,(15)

ξij ≥ 0, i ∈ I, j ∈ J.(16)

Heavy traffic condition. There exists a unique optimal solution (ξ∗, ρ∗) to the
linear program. Moreover,

∑
i∈I ξ∗

ij = 1 for all j ∈ J (and, consequently, ρ∗ = 1).
In the rest of this paper, ξ∗

ij denotes the quantities from the above condition, and
x∗ = (x∗

i ), ψ∗ = (ψ∗
ij ), where

x∗
i = ∑

j

ξ∗
ij νj , ψ∗

ij = ξ∗
ij νj .(17)

We refer to the quantities ξ∗
ij , x∗

i and ψ∗
ij as the static fluid model.

In a fluid model where class-i customers are served at station j at rate µ̄ij , the
quantities

∑
j ξ∗

ij µ̄ij represent the actual service rate of class-i customers when
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each station j allocates a fraction ξ∗
ij of its servers to class-i jobs. The quantities x∗

i

represent the total mass of class-i customers in the system. The heavy traffic con-
dition indeed asserts that the system is critically loaded in the following sense. On
one hand, (14) states that customers arriving at rates λi can be processed by the
system. On the other hand, under this condition it is impossible to have a ξ̃ satis-
fying (15) (with ρ ≤ 1) and (16), and a λ̃ �= λ, λ̃i ≥ λi , i ∈ I, such that (14) holds
for µ̄, λ̃ and ξ̃ (since this would violate the uniqueness of ξ∗). Thus, the system
cannot process arrivals at rates greater than λi .

Following terminology from [10], an activity (i, j) ∈ E is said to be basic if
ξ∗
ij > 0. This indicates that under the allocation matrix ξ∗, class-i arrivals are ac-

tually processed by station j in the fluid model. In this paper we assume that, in
fact, all activities are basic. More precisely, we will assume:

ASSUMPTION 1. The heavy traffic condition holds, the graph T is connected
and all activities are basic [i.e., ξ∗

ij > 0 for all (i, j) ∈ E ].

By a result of Williams ([14], Theorem 5.3 and Corollary 5.4), Assumption 1
implies that

the graph T is a tree.(18)

As a result, Assumption 1 can equivalently be stated as: The heavy traffic condition
holds, the graph T is a tree and all activities are basic. The assumption that T
is a tree was exploited in the PDE analysis in [2]. We have more to say about
Assumption 1 in Section 2.7.

Second-order scaling assumptions are as follows.

Scaling of parameters, continued. There are constants λ̂i , µ̂ij ∈ R, i ∈ I,
j ∈ J, such that

λ̂n
i := n1/2(n−1λn

i − λi) → λ̂i , µ̂n
ij := n1/2(µn

ij − µij ) → µ̂ij ,(19)

n1/2(n−1Nn
j − νj ) → 0.(20)

Scaling of initial conditions. There are constants xi , yi , zj , ψij satisfying
yi + ∑

j ψij = xi , zj + ∑
i ψij = 0, yi ≥ 0, and zj ≥ 0, i ∈ I, j ∈ J, such that

the deterministic initial conditions satisfy

X̂
0,n
i := n−1/2(X

0,n
i − nx∗

i ) → xi,
(21)

Ŷ
0,n
i := n−1/2Y

0,n
i → yi,

Ẑ
0,n
j := n−1/2Z

0,n
j → zj ,

(22)
�̂

0,n
ij := n−1/2(�

0,n
ij − ψ∗

ij n) → ψij .
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The processes rescaled at the fluid level are defined as

X̄n
i (t) = n−1Xn

i (t), Ȳ n
i (t) = n−1Yn

i (t),

Z̄n
j (t) = n−1Zn

j (t), �̄n
ij (t) = n−1�n

i (t).

The primitive processes are centered about their means and rescaled at the diffu-
sion level as

Ân
i (t) = n−1/2(

An
i (t) − λn

i t
)
,

Ŝn
ij (t) = n−1/2(

Sn
ij (nt) − nµn

ij t
)
,(23)

R̂n
i (t) = n−1/2(

Rn
i (nt) − nθn

i t
)
.

Similarly, the state processes are centered about the static fluid model and rescaled:

X̂n
i (t) = n−1/2(

Xn
i (t) − nx∗

i

)
,(24)

Ŷ n
i (t) = n−1/2Yn

i (t),
(25)

Ẑn
j (t) = n−1/2Zn

j (t),

�̂n
ij (t) = n−1/2(

�n
ij (t) − ψ∗

ij n
)
.(26)

The relations (2), (3) and (4) take the new form

Ŷ n
i + ∑

j

�̂n
ij = X̂n

i , i ∈ I,(27)

Ẑn
j + ∑

i

�̂n
ij = 0, j ∈ J,(28)

Ŷ n
i , Ẑn

j ≥ 0, i ∈ I, j ∈ J.(29)

Using the definitions above one finds that (8) can be written as follows (for the
reader’s convenience this development is provided in the Appendix):

X̂n
i (t) = X̂

0,n
i + riŴ

n
i (t) + �n

i t − ∑
j

µn
ij

∫ t

0
�̂n

ij (s) ds − θn
i

∫ t

0
Ŷ n

i (s) ds,(30)

where

riŴ
n
i (t) = Ân

i (t) − ∑
j

Ŝn
ij

(∫ t

0
�̄n

ij (s) ds

)
− R̂n

i

(∫ t

0
Ȳ n

i (s) ds

)
,

(31)
�n
i = λ̂n

i − ∑
j

µ̂n
ijψ

∗
ij .

With (19) we have

lim
n

�n
i = �i := λ̂i − ∑

j

µ̂ijψ
∗
ij .(32)
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One is free to choose the values of ri , and it will be convenient to choose them so
that, with the formal substitution �̄n

i,j = ψ∗
i,j , Ȳ n

i = 0, one has

lim
n

E[(Ŵ n
i (1))2] = 1.(33)

Namely, ri = (λiC
2
U,i + λi)

1/2. Denote also � = (�1, . . . , �I )
′, r = diag(ri).

The results of this paper are concerned with constructing sequences of SCPs
that, in an appropriate sense, minimize the limit as n → ∞ of cost of the following
form:

E

∫ ∞
0

e−γ t L̃(X̂n
t , �̂n

t ) dt.(34)

2.4. Joint work conservation. A policy is said to be work conserving if it does
not allow for a server to idle while a customer that it can serve is in the queue. We
can express this condition as

Yn
i (t) ∧ Zn

j (t) = 0 ∀ i ∼ j, t ≥ 0.

In the current context one can consider a stronger condition for preemptive poli-
cies. Recall that if preemption is allowed, customers of each class can be moved
between the queue and the various stations that offer service to them. In a preemp-
tive policy, controls �n(t) that can be applied at time t correspond to different
rearrangements of the customers Xn(t) in the stations and buffers. Let Xn denote
the set of all possible values of Xn(t) for which there is a rearrangement of cus-
tomers with the property: either there are no customers in the queue, or no server
in the system is idle. This property is expressed as

e · Yn(t) ∧ e · Zn(t) = 0.(35)

We shall say that a preemptive policy is jointly work conserving if it is work con-
serving and, in addition, for every t , if Xn(t) ∈ Xn, then customers are arranged
according to (35). Some motivation is provided in Section 2.7.

Let α0 > 0 denote the constant

α0 = (4CG)−1 min
i,j : i∼j

ψ∗
ij .(36)

It will be shown (see Lemma 3) that

‖Xn(t) − nx∗‖ ≤ α0n implies Xn(t) ∈ Xn(37)

(note that the value of t is irrelevant in the discussion). This fact is significant for
the following reason. Under appropriate conditions, it will be established that the
processes X̂n are tight. As a result, the condition on the left-hand side of (37) holds
for every t ∈ [0, T ] (for arbitrary T ), with probability approaching 1 as n → ∞.
Thus it is nearly always the case that a rearrangement of customers according
to (35) is possible. These details will be justified in the process of proving our
result.
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2.5. The diffusion control problem. We take limits as n → ∞ in (27), (28),
(30) and (35). The process Ŵn converges to a standard Brownian motion, and
denoting the weak limit of (X̂n, Ŷ n, Ẑn, Ŵ n, �̂n) by (X,Y,Z,W,�), we obtain
the equation below (at this point this is meant as a formal step only; however, see
Proposition 3):

Xi(t) = xi + W̃i(t) − ∑
j

µij

∫ t

0
�ij (s) ds − θi

∫ t

0
Yi(s) ds, i ∈ I,(38)

where W̃i(t) = riWi(t) + �it , W is a standard Brownian motion and∑
j

�ij = Xi − Yi, i ∈ I,(39)

∑
i

�ij = −Zj , j ∈ J,(40)

e · Y ∧ e · Z = 0.(41)

Relations (38)–(41) above can be written in the convenient form

dX = b(X,U)dt + r dW.

To this end, note that by (39) and (40), e · X = e · Y − e · Z, and thus by (41)

e · Y = (e · X)+, e · Z = (e · X)−.

Hence Y and Z can be represented in terms of the process e · X and an additional
process U as

Yi(t) = (
e · X(t)

)+
ui(t), Zj (t) = (

e · X(t)
)−

vj (t), i ∈ I, j ∈ J,(42)

where U(t) = (u(t), v(t)) takes values in

U := {(u, v) ∈ R
I+J :ui, vj ≥ 0, i ∈ I, j ∈ J, e · u = e · v = 1}.

The following is shown in Proposition 7 of [2].

LEMMA 1. Let Assumption 1 hold. Then given αi, βj ∈ R, i ∈ I, j ∈ J satis-
fying e · α = e · β , there exists a unique solution ψ = (ψij , i ∈ I, j ∈ J) ∈ R

IJ to
the set of equations∑

j

ψij = αi, i ∈ I,
∑
i

ψij = βj , j ∈ J,

(43)
ψij = 0 for i �∼ j.

As a result there is a map, denoted throughout by G :DG → R
IJ ,

DG := {(α,β) ∈ R
I+J : e · α = e · β},
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such that ψ = G(α,β). Let also

CG = sup
{

max
ij

|Gij (α,β)| : (α,β) ∈ DG,‖α‖ ∨ ‖β‖ ≤ 1
}
.(44)

Clearly the map is linear on DG. Applying Lemma 1 to (39), (40), and by (42) it
follows that

� = G(X − Y,−Z) = G
(
X − (e · X)+u,−(e · X)−v

) =: Ĝ(X,U).(45)

Letting

bi(X,U) = − ∑
j∈J

µij Ĝij (X,U) − θi(e · X)+ui + �i,(46)

we can now write (38) as

X(t) = x + rW(t) +
∫ t

0
b
(
X(s),U(s)

)
ds, 0 ≤ t < ∞.(47)

We summarize the equivalence between the two representations in what follows.

LEMMA 2. If (38)–(41) hold, then (47) holds with some U-valued U . Con-
versely, if (47) holds (with U taking values in U), then one can find �,Y,Z such
that (38)–(41) hold. In both cases, W̃ (t) = rW(t) + �t .

PROOF. We have already proved the first statement of the result. To see the
converse, write U = (u, v), let Y = (e · X)+u, Z = (e · X)−v, and � = G(X −
Y,−Z). Equations (39), (40) automatically hold, and (45) implies (38). �

DEFINITION 3. We call π = (�,F, (Ft),P,U,W) an admissible system
if (�,F, (Ft),P ) is a complete filtered probability space, U is a U-valued,
(Ft )-progressively measurable process, and W is a standard I -dimensional
(Ft )-Brownian motion. The process U is said to be a control associated with π .
X is said to be a controlled process associated with initial data x ∈ R

I and an
admissible system π , if it is a continuous sample paths, (Ft )-adapted process such
that

∫ t
0 |b(X(s),U(s))|ds < ∞, t ≥ 0, P -a.s., and (47) holds P -a.s.

For any x ∈ R
I and any admissible system π there exists a controlled process X,

unique in the strong sense (cf. [2]). With an abuse of notation we sometimes denote
the dependence on x and π by writing P π

x in place of P and Eπ
x in place of E. We

denote by � the class of all admissible systems.
Given a constant γ > 0 and a function L̃, the cost of interest for the queue-

ing system is given by (34). It is convenient to perform change of variables from
(X,�) to (X,U). To this end, define L as

L(X,U) = L̃
(
X,G

(
X − (e · X)+u,−(e · X)−v

))
,

(48)
X ∈ R

I ,U = (u, v) ∈ U.
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Our conditions on L̃ (given mostly via conditions on L) are stated below. They
were required to carry out the PDE analysis in [2].

ASSUMPTION 2. (i) L(x,U) ≥ 0, (x,U) ∈ R
I × U.

(ii) The mapping (x,ψ) �→ L̃(x,ψ) is continuous. In particular, the mapping
(x,U) �→ L(x,U) is continuous.

(iii) There is � ∈ (0,1) such that for any compact A ⊂ R
I ,

|L(x,U) − L(y,U)| ≤ c‖x − y‖�

holds for U ∈ U and x, y ∈ A, where c depends only on A.
(iv) There are constants c > 0 and mL ≥ 1 such that L(x,U) ≤ c(1 + ‖x‖mL),

U ∈ U, x ∈ R
I .

Consider the cost

C(x,π) = Eπ
x

∫ ∞
0

e−γ tL
(
X(t),U(t)

)
dt, x ∈ R

I , π ∈ �.

Define the value function as

V (x) = inf
π∈�

C(x,π).

The HJB equation for the problem is

Lf + H(x,Df ) − γf = 0,(49)

where D denotes the gradient, L = (1/2)
∑

i r
2
i ∂2/∂x2

i , and

H(x,p) = inf
U∈U

[b(x,U) · p + L(x,U)].(50)

The equation is considered on R
I with the growth condition

∃C,m |f (x)| ≤ C(1 + ‖x‖m), x ∈ R
I .(51)

DEFINITION 4. Let x ∈ R
I be given. We say that a measurable function

h : RI → U is a Markov control policy if there is an admissible system π and
a controlled process X corresponding to x and π , such that Us = h(Xs), s ≥ 0,
P -a.s. We say that an admissible system π is optimal for x, if V (x) = C(x,π).
We say that a Markov control policy is optimal for x if at least one of the admissi-
ble systems corresponding to it is optimal.

We note in passing that the last part of the above definition is equivalent to
optimality of all corresponding admissible systems, due to weak uniqueness of
solutions to X(t) = x + rW(t) + ∫ t

0 b(X(s), h(X(s))) ds (cf. Proposition 5.3.10
of [11]).

The assumption below is needed for large time estimates on the state processes.
Unless L is bounded [as in part (iii)], such estimates are required for both the DC
problem and the SC problem, and they are only known to hold under parts (i) and
(ii) below. This is explained in the remark in Section 3.3.
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ASSUMPTION 3. Either (i), (ii) or (iii) below holds.

(i) For (i, j) ∈ E , µij depends only on i; or for (i, j) ∈ E , µij depends only
on j . In addition, θi = 0, i ∈ I.

(ii) The tree T is of diameter 3 at most. In addition, for all (i, j) ∈ E , θi ≤ µij .
(iii) The function L is bounded.

The following is proved in [2].

THEOREM 1. Let Assumptions 1, 2 and 3 hold. Then the value V solves (49),
(51), and there exists a Markov control policy h∗ : RI → U that is optimal for all
x ∈ R

I . In cases (i) and (ii) [resp., (iii)] of Assumption 3, uniqueness holds in C2
pol

[resp., C2
b ].

2.6. Asymptotically optimal SCPs. To state our main result we need to intro-
duce SCPs defined via the function h∗ of Theorem 1. Write h∗ = (h∗

1, h
∗
2) where

(u, v) = h∗(x) ⇔ u = h∗
1(x), v = h∗

2(x). Theorem 1 states that, for the DC prob-
lem, there is an optimal pair (U,X) for which U(t) = h∗(X(t)), or equivalently
u(t) = h∗

1(X(t)), v(t) = h∗
2(X(t)). In view of (42) and (45), this can be written as

Y(t) = (
e · X(t)

)+
h∗

1(X(t)), Z(t) = (
e · X(t)

)−
h∗

2(X(s)),

�(t) = G
(
X(t) − Y(t),−Z(t)

)
.

Let us define

Y̌ n(t) = (
e · X̂n(t)

)+
h∗

1(X̂
n(t)), Žn(t) = (

e · X̂n(t)
)−

h∗
2(X̂

n(t)),(52)

�̌n(t) = G
(
X̂n(t) − Y̌ n(t),−Žn(t)

)
.(53)

In analogy with the DC problem, one would like to define a P-SCP simply by
setting

�̂n(t) = �̌n(t).(54)

However, this is impossible, because the components of the corresponding process
�n(t) = ψ∗n + n1/2�̂n(t) [cf. (26)] represent number of customers, and must be
Z+-valued. Instead, a P-SCP will be defined in a way that the equality (54) will
hold “roughly.” To this end, consider two cases.

Case 1. If ‖Xn(t) − nx∗‖ ≤ α0n, set

Yn(t) = [[n1/2Y̌ n(t)]],
Zn(t) = [[n1/2Žn(t)]],(55)

�n(t) = G
(
Xn(t) − Yn(t),Nn − Zn(t)

)
.
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Case 2. If ‖Xn(t) − nx∗‖ > α0n, set �n = Fn(X
n(t)) where, for each n, Fn

is a fixed function chosen in such a way that the resulting process �n is jointly
work conserving (as defined in Section 2.4). Other than that the choice of Fn is
immaterial.

The choice of �n(t) in Case 1 is in accordance with joint work conservation.
Namely, (35) always holds on {‖Xn(t)−nx∗‖ ≤ α0n}. To see this note that by (52),
e · Y̌ n(t) ∧ e · Žn(t) = 0, hence by (55), e · Yn(t) ∧ e · Zn(t) = 0. Also, since by
definition Xn,Y n and Zn are integer valued, so is �n as follows from the proof
of Proposition 1 of [2]. It remains to show that setting �n(t) as in (55) meets
relation (5) of the model, namely that �n

ij (t) ≥ 0 for all i, j . The proof of this fact
is deferred to Section 3.1 (cf. Lemma 3 and the remark that follows). Denote the
resulting sequence of P-SCPs by p∗.

The proposed N-SCP is described next. The idea is still to keep �̂n close to �̌n,
but it is no longer possible to assign the values of �̂n in a direct way: �̂n is in-
directly affected by the job assignments. Heuristically, the policy we propose is a
kind of tracking mechanism, in which �̂n tracks �̌n, as follows:

(a) Compute �̌n(t) via (52), (53).
(b) Declare activities (i, j) ∈ E with �̂n

ij (t) > �̌n
ij (t) as “overpopulated.”

(c) Block overpopulated activities. That is to say that no new job assignments
are allowed on an activity as long as it is overpopulated. As a result, it is anticipated
that the population in these activities drops rapidly, and the population in the other
activities increases rapidly.

(d) Obtain �̂n(t) ∼ �̌n(t).

We turn to the precise definition of the N-SCP. For a technical reason, we must
change the definition (52) of Y̌ n(t) and Žn(t) so that the function h∗ is replaced by
another function for large values of t . Namely, let h0 = (h0

1, h
0
2) where h0

1(x) = e1

and h0
2(x) = eI+1 for all x. Instead of (52), we let Y̌ n(t) and Žn(t) be defined as

Y̌ n(t) = (
e · X̂n(t)

)+
h1

(
t, X̂n(t)

)
, Žn(t) = (

e · X̂n(t)
)−

h2
(
t, X̂n(t)

)
,

where

h(t, x) = (
h1(t, x), h2(t, x)

) =
{

h∗(x), t < �n,

h0(x), t ≥ �n,
(56)

and �n is a random time to be defined below. The definition of �̌n is still via (53).
Next, we would like the following to hold. Given an activity (i, j) and a time in-

terval [s, t), if �̂n
ij > �̌n

ij holds on [s, t), then no routings take place on the activity
throughout this interval:

�̂n
ij > �̌n

ij on [s, t) implies Bn
ij is constant on [s, t).(57)

On the other hand, when there is a class-i customer in the queue and there are
stations j ∼ i with idle servers and such that (i, j) is not blocked, the customer
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is instantaneously routed to one of these stations. If there are no such stations, the
customer stays in the queue. It is not hard to see that this property can be expressed
as follows. For every activity (i, j),

�̂n
ij (t) ≤ �̌n

ij (t) implies Yn
i (t) ∧ Zn

j (t) = 0.(58)

The selection of an activity among the nonblocked activities through which to route
a customer does not turn out to be important. However, care must be taken when
two (or more) customers are routed instantaneously. Therefore it remains to show
that one can always perform instantaneous routings meeting (58). This is deferred
to Section 3.1 (cf. Lemma 4). Finally, we define �n as

�n = inf
{
t : max

i∼j
[�̂n

ij (t−) − F ∗
ij (X̂

n(t−))] ≥ b0

}
,(59)

where

F ∗(x) = G
(
x − (e · x)+h∗

1(x),−(e · x)−h∗
2(x)

)
,

and b0 denotes the deterministic, finite constant

b0 = 2 + max
i∼j

sup
n

(
�̂n

ij (0) − �̌n
ij (0)

)+
.(60)

A sequence of N-SCPs satisfying the above properties will be denoted by p′. We
will also consider a sequence of N-SCPs defined exactly as above, except that for
each n, the function h∗ will be replaced by a function hn, depending on n. Given
a sequence {hn} of functions hn : R

I → U, n ∈ N, we denote the corresponding
sequence of N-SCPs as p′({hn}).

The estimates used to establish asymptotic optimality will require some assump-
tions on the interarrival times. The two parts of the assumption below correspond
to different parts of the result.

ASSUMPTION 4. There is a constant mA such that E(Ǔi(1))mA < ∞, i ∈ I,
satisfying either of the following:

(i) mA > 2mL (where mL is as in Assumption 2);
(ii) mA(mA − 2)(5mA − 2)−1 > mL.

For a sequence ζ of initial conditions and a sequence p of SCPs, denote

V (ζ,p) = lim inf
n→∞ E

p
ζ

∫ ∞
0

e−γ t L̃(X̂n
t , �̂n

t ) dt,

V (ζ,p) = lim sup
n→∞

E
p
ζ

∫ ∞
0

e−γ t L̃(X̂n
t , �̂n

t ) dt.

Our main result is the following.



2624 R. ATAR

THEOREM 2. Let Assumptions 1, 2 and 3 hold. Let ζ be a sequence of initial
conditions (X0,n;n ∈ N) such that X̂0,n = n−1/2(X0,n − nx∗) → x ∈ R

I . Then
items (i) and (ii) below hold under Assumption 4(i), and items (iii) and (iv) hold
under Assumption 4(ii).

(i) For any sequence p of jointly work-conserving admissible P-SCPs,
V (ζ,p) ≥ V (x).

(ii) The sequence p∗ of jointly work-conserving admissible P-SCPs satisfies
V (ζ,p∗) ≤ V (x).

(iii) Provided that h∗ (of Theorem 1) is locally Hölder on {ξ ∈ R
I : e · ξ �= 0},

the sequence p′ of admissible N-SCPs satisfies V (ζ,p′) ≤ V (x).
(iv) Provided that the mapping U �→ L(ξ,U) is convex on U for every

ξ ∈ R
I , there exists a sequence {hn} of functions mapping R

I to U such
that the corresponding sequence p′′ := p′({hn}) of admissible N-SCPs satisfies
V (ζ,p′′) ≤ V (x).

The combination of items (i) and (ii) establishes the asymptotic optimality of
the sequence p∗, as well as the validity of the DC problem as the correct asymp-
totic description of the problem under preemption. Items (i), (iii) and (iv) establish
similar consequences for the nonpreemptive problem.

To demonstrate the horizon of the different parts of the result, we mention some
possible cost functions associated with queue length, and note in passing that one
can also consider, for example, costs associated with the number of idle servers,
and, via a transformation developed in [3], abandonment count.

Recall that Ŷ n
i denote normalized queue lengths, and that Ŷ n

i = (e · X̂n)+un
i . For

simplicity write these quantities as Yi , Xi and ui . Then a cost of the form
∑

i ciY
α
i ,

where ci, α > 0, can be written as

L(X,U) = (
(e · X)+

)α ∑
i

ciu
α
i .

We see that Assumption 2 is met and therefore items (i) and (ii) of Theorem 2
are in force. For item (iii), it follows from Proposition 3 of [3] that the Hölder
hypothesis on h∗ is met for the above cost with α ≥ 2. For item (iv), clearly α ≥ 1
suffices. Next, our treatment of the case where L is bounded [cf. Assumption 3(iii)]
allows to relax much of what is assumed otherwise [i.e., Assumption 3(i) or (ii)].
A truncated version of the above cost function, that is,

L(X,U) =
[(

(e · X)+
)α ∑

i

ciu
α
i

]
∧ M,

is an example in which items (i) and (ii) apply under Assumption 3(iii). As far as
item (iv) is concerned, the convexity condition imposes the choice α = 1 and c = e,
which amounts to the truncated sum of the queue lengths (e · Y) ∧ M , expressed
as

L(X,U) = (e · X)+ ∧ M.
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Clearly, any other positive, bounded Hölder function of X meets the assumptions
of item (iv).

As a final comment we mention that the PDE (49), on which the above proposed
SCPs depend, can be solved numerically. The complexity of numerical schemes
depend mainly on the dimension of the underlying Euclidean space. The PDE (49)
is of dimension I , and to realize the dimensionality reduction obtained by our
results as far as nonpreemptive SC problems are concerned, note that the state
process for such a problem in the Markovian case should consist of (Y n,�n).
Since the number of activities under the treelike assumption is equal to I + J − 1,
the reduction is from dimension 2I + J − 1 to I .

2.7. Discussion. We provide some motivation on two central assumptions that
we have made. First, we present an example that demonstrates heuristically why,
in presence of nonbasic activities, the limit behavior is expected to be different
for preemptive and nonpreemptive scheduling. The example consists of the sim-
plest system having a nonbasic activity. The observation and example are due to
Mandelbaum and Reiman [12].

EXAMPLE 1. Consider a system with two customer classes and two server
types as depicted in Figure 2. Servers of type A can serve both classes and servers
of type B can only serve class-2 customers (in the examples we refer to stations
as A,B , . . . rather than as numbers in J). Consider first a case where all activities
are basic. For example, let ν1 = ν2 = 1, µ1A = µ2A = µ2B = 1, and λ1 = 1/2,
λ2 = 3/2. Then there is a unique optimal solution to the linear program, namely:
(ξ∗

1A, ξ∗
2A, ξ∗

2B) = (1/2,1/2,1). In a fluid model this means that half of the servers
at station A serve class 1 and all other servers serve class 2. In the queueing model
with large n, under any policy that keeps the deviations from the fluid model at the
desired level O(

√
n ), the number of class-1 and the number of class-2 customers

in station A are �n
1A,�n

2A = n/2 + O(
√

n ), while the number of class-2 cus-
tomers in station B is �n

2B = n + O(
√

n ). In a system with preemption the policy

FIG. 2. An example with three activities.
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dynamically selects the values of these processes �n. The control � that appears
in the diffusion model shows up as a weak limit of the appropriately normalized,
centered versions of the �n process. It therefore reflects the O(

√
n ) deviations

referred to above. Now, in order for a system without preemption to be governed
by the same diffusion model, it should be possible for �n to track closely the dif-
fusion control process � . In particular, it should be possible for the population in
any activity to change by O(

√
n ) in o(1) units of time (this is the heuristic behind

the proofs carried out in Section 3). Recall that the population in this activity is
about n/2. If routing to this activity is stopped, its population will decrease due to
service completions by O(

√
n ) in o(1) units of time. On the other hand, if rout-

ing to this activity is maintained and routing to the other activities is stopped, the
population at activity (2,A) will build up by O(

√
n ) in o(1) units of time. This

demonstrates how to rapidly decrease or increase the population in this activity,
so as to allow �n to track a desired control process. Consider now a case where
µ and ν are as before, but λ1 = λ2 = 1. The unique solution to the linear program
is now (ξ∗

1A, ξ∗
2A, ξ∗

2B) = (1,0,1), and therefore activity (2,A) is nonbasic. The
queueing model will have only O(

√
n ) customers in this activity. As a result, it is

impossible to reduce the population in this activity in o(1) units of time so as to
maintain a “good” tracking mechanism. This stands in contrast with the preemp-
tive problem, where customers can be moved instantaneously between the buffer
and the stations that offer them service.

We next argue that joint work conservation is in many cases a desired property
for problems with preemption (for problems without preemption, work conserva-
tion is typically not optimal, cf. [3], but under appropriate conditions the distinc-
tion between the two disappears in the limit, as seen in our main result). We do not
attempt a rigorous treatment, and instead describe an argument towards optimality
in a particular case. We comment that even in the context of one station, proving
that work conservation is optimal is not trivial (see [3]). However, it is believed
that the argument below can be greatly generalized.

EXAMPLE 2. The example consists of a Markovian system with two customer
classes, two server types and no abandonment (see Figure 3). In (a) there is a
customer of class 1 in the queue and a free server of type B . Although the free
server cannot serve this customer, a rearrangement is possible so as to allow all
customers to be served (b). We shall argue that “good” preemptive policies prefer
option (b) over (a). Clearly this question must be coupled with the cost criteria. For
concreteness, consider a cost of the form

∑
ciYi per unit time (weighted sum of

queue lengths). Use the fact that optimality is obtained by feedback policies, that
observe only the state: number of customers at each class present in the system.
Given a feedback policy π that leaves a customer in queue 1 when there is a free
server in station B , we show there exists a policy π̂ that pays a smaller cost on
average. The argument is valid if µ2A ≤ max(µ1A,µ2B). Arguing by coupling and
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FIG. 3. (a) A class-1 customer waiting in the queue, no free servers in station A and one free server
in station B. (b) A class-2 customer moved from station A to station B and the class-1 customer moved
from the queue to station A.

assuming the system starts at the described state as time zero, let π̂ move a class-2
customer, C2, from station A to station B and let it move the class-1 customer
waiting in the queue, C1, into station A, until, at time τ , there is an arrival or
a service in one of the systems (i.e., the system under π and that under π̂ ). If the
first to occur is an arrival or a service to a customer other than C1 or C2, π̂ switches
back to act like π for all times. One can perform the coupling in such a way that
service to C1 under π always occurs later than the first between service to C1 and
service to C2 under π̂ . If either service to C1 or to C2 under π̂ is the first to occur,
π̂ then mimics π except for the single customer that under π̂ is not present and
may still be present for a while under π . In all cases the cost paid by π̂ is not
greater than that paid by π .

3. Proofs.

3.1. Preliminary results. In Section 2 we obtained the convenient representa-
tion (47) of the controlled process from (38)–(41). We begin by showing how an
equation analogous to (47) is obtained for the prelimit model. To this end, let

Mn := e · Yn ∧ e · Zn ≥ 0.(61)

Denote also M̂n = n−1/2Mn. By (27) and (28) we can write e · X̂n = e · Ŷ n −e · Ẑn

and therefore by (61),

e · Ŷ n = M̂n + (e · X̂n)+, e · Ẑn = M̂n + (e · X̂n)−.(62)

Let un = Ŷ n/(e · Ŷ n) when e · Ŷ n > 0, and set un = e1 otherwise. Similarly,
vn = Ẑn/(e · Ẑn) if e · Ẑn > 0 and otherwise set vn = eI+1. Letting Un = (un, vn),
noting that Un takes values in U, and using Lemma 1, (27), (28), (45) and linearity
of G on DG, we have

Ŷ n = (
M̂n + (e · X̂n)+

)
un,

(63)
Ẑn = (

M̂n + (e · X̂n)−
)
vn
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and

�̂n = G(X̂n − Ŷ n,−Ẑn)

= G
(
X̂n − (e · X̂n)+un,−(e · X̂n)−vn) − M̂nG(un, vn)(64)

= Ĝ(X̂n,Un) − M̂nG(un, vn).

Defining

bn
i (X,U) = −∑

j

µn
ij Ĝij (X,U) − θn

i (e · X)+ui + �n
i ,

Ǧn
i (u, v) = ∑

j

µn
ijGij (u, v) − θn

i ui,

we obtain from (30)

X̂n
i (t) = X̂

0,n
i + riŴ

n
i (t)

+
∫ t

0

[
�n
i − ∑

j

µn
ij

(
Ĝij

(
X̂n(t),Un(t)

) − M̂n(t)Gij

(
un(t), vn(t)

))

− θn
i

(
M̂n(t)un

i (t) + (
e · Xn(t)

)+
un

i (t)
)]

ds,

hence

X̂n(t) = X̂0,n + rŴ n(t) +
∫ t

0
bn(

X̂n(s),Un(s)
)
ds

(65)

+
∫ t

0
M̂n(s)Ǧn(

un(s), vn(s)
)
ds.

It is useful to note that

‖bn(x,U) − bn(y,U)‖ ≤ c1‖x − y‖,
(66)

‖bn(x,U)‖ ≤ c1(1 + ‖x‖), n ∈ N,U ∈ U, x, y ∈ R
I ,

where c1 does not depend on n,U,x and y.
Part (i) of the following result proves (37). Part (ii) regards the proposed P-SCP.

LEMMA 3. Fix t . Assume that Xn(t) ∈ Z
I+ satisfies the inequality ‖Xn(t) −

nx∗‖ ≤ α0n, where α0 > 0 is the constant from (36). Then the following conclu-
sions hold.

(i) Xn(t) ∈ Xn. Namely, there exist quantities Yn(t), Zn(t), �n(t) satisfying
(2)–(5) as well as (35).
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(ii) Let Yn(t) and Zn(t) be given, define

�n(t) = G
(
Xn(t) − Yn(t),Nn − Zn(t)

)
(67)

and assume that (4) and (35) are satisfied. Then (2), (3) and (5) also hold.

REMARK. The lemma has two implications.

(a) Consider a jointly work-conserving P-SCP. If the inequality ‖Xn(t) −
nx∗‖ ≤ α0n holds, then, by Lemma 3(i), Xn(t) ∈ Xn. By definition of joint work
conservation, a rearrangement of customers will be chosen so as to meet (35), and
it follows that Mn(t) = 0. Now, let τn = inf{s :Mn(s) > 0}. The above discussion
shows that if τn ≤ t , then ‖Xn − nx∗‖∗

t ≥ α0n. In particular, ‖Xn − nx∗‖∗
τn ≥ α0n

on {τn < ∞}. This observation will be used in the next subsection.
(b) p∗ is a legitimate sequence of jointly work-conserving P-SCPs. As argued

in Section 2, one only has to show that when ‖Xn(t) − nx∗‖ ≤ α0n, �n
ij (t) ≥ 0

holds. This is shown in Lemma 3(ii).

PROOF OF LEMMA 3. Consider part (ii) first. By the definition of G

(cf. Lemma 1), (2) and (3) hold. It remains to show that �n
ij (t) ≥ 0 for all (i, j) ∈ E .

By Lemma 1 and (17),

ψ∗ = G(x∗, ν).(68)

Since it is assumed that Mn(t) = 0 [cf. (61)], (62) implies that ‖Yn(t)‖ ∨
‖Zn(t)‖ ≤ ‖Xn(t) − nx∗‖. Hence by linearity of the map G on the domain DG

and by (20), (44) and (36),

�n
ij (t) = Gij (nx∗, nν) + Gij

(
Xn(t) − nx∗ − Yn(t),Nn − nν − Zn(t)

)
≥ nψ∗

ij − CG

(‖Xn(t) − nx∗ − Yn(t)‖ ∨ ‖Nn − nν − Zn(t)‖)
≥ nψ∗

ij − 2CG‖Xn(t) − nx∗‖ − CG‖Nn − nν‖
≥ nψ∗

ij − 2CGα0n − cn1/2

≥ 0,

where the last inequality holds for all n large enough.
To prove part (i), simply set Yn(t) = (e · Xn(t))+e1, Zn(t) = (e · Xn(t))−eJ+1

and define �n(t) via (67). The result now follows from part (ii). �

The following lemma refers to instantaneous routing through nonblocked activ-
ities in the construction of the N-SCPs p′ of Section 2, by showing that one can
find �̂n meeting (58).
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LEMMA 4. Let (�̃, X̃, Ỹ , Z̃) satisfy∑
j

�̃ij = X̃i − Ỹi , i ∈ I,

∑
i

�̃ij = −Z̃j , j ∈ J,(69)

�̃ij = 0, i �∼ j,

Ỹi ≥ 0, Z̃j ≥ 0, i ∈ I, j ∈ J.(70)

Assume that all components of X̃, Ỹ , Z̃ and �̃ are integers. Let a subset E1 ⊂ E
(“nonblocked” activities) be given. Then one can find (�,X,Y,Z) satisfying rela-
tions analogous to (69), (70), and

X = X̃, Y ≤ Ỹ , Z ≤ Z̃, � ≥ �̃,(71)

(i, j) ∈ E1 implies Yi ∧ Zj = 0.(72)

PROOF. Define inductively a sequence (X(k), Y (k),Z(k),�(k)), k = 0, . . . , k1,
as follows. Let (

X(0), Y (0),Z(0),�(0)) = (�̃, X̃, Ỹ , Z̃).

Let k ≥ 0 be given, for which (X(k), Y (k),Z(k),�(k)) is defined. If Y (k), Z(k)

satisfy (72), then terminate, declaring k1 = k. Otherwise, define (X(k+1), Y (k+1),

Z(k+1),�(k+1)) as follows. Let i0 be the smallest i ∈ I such that there is j with
(i, j) ∈ E1 and Y

(k)
i ∧ Z

(k)
j > 0. Let j0 be the smallest such j . For i ∈ I, j ∈ J

define

X(k+1) = X(k), Y
(k+1)
i = Y

(k)
i − 1{i=i0},

Z
(k+1)
j = Z

(k)
j − 1{j=j0}, �

(k+1)
ij = �

(k)
ij + 1{(i,j)=(i0,j0)}.

Since by construction 0 ≤ e ·Y (k) = e · Ỹ −k, the procedure must terminate. Defin-
ing (X,Y,Z,�) = (X(k1), Y (k1),Z(k1),�(k1)) completes the proof. �

The following lemma will be useful in analyzing the N-SCPs p′. In order to
show that �̂n tracks closely �̌n, estimates are required on ‖�̂n(t) − �̌n(t)‖. The
lemma shows that it suffices to estimate only (�̂n(t) − �̌n(t))+.

LEMMA 5. Let (ψ, x, y, z) satisfy∑
j

ψij = xi − yi, i ∈ I,

∑
i

ψij = −zj , j ∈ J,

ψij = 0, i �∼ j,
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and let (ψ̌, x̌, y̌, ž) satisfy analogous relations. In addition, assume

if i ∼ j and ψij < ψ̌ij then yi ∧ zj = 0,(73)

and y̌i ≥ 0, i ∈ I, žj ≥ 0, j ∈ J. Then∑
i,j

|ψij − ψ̌ij | ≤ c
∑
i,j

(ψij − ψ̌ij )
+ + c‖x − x̌‖,

where c does not depend on ψ,x, y, z, ψ̌, x̌, y̌ or ž.

PROOF. Let ε be an upper bound on ψij − ψ̌ij for all i, j , and on |xi − x̌i | for
all i. Let j0 be such that zj0 = 0. Then∑

i

ψij0 = ∑
i

ψ̌ij0 + žj0 ≥ ∑
i

ψ̌ij0,

and since ψij0 ≤ ψ̌ij0 + ε, ψij0 − ψ̌ij0 ≥ −cε for every i ∼ j0. Let i0 be such that
yi0 = 0. Then∑

j

ψi0j = xi0 ≥ x̌i0 − ε = ∑
j

ψ̌i0j + y̌i0 − ε ≥ ∑
j

ψ̌i0j − ε.

Since ψi0j ≤ ψ̌i0j + ε for every j , we have ψi0j − ψ̌i0j ≥ −cε for every j ∼ i0.
Thus we have shown that |ψij − ψ̌ij | ≤ cε for every (i, j), i ∼ j , with either yi = 0
or zj = 0. In view of (73), we have shown that |ψij − ψ̌ij | ≤ cε for every (i, j),
i ∼ j , such that ψij < ψ̌ij . On the other hand, if ψij ≥ ψ̌ij , then simply |ψij −
ψ̌ij | = ψij − ψ̌ij ≤ ε by assumption. �

Denote

Jn
t = ‖Ŷ n

t − Y̌ n
t ‖ + ‖Ẑn

t − Žn
t ‖,(74)

Qn
1(t) =

∫ t

0
bn(X̂n

s ,Un
s ) ds, Qn

2(t) =
∫ t

0
e−γ sL(X̂n

s ,Un
s ) ds.(75)

Throughout, let p, p∗, p′ and ζ be as in Theorem 2, and let f denote the unique
C2

pol [C2
b under Assumption 3(iii)] solution to (49). Recall that I f = ∫ ·

0 f (s) ds.

PROPOSITION 1. Items (i)–(iii) below hold under p (in particular, under p∗)
and under p′.

(i) (X̄n, Ȳ n, Z̄n, �̄n) ⇒ (x∗,0,0,ψ∗).
(ii) (Ŵ n,I M̂n, X̂n,Qn

1,Q
n
2) is tight.

(iii) (Ŵ n,I M̂n) ⇒ (W,0), where W is a standard Brownian motion on R
I .

Moreover, the following holds under p∗ and under p′:
(iv) |Jn|∗s,t → 0 and |M̂n|∗s,t → 0 in distribution, for every 0 < s < t < ∞.
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For the proof see Section 3.2.

LEMMA 6. Under p and under p′ one has the following. Denote by
(X,Q1,Q2,W) a limit point of (X̂n,Qn

1,Q
n
2, Ŵ

n) along a subsequence. Let (Ft )

denote the filtration generated by (X,Q1,W). Then W is an (Ft )-standard
Brownian motion, X, Q1 and Q2 have continuous sample paths, and Q1
has sample paths of bounded variation over finite time intervals. Moreover,∫

e−γ sDf (X̂n
s ) ·dQn

1(s) ⇒ ∫
e−γ sDf (Xs) ·dQ1(s) along the subsequence, where

f is the solution to (49).

PROOF. Based on Proposition 1, the proof of Lemma 6 is identical to that of
Lemma 6 of [3] and is therefore omitted. �

PROPOSITION 2. (i) Assume either case (i) or (ii) of Assumption 3 holds.
For either q = p, with fixed m0 ∈ (mL,mA/2), or for q = p′, with fixed
m0 ∈ (mL,mA(mA − 2)(5mA − 2)−1), one has

E
q
ζ [(‖X̂n‖∗

t )
m0] ≤ C(1 + t)m1(76)

where C, m1 do not depend on n and t . In addition, the same conclusion holds in
the case q = p′({hn}), for any sequence {hn}, and the constants C and m do not
depend on the sequence {hn}.

(ii) Let case (iii) of Assumption 3 hold. Then

E
q
ζ [(‖X̂n‖∗

t )
m0] ≤ C̄eC̄t ,(77)

for q = p′({hn}), m0 ∈ (0,mA(mA −2)(5mA −2)−1), and C̄ not depending on n, t
and the sequence {hn}.

In part (ii) of the proposition, the significance is not in the precise form of the
upper bound but in the uniformity with respect to {hn}.

For the proof of Proposition 2 see Section 3.3.
The method of [3], that we adopt here, is based on estimating the process

Kn
t = b(X̂n

t ,Un
t ) · Df (X̂n

t ) + L(X̂n
t ,Un

t ) − H
(
X̂n

t ,Df (X̂n
t )

) ≥ 0,(78)

where the inequality above follows from (50).

LEMMA 7. Let the assumptions of Theorem 2 hold. For every sequence p of
admissible jointly work-conserving P-SCPs

lim inf
n→∞ E

p
ζ

∫ ∞
0

e−γ tL(X̂n
t ,Un

t ) dt ≥ V (x).

Moreover, if for some δ̄ > 0, T > 0 and k ∈ (0,∞], q is an admissible SCP under
which

lim
n→∞P

q
ζ

(
�n,k,T ∩

{∫ T

0
e−γ tKn

t dt > δ̄

})
= 0,(79)
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�n,k,T being any event on which ‖X̂n‖∗
T ≤ k, then

lim sup
n→∞

E
q
ζ

[
1�n,k,T

∫ T

0
e−γ tL(X̂n

t ,Un
t ) dt

]
≤ V (x) + δ̄.

PROOF. Equipped with Proposition 1, Lemma 6 and Proposition 2 under As-
sumption 3(i) and (ii), and boundedness of V in case of Assumption 3(iii), the
proof is very similar to that of Theorem 4 of [3], and is therefore omitted. �

PROOF OF THEOREM 2. Part (i): Established in Lemma 7.
Parts (ii) and (iii): We use Lemma 7 with k = ∞ and �n,k,T = �. In view

of this lemma it suffices to show that, for every T > 0, under both p∗ and p′,∫ T
0 e−γ sKn

s ds → 0 in probability. The function h∗ satisfies the following (see the
proof of Theorem 1 of [2]):

H
(
x,Df (x)

) = b
(
x,h∗(x)

) · Df (x) + L
(
x,h∗(x)

)
, x ∈ R

I .(80)

Combining (78) and (80),

Kn
t = (

b(X̂n
t ,Un

t ) − b
(
X̂n

t , h∗(X̂n
t )

)) · Df (X̂n
t )

(81)
+ L(X̂n

t ,Un
t ) − L

(
X̂n

t , h∗(X̂n
t )

)
.

By definition of b (46), and by (74),∥∥b(X̂n
t ,Un

t ) − b
(
X̂n

t , h∗(X̂n
t )

)∥∥ ≤ cJ n
t .(82)

By (48) and (53),

L(X̂n
t ,Un

t ) − L
(
X̂n

t , h∗(X̂n
t )

) = L̃
(
X̂n

t ,�n
1 (t)

) − L̃
(
X̂n

t , �̌n(t)
)

(83)

where, using (63),

�n
1 (t) := G

(
X̂n

t − (e · X̂n
t )+un

t ,−(e · X̂n
t )−vn

t

)
= G(X̂n

t − Ŷ n
t + M̂n

t un
t ,−Ẑn

t + M̂n
t vn

t )(84)

= �̂n
t + M̂n

t G(un
t , v

n
t ).

Note that

‖�̂n
t − �̌n

t ‖ = ‖G(X̂n
t − Ŷ n

t ,−Ẑn
t ) − G(X̂n

t − Y̌ n
t ,−Žn

t )‖ ≤ cJ n
t .(85)

By Assumption 2, L̃ is uniformly continuous on compacts, hence there are func-
tions αk(δ) with limδ→0 αk(δ) = 0 such that

|L̃(x,ψ) − L̃(x,ψ ′)| ≤ αk(δ),
(86)

‖x‖ ∨ ‖ψ‖ ∨ ‖ψ ′‖ ≤ k, ‖ψ − ψ ′‖ ≤ δ.
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Combining (81)–(86), ‖X̂n
t ‖ ∨ ‖�̂n

t ‖ ≤ k implies

Kn
t ≤ cJ n

t ‖Df (X̂n
t )‖ + αck(J

n
t + M̂n

t ) ≤ cJ n
t βk + αck(J

n
t + M̂n

t ),(87)

where βk depends only on k. Since by (52), e · Y̌ n ∧ e · Žn = 0, we have

M̂n = e · Ŷ n ∧ e · Ẑn ≤ |e · Ŷ n − e · Y̌ n| + |e · Ẑn − e · Žn| ≤ Jn.(88)

Moreover, by (27), (28) and (52),

Jn ≤ c1(‖X̂n‖ + ‖�̂n‖),(89)

for c1 not depending on n. Fix T and let �n,k,ε,δ denote the event that ‖X̂n‖∗
T ∨

‖�̂n‖∗
T ≤ k and |Jn + M̂n|∗ε,T ≤ δ. By Proposition 1,

lim
k

lim inf
δ→0+ lim inf

ε→0+ lim inf
n

P q(�n,k,ε,δ) = 1,(90)

for q = p∗ and for q = p′. Combining (87)–(89), on �n,k,ε,δ we have

0 ≤
∫ T

0
e−γ tKn

t dt

≤ c2ε
(
kβk + αc2k(c2k)

) + c2T
(
βkδ + αc2k(δ)

)
(91)

=: ᾱ(k, ε, δ),

where c2 does not depend on n, ε, δ, k. Taking n → ∞, then ε → 0, δ → 0 and
finally k → ∞, using (90), it follows that

∫ T
0 e−γ tKn

t dt → 0 in probability. Since
T is arbitrary, the result follows.

Part (iv): Recall that the sequence p′′ = p′({hn}) is defined like the sequence p′,
except that for each n, h is replaced by hn. It suffices to show that for each δ̄ > 0
one can find hδ̄ such that

lim sup
n→∞

E
q
ζ

∫ ∞
0

e−γ tL(X̂n
t ,Un

t ) dt ≤ V (x) + 4δ̄,(92)

where under q , hn are all equal to hδ̄ , because one can then find an appropri-
ate sequence δ̄n → 0 and set hn = hδ̄n so as to obtain V (ζ,p′′) ≤ V (x). We will
prove (92) by finding, for each δ̄ > 0, hδ̄ and T such that

lim sup
n

E
q
ζ

∫ T

0
e−γ tL(X̂n

t ,Un
t ) dt ≤ V (x) + 3δ̄(93)

and

sup
n

E
q
ζ

∫ ∞
T

e−γ tL(X̂n
t ,Un

t ) dt ≤ δ̄.(94)

Let δ̄ > 0 be given. If L is bounded, (94) holds for T large. Otherwise, As-
sumption 3(i) or (ii) is in force, and (94) follows from Proposition 2(i) and
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Assumption 2(iv), for T large enough. In particular, by the last statement of Propo-
sition 2(i), such T can be chosen independently of the sequence {hn}. Let such T

be fixed. Using the two parts of Proposition 2(ii) for the different cases of Assump-
tion 3, one can find k ∈ (0,∞), not depending on {hn}, so large that

P
q
ζ (‖X̂n‖∗

T ≥ k) ≤ δ̄.(95)

In addition, in view of (90), for k large enough,

lim sup
δ→0+

lim inf
ε→0+ lim inf

n
E

q
ζ

[
1(�n,k,ε,δ)c

∫ T

0
e−γ tL(X̂n

t ,Un
t ) dt

]
≤ δ̄.(96)

Let such k be fixed.
We argue along the lines of the proof of Theorem 2 of [3]. From (80), the func-

tion h∗ satisfies ϕ(x,h∗(x)) = infU∈U ϕ(x,U) =: ϕ∗(x), where

ϕ(x,U) = b(x,U) · Df (x) + L(x,U).

For each ε̄ > 0 let d(x, y, ε̄) denote the Euclidean distance from y to the boundary
∂B(x, ε̄I 1/2). Let Bx,ε̄ = ε̄Z

I ∩ B(x, ε̄I 1/2) and set

d̃(x, y, ε̄) =



d(x, y, ε̄)∑
y′∈Bx,ε̄

d(x, y′, ε̄)
, y ∈ Bx,ε̄,

0, otherwise.

Let

hε̄(x) = ∑
y∈ε̄ZI

d̃(x, y, ε̄)h∗(y).

It is elementary to check that x �→ hε̄(x) is Lipschitz. Since U �→ L(x,U) is con-
vex by assumption, and U �→ b(x,U) affine, the map U �→ ϕ(x,U) is convex. By
Jensen’s inequality and uniform continuity of (x,U) → ϕ(x,U) and x �→ ϕ∗(x)

on B(0, k), for sufficiently small ε̄ > 0,

b
(
x,hε̄(x)

) · Df (x) + L
(
x,hε̄(x)

) = ϕ
(
x,hε̄(x)

)
= ϕ

(
x,

∑
y

d̃(x, y, ε̄)h∗(y)

)

≤ ∑
y

d̃(x, y, ε̄)ϕ
(
x,h∗(y)

)

≤ ∑
y

d̃(x, y, ε̄)ϕ
(
y,h∗(y)

) + δ̄/2

= ∑
y

d̃(x, y, ε̄)ϕ∗(y) + δ̄/2

≤ ϕ∗(x) + δ̄ = H
(
x,Df (x)

) + δ̄,

x ∈ B(0, k).
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Letting hδ̄ = hε̄ we have [in place of (80)]

H
(
x,Df (x)

) + δ̄ ≥ b
(
x,hδ̄(x)

) · Df (x) + L
(
x,hδ̄(x)

)
, x ∈ B(0, k).(97)

Hence, arguing as in part (iii) above, recalling that hδ̄ is Lipschitz (a condition
used in the proof of Proposition 1) one obtains in place of (91),

0 ≤
∫ T

0
e−γ tKn

t dt ≤ ᾱ(k, ε, δ) + δ̄,

holding on �n,k,ε,δ . Taking ε and δ small enough so that ᾱ(k, ε, δ) ≤ δ̄,∫ T
0 e−γ tKn

t dt ≤ 2δ̄ on �n,k,ε,δ . Thus P(�n,k,ε,δ ∩ {∫ T
0 e−γ tKn

t dt > 2δ̄}) con-
verges to zero as n → ∞. By Lemma 7,

lim sup
n→∞

E
q
ζ

∫ T

0
e−γ tL(X̂n

t ,Un
t ) dt

≤ V (x) + 2δ̄ + lim sup
n→∞

E
q
ζ

[
1(�n,k,ε,δ)c

∫ T

0
e−γ tL(X̂n

t ,Un
t ) dt

]
.

Using (96), we obtain (93). �

LEMMA 8. Let Assumption 4 hold. Then E(‖Ân‖∗
t )

mA ≤ c(1 + t)mA/2,
where c does not depend on n or t .

For the proof see Lemma 2 of [3].

3.2. Tightness estimates. We prove Proposition 1. Most involved is the treat-
ment of the nonpreemptive case. The main idea is a “bootstrap” argument (a vari-
ation of which is also used in the next subsection), where one first establishes
tightness of the processes up to a certain stopping time, and then uses this to show
that the probability that the stopping time is incurred in an arbitrary fixed time
approaches zero. The proof is established in a number of steps.

Step 1. n−1/2Ŵn ⇒ 0.
Step 2. Under p, M̂n ⇒ 0 and X̄n ⇒ x∗. Under p′, X̄n(· ∧ σn) ⇒ x∗, where

σn = inf{s > 0 :I M̂n(s) ≥ 1} ∧ �n.
Step 3. Under p, (X̄n, Ȳ n, Z̄n, �̄n) ⇒ (x∗,0,0,ψ∗), and (X̂n, Ŵ n,Qn

1,Q
n
2) is

tight.
Step 4. Under p∗, Jn ⇒ 0.
Step 5. Under p′, conclusions of step 3 hold, upon stopping all processes involved

at σn. As a result, I M̂n ⇒ 0, and conclusions analogous to those of step 3
hold under p′.
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Step 1. Let Ai , i ∈ I, Sij , i ∼ j , Ri , i ∈ I, be independent Brownian mo-
tions with zero mean and variance given by EA2

i (1) = λiC
2
U,i , ES2

ij (1) = µij ,

ER2
i (1) = θi . Set Sij = 0 for i �∼ j , A = (Ai), S = (Sij ) and R = (Ri). For

the fact (Ân, Ŝn, R̂n) ⇒ (A,S,R) see [3], Lemma 4(i). Note that by (3) and (4),
�n

ij (t) ≤ Nj for every i, j and t . Moreover, Ȳ n
i (t) ≤ e · Ȳ n

i (t) ≤ n−1[e · Xn(0) +∑
i A

n
i (t)] ≤ c + n−1 ∑

i A
n
i (t) =: ζ n(t), where c does not depend on n and t .

Hence by (31),

‖Ŵn‖∗
t ≤ c1‖Ân‖∗

t + c1‖Ŝn‖∗
c1t

+ c1‖R̂n‖∗
ζ n(t),(98)

for a constant c1. From this it is elementary to show that

n−1/2‖Ŵn‖∗
t → 0 in distribution, as n → ∞, t ≥ 0.(99)

Step 2. We show first that under p, M̂n ⇒ 0. Let τn = inf{s : M̂n
s > 0}. We

shall show that, for every T , P(τn ≤ T ) → 0 as n → ∞; this implies that, for
every T , ‖M̂n‖∗

T → 0 in distribution, and as a result M̂n ⇒ 0. Indeed, by (65),

X̂n(t ∧ τn) = X̂0,n +
∫ t∧τn

0
bn(

X̂n(s),Un(s)
)
ds + rŴ n(t ∧ τn).

By (66),

‖X̂n(t ∧ τn)‖ ≤ c2 + c2

∫ t∧τn

0

(
1 + ‖X̂n(s)‖)

ds + c2‖Ŵn(t ∧ τn)‖,
and it follows from Gronwall’s inequality that

‖X̄n − x∗‖∗
t∧τn = n−1/2‖X̂n‖∗

t∧τn ≤ c3n
−1/2ec3t‖Ŵn‖∗

t .(100)

Hence by Remark (b) following Lemma 3 and (99),

P(τn ≤ T ) ≤ P(‖X̄n − x∗‖∗
T ∧τn > α0) → 0.(101)

As a result, M̂n ⇒ 0. By (99), (100) and (101) it follows that for every t ,
‖X̄n − x∗‖∗

t → 0 in distribution as n → ∞. As a result X̄n ⇒ x∗.
Next, under p′, recall that �n is defined in (59) and let

σn = inf{t > 0 :I M̂n(t) ≥ 1} ∧ �n.(102)

By (65) and (66),

‖X̂n(t ∧ σn)‖ ≤ c4 + c4

∫ t∧σn

0

(
1 + ‖X̂n(s)‖)

ds + c4‖Ŵn(t ∧ σn)‖.
Using again Gronwall’s lemma and (99), we have

‖X̄n − nx∗‖∗
t∧σn → 0 in distribution, t > 0.(103)
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Step 3. This step refers to p only. By (62),

e · Ȳ n = n−1/2(
M̂n + (e · X̂n)+

) ≤ n−1/2M̂n + ‖X̄n − x∗‖.
Since Ȳi ≥ 0, i ∈ I, it follows that Ȳ n ⇒ 0. By a similar argument, Z̄n ⇒ 0.
By (67), (68) and linearity of the map G on DG,

�̄n = n−1G(Xn − Yn,Nn − Zn)

= G(X̄n − Ȳ n, n−1Nn − Z̄n)

= G(X̄n − x∗ − Ȳ n, n−1Nn − ν − Z̄n) + G(x∗, ν)

= G(X̄n − x∗ − Ȳ n, n−1Nn − ν − Z̄n) + ψ∗.

Since Ȳ n, Z̄n, (X̄n − x∗) ⇒ 0 and by (20) and continuity of G, we obtain
�̄n ⇒ ψ∗.

We have now shown that ‖X̄n − x∗‖∗
t + ‖Ȳ n‖∗

t + ‖Z̄n‖∗
t + ‖�̄n − ψ∗‖∗

t

converges to zero in distribution, for every t . Hence (X̄n, Ȳ n, Z̄n, �̄n) ⇒ (x∗,0,

0,ψ∗).
Next we show that the sequence (X̂n, Ŵ n,Qn

1,Q
n
2) is tight in (D(Rk))3 ×D(R).

We have shown already that Ŝn ⇒ S, R̂n ⇒ R, �̄n ⇒ ψ∗ and Ȳ n ⇒ 0. An ap-
plication of the time change lemma [5] shows that Ŝn

ij (
∫ ·

0 �̄n
ij (s) ds) ⇒ Sij (ψ

∗·)
and R̂n

i (
∫ ·

0 Ȳ n
i (s) ds) ⇒ 0. By (31) and (33) it follows that Ŵn ⇒ W , a standard

Brownian motion in R
I .

By (65), (66),

‖X̂n(t)‖ ≤ ‖X̂0,n‖ + c5‖Ŵn(t)‖ + c5I M̂n(t) + c5

∫ t

0

(
1 + ‖X̂n(s)‖)

ds

and therefore by Gronwall’s inequality,

‖X̂n‖∗
t ≤ c6e

c6t (1 + I M̂n
t + ‖Ŵn‖∗

t ).(104)

Using tightness of Ŵn and M̂n, it follows that for every t ,

lim
m→∞ lim sup

n→∞
P(‖X̂n‖∗

t ≥ m) = 0.(105)

Fix T . By (65) and (66), for s, t ∈ [0, T ], s < t ,

‖X̂n(t) − X̂n(s)‖ ≤ c7‖Ŵn(t) − Ŵn(s)‖
(106)

+ c7(t − s)(1 + |M̂n|∗T + ‖X̂n‖∗
T ).

Let w(x,S) = sups,t∈S ‖x(s) − x(t)‖ where S ⊂ [0, T ), and let

w′
T (x, δ) = inf max

1≤i≤v
w

(
x, [ti−1, ti)

)
,
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where the infimum is over all decompositions [ti−1, ti), 1 ≤ i ≤ v, of [0, T ) such
that ti − ti−1 > δ, 1 ≤ i ≤ v (cf. [5], page 171). The notation

wT (x, δ) = sup
0≤s<t≤(s+δ)∧T

w(x, [s, t])(107)

will also be useful. It follows from Theorem 16.8 of [5] and tightness of Ŵn that
for each t and ε, limδ→0 lim supn→∞ P(w′

t (Ŵ
n, δ) ≥ ε) = 0. Hence by tightness

of M̂n and using (106), for each t ≤ T and ε,

lim
δ→0

lim sup
n→∞

P
(
w′

t (X̂
n, δ) ≥ ε

) = 0.(108)

Since T is arbitrary, (105) and (108) imply tightness of X̂n, using Theorem 16.8
of [5]. By (66), (75) and Assumption 2, there is a constant c8 such that

‖Qn
1‖∗

t ∨ |Qn
2|∗t ≤ c8t (1 + ‖X̂n‖∗

t )
mL,

and for s, t ∈ [0, T ], s < t ,

‖Qn
1(t) − Qn

1(s)‖ ∨ |Qn
2(t) − Qn

2(s)| ≤ c8(t − s)(1 + ‖X̂n‖∗
T )mL.

Hence, using Theorem 16.8 of [5], tightness of Qn
1 and Qn

2 follows from (105). We
have shown that X̂n, Ŵn, Qn

1 and Qn
2 are tight, and using Proposition 3.2.4 of [6],

it follows that (X̂n, Ŵ n,Qn
1,Q

n
2) is tight.

Step 4. Fix T . By (1) and (55), under p∗ one has |Jn|∗T ≤ 2(I + J )n−1/2 on
the event {‖X̄n −x∗‖∗

T ≤ α0}. Since ‖X̄n −x∗‖∗
T converges to zero in distribution,

so does |Jn|∗T , and since T is arbitrary, Jn ⇒ 0.

Step 5. This step refers to p′. Let σn be as in (102) and recall (103). Reviewing
step 3 shows that all its conclusions still hold under p′ in place of p, upon replacing
X̄n by X̄n(· ∧ σn), Ȳ n by Ȳ n(· ∧ σn), and similar substitutions for the processes
�̄n, Ŵn, X̂n, Qn

1 and Qn
2. As a result,

(X̄n·∧σn, Ȳ
n·∧σn, Z̄

n·∧σn, �̄
n·∧σn) ⇒ (x∗,0,0,ψ∗),(109)

(
X̂n·∧σn, Ŵ

n·∧σn,Q
n
1(· ∧ σn),Qn

2(· ∧ σn)
)

is tight.(110)

Let T be fixed and denote T n = T ∧ σn. For i ∼ j let

�n
ij = �̂n

ij − �̌n
ij .(111)

Let �n,k denote the event

{‖X̂n‖∗
T n ∨ ‖Ŷ n‖∗

T n ∨ ‖Ẑn‖∗
T n ∨ ‖�̂n‖∗

T n ≤ k}.
By tightness of X̂n(· ∧ σn) and by (62), (64),

lim
k→∞ lim inf

n→∞ P(�n,k) = 1.(112)
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We will show that

lim
ε0→0+ lim sup

n
P (σn ≤ ε0) = 0,(113)

and that for every i ∼ j and small enough ε0 > 0,

lim sup
n

P

(
σn > ε0, sup

[ε0,T
n]

�n
ij > cε

)
= 0.(114)

To this end let ε0 ∈ (0, T ). Fix i, j , i ∼ j . If �n
ij > 0 on [s, r), no customers are

routed on activity (i, j) on this time interval and by (57) and (9),

�n
ij (t) = �n

ij (s) − �n
ij (s, t), t ∈ [s, r),

where

�n
ij (s, t) = Sn

ij (I �n
ij (t)) − Sn

ij (I �n
ij (s)).(115)

Therefore

�̂n
ij (t) = �̂n

ij (s) − n−1/2�n
ij (s, t).(116)

Now,

P

(
σn > ε0, sup

t∈[ε0,T
n]

�n
ij (t) > 3ε

)
≤ P((�n,k)c) + P(�

n,k
1 ) + P(�

n,k
2 ),(117)

where

�
n,k
1 = �n,k ∩ {σn > ε0}

∩
{
∃0 ≤ s ≤ r ≤ T n :�n

ij (s) ≤ ε, inf
t∈(s,r)

�n
ij (t) ≥ ε,�n

ij (r) ≥ 3ε

}
,

�
n,k
2 = �n,k ∩ {σn > ε0} ∩

{
inf

t∈[0,ε0]
�n

ij ≥ ε

}
.

Let k be fixed. By the Hölder assumption on h1, h2 away from e · X̂n = 0, there
are positive constants c′

k , c̄k , pk (depending on k and ε but not on n) such that the
following holds on �n,k :

|�̌n
ij (t) − �̌n

ij (s)| = ∣∣Gij

(
X̂n(t) − Y̌ n(t),−Žn(t)

)
− Gij

(
X̂n(s) − Y̌ n(s),−Žn(s)

)∣∣
≤ c

(∥∥(
X̂n(t) − Y̌ n(t)

) − (
X̂n(s) − Y̌ n(s)

)∥∥ + ∥∥Žn(t) − Žn(s)
∥∥)

(118)
≤ c′

k

(‖X̂n(t) − X̂n(s)‖ + ‖X̂n(t) − X̂n(s)‖pk
)

+ ε

4
1{|e·X̂n

s |<ε/8} + ε

4
1{|e·X̂n

t |<ε/8}

≤ c̄k‖X̂n(t) − X̂n(s)‖pk + ε

2
.
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By (23), for 0 ≤ s ≤ t ≤ r ≤ T n as above,

n−1/2�n
ij (s, t) = Ŝn

ij (I �̄n
ij (t)) − Ŝn

ij (I �̄n
ij (s))

+ n1/2µn
ij

∫ t

s

(
�̄n

ij (ϑ) − ψ∗
ij

)
dϑ(119)

+ n1/2(µn
ij − µij )ψ

∗
ij (t − s) + n1/2µijψ

∗
ij (t − s).

Since �n
ij ≤ Nn

j , it follows that �̄n
ij are all bounded uniformly by a constant. Since

the jumps of the process Ŝn
ij are all of size n−1/2, a use of (12.9) of [5] shows that

|Ŝn
ij (I �̄n

ij (t))− Ŝn
ij (I �̄n

ij (s))| ≤ 2w′
c9T

n(Ŝ
n
ij , c9(t − s))+n−1/2, where c9 > 0 is

a constant. Since ‖�̄n − ψ∗‖∗
T n ≤ kn−1/2 on �n,k , using (19), and assuming n is

large enough we therefore have

n−1/2�n
ij (s, t) ≥ −2w′

c9T
n

(
Ŝn

ij , c9(t − s)
) − n−1/2 + c10n

1/2(t − s),(120)

where c10 = µijψ
∗
ij /2. Hence on �

n,k
1 , noting that �n

ij (s) ≤ ε,

�n
ij (t) = �n

ij (s) + (
�̂n

ij (t) − �̂n
ij (s)

) − (
�̌n

ij (t) − �̌n
ij (s)

)
≤ −n−1/2�n

ij (s, t) + c̄k‖X̂n(t) − X̂n(s)‖pk + 2ε

≤ 2w′
c9T

n

(
Ŝn

ij , c9(t − s)
) − c10n

1/2(t − s) + c̄k‖X̂n(t) − X̂n(s)‖pk + 2ε.

Since on �
n,k
1 , �n

ij (r) ≥ 3ε,

ε ≤ 2w′
c9T

n

(
Ŝn

ij , c9(r − s)
)

− c10n
1/2(r − s) + c̄k‖X̂n(r) − X̂n(s)‖pk ,(121)

P(�
n,k
1 ) ≤ P(�

n,k
3 ) + P(�

n,k
4 ),

where

�
n,k
3 = {∃0 ≤ s ≤ r ≤ T n : r − s ≤ an−1/2, (121) holds},

�
n,k
4 = {∃0 ≤ s ≤ r ≤ T n : r − s > an−1/2, (121) holds}.

On �
n,k
3 ,

ε ≤ 2w′
c9T

n(Ŝ
n
ij , c9an−1/2) + c̄kw

′
T n(X̂

n, an−1/2)pk

and since (Ŝn, X̂n(· ∧ σn)) are tight, for every a,

lim
n

P (�
n,k
3 ) = 0.

On �
n,k
4 ,

c10a ≤ 2‖Ŝn
ij‖∗

c9T
n + c̄k(2‖X̂n‖∗

T n)
pk
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and by tightness of (Ŝn, X̂n(· ∧ σn)),

lim
a→∞ lim sup

n→∞
P(�

n,k
4 ) = 0.

As a result we have, for every k,

lim
n→∞P(�

n,k
1 ) = 0.(122)

Regarding �
n,k
2 , substituting s = 0 and t ∈ [0, ε0] in (118)–(120),

�n
ij (t) ≤ �n

ij (0) + 2‖Ŝn
ij‖∗

c9ε0
− c10n

1/2t + c̄k‖X̂n(t) − X̂0,n‖pk + ε/2.

Since �n
ij (ε0) ≥ ε, we have on �

n,k
2

ε/2 ≤ �n
ij (0) + 2‖Ŝn

ij‖∗
c9ε0

− c10n
1/2ε0 + c̄k‖X̂n(ε0) − X̂0,n‖pk .

By tightness of the random variables ξn := 2‖Ŝn
ij‖∗

c9ε0
+ c̄k‖X̂n(ε0 ∧ σn) −

X̂0,n‖pk , the fact that σn > ε0 on �
n,k
2 , and since �n

ij (0) are bounded [as follows
from (21), (22)],

lim sup
n→∞

P(�
n,k
2 ) ≤ lim sup

n→∞
P(ξn ≥ cε0n

1/2) = 0.(123)

Combining (117), (122), (123) and (112), we obtain (114).
Now, on �n,k , M̂n(σn ∧ ε0) ≤ e · Ŷ n(σ n ∧ ε0) ≤ k. Hence by (102),

P(σn ≤ ε0) ≤ P
(
I M̂n(σn ∧ ε0) ≥ 1

) ≤ P((�n,k)c) + 1{ε0k≥1}.

Therefore, for every k,

lim sup
ε0→0+

lim sup
n

P (σn ≤ ε0) ≤ lim sup
n

P ((�n,k)c),

and (113) follows using (112).
Having established (113) and (114), we argue as follows. Lemma 5 and the

property (58) of the policy p′ imply that

‖�n(t)‖ ≤ c11
∑
i∼j

(�n
ij (t))

+.(124)

By (53) and the uniqueness statement in Lemma 1, X̂n
i − Y̌ n

i = ∑
j �̌n

ij for every i.

This and (27), along with an analogous argument for Žn, imply that

‖Ŷ n − Y̌ n‖ + ‖Ẑn − Žn‖ ≤ c12‖�n‖.(125)

Combining (88), (124) and (125), on �n,k , for every t ∈ (ε0, T ],
I M̂n(t) ≤ c13kε0 + c13t

∑
i∼j

sup
[ε0,t]

(�n
ij )

+.(126)



CONTROL FOR QUEUEING SYSTEMS 2643

Hence, with b0 as in (60),

P(σn ≤ T ) ≤ P((�n,k)c) + P(σn ≤ ε0)

+ P
(
σn > ε0,I M̂n(T n) ≥ 1

)
+ P

(
σn > ε0,max

i∼j
sup

[ε0,T
n]
(�n

ij )
+ ≥ b0

)
(127)

≤ P((�n,k)c) + P(σn ≤ ε0)

+ P

(
σn > ε0, c13T

∑
i∼j

sup
[ε0,T

n]
(�n

ij )
+ ≥ 1 − c13kε0

)

+ P

(
max
i∼j

sup
[ε0,T

n]
(�n

ij )
+ ≥ b0

)
.

Taking ε0 small enough and using (112), (113) and (114), we have that

lim
n

P (σn ≤ T ) = 0.(128)

Since T is arbitrary, we finally have from (109), (110) and (128) that

(X̄n, Ȳ n, Z̄n, �̄n) ⇒ (x∗,0,0,ψ∗), (X̂n, Ŵ n,Qn
1,Q

n
2) is tight.

Also, with (128), the relations (114) and (124) show that

lim
n

P

(
sup

[ε0,T ]
‖�n‖ > cε

)
= 0.(129)

In view of (74) and (125), we have from (129) that |Jn|∗s,t converges to zero in
distribution, for every 0 < s < t < ∞. As follows from (88), a similar statement
holds for |M̂n|∗s,t . Moreover, using again (126), now equipped with (129), letting

n → ∞, then ε0 → 0+ and finally k → ∞, we obtain that I M̂n(T ) → 0 in dis-
tribution, and since T is arbitrary, I M̂n ⇒ 0. This completes the proof of Propo-
sition 1.

3.3. Large time estimates. In this section we prove Proposition 2. The follow-
ing estimate from [2] is used in a crucial way.

PROPOSITION 3. Let Assumption 3(i) or (ii) hold. Let (27)–(30) hold. Then

‖X̂n(t)‖ ≤ C(1 + t)m(‖x‖ + ‖Ŵn‖∗
t + |M̂n|∗t ),(130)

for C and m depending only on the model parameters, and in particular, not de-
pending on x, Ŵn or on the SCP.
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PROOF. We use the following result from [2]: If

xi = wi − ∑
j

µijI ψij − θiI yi,

(131)
ψ = G(x − y,−z), e · y ∧ e · z = 0,

then

‖x‖ ≤ c(1 + t)m‖w‖∗
t ,(132)

where the constants c,m do not depend on ψ,x, y, z: Under Assumption 3(i),
(132) follows from the proof of Corollary 1 of [2]. Under Assumption 3(ii),
(132) follows from Theorem 3 and Lemma 3 of [2].

Let

Wn
1 (t) = Ŵn(t) + r−1

∫ t

0
M̂n(s)Ǧn(

un(s), vn(s)
)
ds.(133)

We have from (65) X̂n
t = X̂0,n + ∫ t

0 bn(X̂t
s,U

n
s ) ds + rWn

1 (t). Lemma 2 implies
that there are �n

1 , Yn
1 and Zn

1 such that (38)–(41) hold. Hence X̂n, Y n
1 ,Zn

1 ,�n
1 ,Wn

1
satisfy relations analogous to (131). As a result, a relation as in (132) holds, and
using (133) we obtain (130). �

REMARK. The only two places in this paper where Assumption 3(i), (ii) is
used are in Theorem 1 and in obtaining (132) from (131). In fact, also the proof of
Theorem 1 (carried out in [2]) uses this assumption only in order to establish (132),
and if the implication “(131) implies (132)” holds true in greater generality, then
so do Theorems 1 and 2.

PROOF OF PROPOSITION 2. Most of the proof deals with part (i). Let As-
sumption 3(i) or (ii) hold. First consider policies of the form p. By (98),

‖Ŵn‖∗
t ≤ c1

(‖Ân‖∗
t + ‖Ŝn‖∗

c1t
+ ‖R̂n‖∗

ζ n(t)

)
.

By Assumption 4, applying Lemma 8 shows that, for an appropriate constant c2,
E(‖Ân‖∗

t )
mA ≤ c2(1 + t)c2 , and a similar estimate holds for Ŝn. Conditioning first

on ζ n and using the independence of An and Rn, a similar estimate follows for the
last term above. As a result,

E(‖Ŵn‖∗
t )

mA ≤ c2(1 + t)c2 .(134)

As in the proof of Proposition 1, let τn = inf{t : M̂n
t > 0}. Under {τn > t},

|M̂n|∗t = 0 and therefore by Proposition 3,

‖X̂n
t ‖∗ ≤ C(1 + t)m(‖x‖ + ‖Ŵn‖∗

t ), {τn > t}.(135)

On {τn ≤ t}, by (3), (5) and (20),

|M̂n|∗t = n−1/2|Mn|∗t ≤ n−1/2|e · Zn|∗t ≤ n−1/2e · Nn ≤ c3n
1/2,
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and by Proposition 3,

‖X̂n‖∗
t ≤ C(1 + t)m(‖x‖ + ‖Ŵn‖∗

t + n1/2), {τn ≤ t}.(136)

Combining (134), (135) and Lemma 3 [in particular, Remark (a) that follows],

P(τn ≤ t) ≤ P(‖X̂n‖∗
t∧τn ≥ α0n

1/2)

≤ cn−mA/2E(‖X̂n‖∗
t∧τn)

mA(137)

≤ c4n
−mA/2(1 + t)c4 .

Therefore by (136), (137) and the Hölder inequality, with q−1 + q̄−1 = 1 and
qm0 = mA,

E(‖X̂n‖∗
t )

m0 ≤ E
[
(‖X̂n‖∗

t )
m01{τn>t}

]
+ (

E(‖X̂n‖∗
t )

mA
)1/q(

P(τn ≤ t)
)1/q̄

(138)
≤ c5(1 + t)c5 + c5n

(2q)−1mAn−(2q̄)−1mA(1 + t)c4/q̄

≤ c6(1 + t)c6,

where the inequality q−1 − q̄−1 ≤ 0, used on the last line above, follows from
m0 < mA/2.

Next consider the policy p′. Let b1 := (2b0) ∨ 13, where b0 is the constant
from (60). Let

ϑn = inf
{
t ≥ 0 : max

i∼j
�n

ij ≥ b1

}
.

By (88), (124) and (125),

M̂n ≤ Jn ≤ c7‖�n‖ ≤ c8 max
i∼j

(�n
ij )

+.

Letting Tn = T ∧ ϑn, it follows that

|M̂n|∗Tn
≤ c8b1.

Hence by Proposition 3, we have

‖X̂n‖∗
Tn

≤ C(1 + Tn)
m(‖x‖ + ‖Ŵn‖∗

Tn
+ c8b1

)
(139)

≤ c9(1 + T )m(1 + ‖Ŵn‖∗
T ),

where c9 depends on x but not on T or n. We establish below the estimate

P(ϑn ≤ T ) ≤ c0n
1/4−mA/8(1 + T )m,(140)

where c0 and m are constants that do not depend on T or n. Repeating the argu-
ment of (138), with ϑn in place of τn, and (139) [resp., (140)] in place of (135)
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[resp., (137)], shows that E(‖X̂n‖∗
T )m0 ≤ c10(1+T )c10 , with qm0 = mA, provided

that m0 < mA(mA − 2)(5mA − 2)−1.
In what follows we prove (140). The argument is similar to that used to prove

tightness in Section 3.2, but since the estimates must be uniform in time, a more
careful analysis is required. By (62) and (139),

‖X̂n‖∗
Tn

,‖Ŷ n‖∗
Tn

,‖Ẑn‖∗
Tn

,‖�n‖∗
Tn

≤ c11(1 + T )m(1 + ‖Ŵn‖∗
T ) =: ξ(n,T ).

Clearly

P(ϑn ≤ T ) ≤ ∑
i∼j

P

(
sup
t≤T

�n
ij (t) ≥ b1

)
.

Let i ∼ j be fixed. Recall that b1/2 ≥ b0. As a result of (56)–(60),

P

(
sup
t≤T

�n
ij (t) ≥ b1

)

≤ P
(∃ s, r ∈ [�n,Tn], s ≤ r :�n

ij (s) ≤ b1/2,(141)

�n
ij (t) > 0, t ∈ [s, r],�n

ij (r) ≥ b1
)
.

Note that b1 was chosen so that 1 + maxi∼j supn �n
ij (0) < b1/2. Note also that

with �n as in (115), (119) still holds. Arguing as in (118), using the fact that for
s ≥ �n, h(t, ·) = h0, a constant function, with an appropriate constant c12 one has

|�̌n
ij (t) − �̌n

ij (s)| ≤ c12ξ(n,T )‖X̂n(t) − X̂n(s)‖ + 1.(142)

Also, �̄n − ψ∗ = n−1/2�̂n and therefore ‖�n − ψ∗‖∗
Tn

≤ n−1/2ξ(n,T ). Thus for
s, t as in (141), recalling the notation (107) for wT (x, δ), using (119),

n−1/2�n
ij (s, t) ≥ −2wc13Tn

(
Ŝn

ij , c13(t − s)
)

(143)
− c13ξ(n,T )(t − s) + c̄n1/2(t − s),

with c̄ = minµijψ
∗
ij > 0. Combining (116), (111), (142), (143) and specializing

to t = r ,

b1/2 ≤ �n
ij (t) − �n

ij (s)

≤ 2wc13Tn

(
Ŝn

ij , c13(t − s)
)

(144)
+ c13ξ(n,T )(t − s) − c̄n1/2(t − s)

+ c12ξ(n,T )‖X̂n(t) − X̂n(s)‖.
Hence

P(ϑn ≤ T ) ≤ P(�n
1) + P(�n

2),
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where

�n
1 = {∃0 ≤ s ≤ t ≤ Tn : t − s ≤ n−1/4, (144) holds},

�n
2 = {∃0 ≤ s ≤ t ≤ Tn : t − s > n−1/4, (144) holds}.

On �n
1,

b1/2 ≤ 2wc13Tn(Ŝ
n
ij , n

−1/4) + c13ξ(n,T )n−1/4 + c12ξ(n,T )‖X̂n
t − X̂n

s ‖,
where t − s ≤ n−1/4. By Lemma 9 below, recalling that b1 > 12,

P
(
2wc13T (Ŝn

ij , n
−1/4) ≥ b1/6

) ≤ c15T n1/4−mA/8.

By (65), and the bound b1 on M̂n, we have ‖X̂n(t) − X̂n(s)‖ ≤ cξ(n,T )(t − s) +
c‖Ŵn(t) − Ŵn(s)‖ + b1(t − s). Arguing again by Lemma 9, choosing β0 large
enough,

P
(
c12ξ(n,T )max{‖X̂n

t − X̂n
s ‖ : 0 ≤ t − s ≤ n−1/4, t ≤ Tn} ≥ b1/6

)
≤ cT β1n1/4−mA/8.

Also, by (98) and Lemma 8,

P
(
ξ(n,T )n−1/4 ≥ b1/6

) ≤ P(‖Ŵn‖∗
T ≥ cn1/4) ≤ c16(1 + T )mA/2n−mA/4.

Hence

P(�n
1) ≤ c15T

β1n1/4−mA/8 + c16(1 + T )mA/2n−mA/4.(145)

On �n
2,

n1/4 ≤ ‖Ŝn
ij‖∗

c13Tn
+ c13ξ(n,T )Tn + c12ξ(n,T )‖X̂n

t − X̂n
s ‖

≤ ‖Ŝn
ij‖∗

c13Tn
+ c17(1 + T )c17(1 + ‖Ŵn‖∗

T )2.

Hence by (134),

P(�n
2) ≤ c18(1 + T )c18n−mA/8.(146)

Combining (145) and (146) we obtain (140). Finally, the last statement in the
proposition follows since all estimates used in this proof do not depend on the
function hn: we have used the fact that for t ≥ �n, h(t, ·) = h0.

Part (ii). Using (65), (66) and Gronwall’s inequality [just like in the derivation
of (104)], one has for q = p′({hn}) and an appropriate constant C1 not depending
on t , n and {hn}

‖X̂n‖∗
t ≤ C1e

C1t (1 + ‖Ŵn‖∗
t + |M̂n|∗t ).

Replacing the estimate (130) with the above and reviewing the proof above of
part (i), one recovers the estimate (77) as claimed. �
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LEMMA 9. Given β0 ≥ 0 there are constants c1, β1, independent of n and T

such that

P
(
wT (Ân

i , n
−1/4) ≥ T −β0

) ≤ c1T
β1n1/4−mA/8, n ∈ N, T ≥ 1.

A similar estimate holds for Ŝn
ij in place of Ân

i .

PROOF. Fix i and suppress it from the notation. By (23),

Ân(t) − Ân(s) = n−1/2(
An(t) − An(s)

) − n−1/2λn(t − s).

Thus

P
(
wT (Ân, n−1/4) ≥ T −β0

) ≤ P
(
An(T ) > 2λnT

) + P(�n
0,+) + P(�n

0,−),(147)

where

�n
0,+ = {An(T ) ≤ 2λnT ,∃ s, t ∈ [0,2λnT ],0 ≤ t − s ≤ n−1/4,

An(t) − An(s) ≥ n1/2T −β0 + λn(t − s)},
�n

0,− = {An(T ) ≤ 2λnT ,∃ s, t ∈ [0,2λnT ],0 ≤ t − s ≤ n−1/4,

An(t) − An(s) ≤ −n1/2T −β0 + λn(t − s)}.
Recall that EǓ(k) = 1. Letting Ūn(k) = Un(k) − (λn)−1, by (6) we have
EŪn(k) = 0. Let Mn

j = ∑j
k=1 Ūn(k) and note that it is a martingale. For a real-

valued function X on Z+ let osc(X, i, j) = max{|X(k) − X(l)| :k, l ∈ [i + 1, j ]}.
By (7), using λn ≤ c2n, denoting ρ = c2n

3/4, we have

P(�n
0,+) ≤ P

(
∃ j ≤ 2λnT ,∃ r ≤ n−1/4λn,

j+n1/2T −β0+r∑
k=j+1

Un(k) ≤ (λn)−1r

)

≤ P

(
∃ j ≤ 2c2nT ,∃ r ≤ c2n

3/4,

j+n1/2+r∑
k=j+1

Ūn(k) ≤ −(λn)−1n1/2T −β0

)

≤ P
(∃ j ≤ 2c2nT ,osc(Mn, j, j + 2c2n

3/4) ≥ c−1
2 n−1/2T −β0

)
≤ P

(∃ j ∈ [0,2c2nT ] ∩ {0, ρ,2ρ, . . .},
osc(Mn, j, j + ρ) ≥ c−1

2 n−1/2T −β0/3
)

≤ 1 − (
1 − P(|Mn|∗ρ ≥ c−1

2 n−1/2T −β0/6)
)2n1/4T

.

Burkholder’s inequality shows that

E(|Mn|∗ρ)mA ≤ c3E
(
ρ|Ū(1)|2)mA/2 ≤ c4n

3mA/8(λn)−mA ≤ c5n
−5mA/8.

Hence

P(�n
0,+) ≤ 1 − (1 − c6n

−mA/8T mAβ0)2n1/4T ≤ c7n
1/4−mA/8T 1+mAβ0,
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for an appropriate constant c7. By a similar argument one shows that a similar
bound holds for P(�n

0,−). As follows from Lemma 8,

P
(
An(T ) > 2λnT

) ≤ cn−mA/2(1 + T )−mA/2.

Hence by (147),

P
(
wT (Ân, n−1/4) ≥ 1

) ≤ c1n
1/4−mA/8T 1+mAβ0

for an appropriate constant c1 independent of n and T ≥ 1. Since the Poisson
processes Sn

ij are in particular renewal processes (with finite mAth moment for

interarrival times), a similar result holds for Ŝn
ij . �

APPENDIX

Derivation of (30). By (24), (21), (23)

X̂n
i (t) = n−1/2(

Xn
i (t) − nx∗

i

)
= X̂

0,n
i + Ân

i (t) − ∑
j

Ŝn
ij

(∫ t

0
�̄n

ij (s) ds

)
− R̂n

i

(∫ t

0
Ȳ n

i (s) ds

)

+ n−1/2

[
λn

i t − ∑
j

nµn
ij

∫ t

0
�̄n

ij (s) ds − nθn
i

∫ t

0
Ȳ n

i (s) ds

]
.

Substituting (31), (19), (14) and (26) in the above, we obtain

X̂n
i (t) = X̂

0,n
i + riŴ

n
i (t) − ∑

j

µn
ij

∫ t

0
�̂n

ij (s) ds

− θn
i

∫ t

0
Ŷ n

i (s) ds + λ̂n
i t + n1/2

[
λi − ∑

j

µn
ijψ

∗
ij

]
t.

Finally, according to (14), (17) and (19), the last term above can be written as
−∑

j µ̂n
ijψ

∗
ij t . Equation (30) follows. �
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