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Abstract

In this paper we examine the issue of optimizing disk
usage and of scheduling large-scale scientific workflows
onto distributed resources where the workflows are data-
intensive, requiring large amounts of data storage, and
where the resources have limited storage resources. Our
approach is two-fold: we minimize the amount of space a
workflow requires during execution by removing data files
at runtime when they are no longer required and we sched-
ule the workflows in a way that assures that the amount of
data required and generated by the workflow fits onto the
individual resources. For a workflow used by gravitational-
wave physicists, we were able to improve the amount of
storage required by the workflow by up to 57%. We also
designed an algorithm that can not only find feasible so-
lutions for workflow task assignment to resources in disk-
space constrained environments, but can also improve the
overall workflow performance.

1. Introduction

Today, scientific analyses are frequently composed of
several application components, each often designed and
tuned by a different researcher. Recently, scientific work-
flows [1, 2] have emerged as a means of combining indi-
vidual application components into large-scale analysis by
defining the interactions between the components and the

data that they rely on. Scientific workflows provide a sys-
tematic way to capture scientific methodology by supply-
ing a detailed trace (provenance) of how the results were
obtained. Additionally, workflows are collaboratively de-
signed, assembled, validated, and analyzed. Workflows can
be shared in the same manner that data collections and com-
pute resources are shared today among communities. The
scale of the analysis and thus of the workflows often ne-
cessitates that substantial computational and data resources
be used to generate the required results. CyberInfrastruc-
ture projects such as the TeraGrid [3] and the Open Science
Grid (OSG) [4] can provide an execution platform for work-
flows, but they require a significant amount of expertise on
the part of the scientist to be able to make efficient use of
them.

Pegasus [5, 6], which stands for Planning for Execution
in Grids, is a workflow mapping engine developed and used
as part of several projects in physics [7], astronomy [8],
gravitational-wave science [9, 10], earthquake science [11],
neuroscience [12], and others. Pegasus bridges the scien-
tific domain and the execution environment by automat-
ically mapping the high-level workflow descriptions onto
distributed resources such as the TeraGrid, the Open Sci-
ence Grid, and others. Pegasus relies on the Condor DAG-
Man [13] workflow engine to launch workflow tasks and
maintain the dependencies between them. Pegasus enables
scientists to construct workflows in abstract terms without
worrying about the details of the underlying CyberInfras-
tructure or the particulars of the low-level specifications



required by the underlying middleware (Globus [14] and
Condor [15]). Pegasus is used day-to-day to map com-
plex, large-scale scientific workflows with thousands of
tasks processing terabytes of data onto the Grid. As part
of the mapping, Pegasus automatically manages data gen-
erated during workflow execution by staging them out to
user-specified locations, by registering them in data cata-
logs, and by capturing their provenance information.

When workflows are mapped onto distributed resources,
issues of performance related to workflow job scheduling
and data replica selection are most often the primary drivers
in optimizing the mapping. However, in the case of data-
intensive workflows it is possible that typical workflow
mapping techniques produce workflows that are unable to
execute due to the lack of disk space necessary for the suc-
cessful execution. In this paper we examine two issues re-
lated to this problem. The first deals with optimizing the
amount of space that a workflow (or a portion of a work-
flow) requires to run on a given resource and the second
explores a scheduling technique that takes into account the
space needed by the workflow when deciding where to run
the jobs.

The remainder of the paper is organized as follows.
The next section provides further motivation for this work
by examining a Laser Interferometer Gravitational Wave
Observatory (LIGO) [16] application which requires large
amounts of space and targets the OSG as its execution en-
vironment. This application exhibits behaviours typical in
many scientific workflows used today. Section 3 describes
an algorithm for reducing the amount of space required
by a workflow followed by showing the space usage im-
provements in the case of a small simulated LIGO appli-
cation. Sections 4 and 5 describe an algorithm and show
the results of scheduling workflows to space-constrained re-
sources. Finally we give an overview of related work and
include concluding remarks.

2. Motivation

LIGO [16] is a network of gravitational-wave detectors,
one located in Livingston, LA and two co-located in Han-
ford, WA. The observatories’ mission is to detect and mea-
sure gravitational waves predicted by general relativity—
Einstein’s theory of gravity—in which gravity is described
as due to the curvature of the fabric of time and space. One
well-studied source of gravitational waves is the inspiral
and coalescence of a pair of dense, massive astrophysical
objects such as neutron stars and black holes. Such bi-
nary inspiral signals are among the most promising sources
for LIGO [17, 18]. Gravitational waves interact extremely
weakly with matter, and the measurable effects produced in
terrestrial instruments by their passage will be miniscule.
In order to establish a confident detection or measurement,

a large amount of data needs to be acquired and analyzed
which contains the strain signal that measures the passage
of gravitational waves. LIGO applications often require on
the order of a terabyte of data to produce meaningful results.

Data from the LIGO detectors is analyzed by the
LIGO Scientific Collaboration (LSC) which possesses
many project-wide computational resources. Additional re-
sources would allow the LSC to extend its science goals.
Thus, the LSC has been reaching out toward Grid deploy-
ments such as the OSG to extend their own capabilities.
OSG supports the computations of a variety of scientific
projects ranging from high-energy physics, biology, mate-
rial science, and many others.

The shared nature of OSG resources imposes limits on
the amount of computational power and data storage avail-
able to any particular application. As mentioned before,
a scientifically meaningful run of the binary inspiral anal-
ysis requires a minimum of 221 GBytes of gravitational-
wave data and approximate 70,000 computational workflow
tasks.

The LIGO Virtual Organization (VO) is supported on
nine distinct Compute Elements managed by other insti-
tutions supporting the OSG. Each Compute Element is an
HPC or High Throughput Computer (HTC) resource, with,
on average, 258 GB of shared scratch disk space. The
shared scratch disk space is used by approximately 20 VOs
with the OSG. The LIGO VO can not reserve space on these
shared resources.

Currently Pegasus automatically generates a “cleanup
workflow” that is run after a workflow has finished and the
analysis results have been staged out to a user-specified lo-
cation. The cleanup workflow deletes all data staged-in, and
data products generated on the Compute Element. Statically
cleaning up files after all the data processing occurs, entails
significant overhead as the data processing for a single run
may require a week of wall time. Opportunities exist to
dynamically delete the input and intermediate data immedi-
ately after these data have been consumed by the jobs in the
workfow. This can substantially reduce the storage require-
ments on the Compute Element during the data analysis.

Next we describe the algorithm that determines when a
given data file is no longer needed and we use this algorithm
to add dynamic cleanup jobs to the executable workflow.

3. Improving Workflow Data Storage Use

The algorithm described in this section adds a cleanup
job for a data file when that file is no longer required
by other tasks in the workflow or when it has already
been transferred to permanent storage. The purpose of the
cleanup job is to delete the data file from a specified re-
source. Since a data file can be potentially replicated on
multiple resources (in case the compute tasks are mapped
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Figure 1. Executable workflow with 7 com-
pute jobs mapped to two resources.

to multiple resources) the decision to add cleanup jobs are
made on a per resource basis.

In order to illustrate the working of the algorithm, Fig-
ure 1 shows an executable workflow containing 7 compute
jobs {0,1,..,6} mapped to 2 resources {0,1}. The algorithm
first creates a subgraph of the executable workflow for each
execution resource used in the workflow. The subgraph of
the workflow on resource 0 contains jobs {0,1,3,4} and the
subgraph on resource 1 contains jobs {2,5,6} (shown in fig-
ure 1). The cleanup nodes added to this workflow using
the algorithm are shown in Figure 2. The cleanup job for
removing file f on resource r is denoted as C’,.

For each task in the subgraph, a list of files either re-
quired or produced by the task is constructed. For example
list of files for task 1 mapped to resource O contains files b
and c. For each file in the list, a cleanup job for that file
on that resource is created (if it does not already exist) and
the task is made parent of the cleanup job. Thus a cleanup
job, Cg, for removing file ¢ on resource 0 is created and
task 1 is made parent of this cleanup job. The cleanup jobs
for some files might already have been created as a result
of parsing previous tasks. For example, the cleanup job Cg
for removing file b on resource 0 already exists (as a result
of parsing task 0). In this case the task being parsed is added

Cleanup job for file f II
on resource r
|

I Control Dependency
¥

Figure 2. Cleanup nodes added to the exe-
cutable workflow.

as an parent of the cleanup job. Thus task 1 is added as a
parent of cleanup job Cpg. When the entire subgraph has
been traversed, there exists one cleanup job for every file
required or produced by tasks mapped to the resource.

If a file required by a task is being staged-in from another
resource, then the algorithm makes the cleanup job for the
file on the source resource a child of the stage-in job, thus
ensuring that the file is not cleaned up on the source re-
source before it is transferred to the target resource. For
example, file b required by task 2 mapped to resource 1 is
being staged-in from resource 0 using stage-in job Ipg12,
and so the cleanup job for file b on resource 0 (Cg) is made
a child of Iyp12. Finally, if a file produced by a task is be-
ing staged-out to a storage location, the cleanup job is made
a child of the stage-out job. For instance, the cleanup job
Cho for removing file h on resource 0 is made a child of the
stage-out job S, that stages out file h to permanent stor-
age. By adding the appropriate dependencies, the algorithm
makes sure that the file is cleaned up only when it is no
longer required by any task in the workflow.

The pseudocode for the algorithm is shown in Figure 3.
Its running time is O(e+n), where e is the number of edges
and n is the number of tasks in the executable workflow as-
suming that each edge represents the dependency of a par-
ticular file between two tasks. Multiple file dependencies
between two tasks are represented by multiple edges. The



For every resource r = 1..R

For every job jin Vr
For every file f required by j

add job j as parent of the cleanUpJob C/,
if file f is produced at another resource s

End if
End For
For every file f produced by j

add job j as parent of the cleanUpJob C'y,.
End For

End For
End For

Input: Executable Workflow, r = 1..R (list of resources)
Output: Executable Workflow including cleanup jobs

Let Gr=(Vr,Er) be the subgraph induced by the tasks mapped to resource r

create cleanUpJob C,. for file f for resource r if it does not already exist

Let I¢,,; = stage-in job for transferring file f from resource r to resource s for job j
create cleanUpJob C'ys for file f at resource s if it does not exist and make I;,.; parent of C'y

create cleanUpJob Cfr for file f for resource r if it does not already exist

If f is being staged out to final storage, add C'y,. as child of the stage-out job S, .

Figure 3. Algorithm for adding cleanup jobs to an executable workflow.

algorithm makes sure that the workflow cleans up the un-
necessary data files as it executes (by adding cleanup nodes
to the executable workflow) and at the end there are no files
remaining on the execution resources.

We use a simulated LIGO workflow to evaluate the per-
formance of the above algorithm using a modified Grid sim-
ulator [19]. We use a workflow (Figure 4) which is a sub-
set of those used for the current LSC binary inspiral analy-
sis [20]. This workflow consists of 166 compute tasks and
has the same topology as the inspiral analysis workflow.
We replace the inspiral compute nodes with simulated tasks
that have the same execution times and data requirements
as an inspiral analysis in order to benchmark our algorithm.
Our simulated analysis is therefore a good representation of
large scale LIGO workflows. In this case the workflow is
mapped to 4 homogeneous resources using a random map-
ping heuristic. In future, we plan to experiment using more
advanced mapping strategies. During the simulation, the
data stage-in tasks are executed as late as possible and the
cleanup jobs are executed as early as possible in order to
minimize the storage used.

Figure 5 shows the amount of storage used at the 4 re-
sources as a function of time as the workflow executes both
without and with the cleanup jobs. Without the cleanup
nodes, the storage being used at the resources is monoton-
ically increasing. However, with the cleanup jobs there is
a considerable saving in the amount of storage used during
the runtime of the workflow.

- =~ " - - -

Figure 4. The Structure of the Scaled-Down
Version of the Simulated LIGO Workflow. The
Workflow Progresses Top to Bottom. Edges
represent dependencies and vertices repre-
sent tasks.

Initially the storage used by both the approaches is the
same. This is because this initial period is mostly used for
staging-in the input data files to the resources and the ex-
ecution of the top-level tasks. When the next level tasks
finish execution ,their input files produced by the top-level
tasks are no longer required and provide the first cleanup
opportunity.

Table 1 shows the maximum amount of storage used at
the execution resources both without and with cleanup. On
average, the maximum storage used at any resource during
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Figure 5. Cleanup Results for the Simulated
LIGO Workflow on 4 Resources.

resource | no cleanup | with cleanup %
id (GB) (GB) improvement
0 137 58 57%
1 123 65 47%
2 155 91 41%
3 123 61 50%

Table 1. Maximum amount of storage used at
the resources without and with cleanup

the lifetime of the workflow is about 50 percent less when
the cleanup nodes are added to the workflow.

We also simulated the execution of a much larger LIGO
workflow containing 38954 tasks. The simulated workflow
is similar in structure to the one shown in Figure 4, with the
same number of levels but with many more tasks at each
level.

The tasks in the workflow were randomly mapped to
10 homogeneous execution resources. Figure 6 shows the
result of simulating the execution of the workflow on 10
resources both with and without the addition of cleanup
jobs. Due to the large number of tasks in the workflow and
the random assignment of tasks to resources, the amount
of space used at each resource is approximately the same.
Adding the cleanup nodes, the maximum storage used at the
resources is approximately 50 percent less than the storage
used without the cleanup nodes.

It should be noted here that while the algorithm de-
scribed in Figure 3 is able to significantly reduce the amount
of storage used for the two workflows, the number of
cleanup jobs can become greater than the number of tasks
in the executable workflow, particularly if the workflow is
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Figure 6. Cleanup Results for the Larger Sim-
ulated LIGO workflow.

being executed across multiple resources. For example, our
cleanup algorithm generated 544 cleanup tasks for the small
workflow with 166 compute tasks. In general, the number
of cleanup tasks would be O(the number of files used in
workflow times the number of resources the workflow is
mapped to). The cleanup tasks are not compute intensive
and hence are not likely to affect the runtime of the work-
flow significantly. However, the sheer number of tasks may
cause performance degradation in the workflow execution
engine. We have also implemented a heuristic for reduc-
ing the number of cleanup tasks. The rationale is to use a
single cleanup for removing multiple files instead of using
one cleanup job for each file. We were able to reduce the
number of cleanup nodes by a factor of 5-6 on synthetic
workflows as well as on the simulated LIGO workflows and
still obtain the same maximum space usage. In particular,
we were able to reduce the number of cleanup jobs for the
small workflow to 80 aggregate cleanup jobs from the 544
earlier.

4. Algorithm for Storage-Aware Workflow
Scheduling

The removal of data files when they are no longer needed
is only one step towards the efficient mapping and execu-
tion of workflows since it minimizes their overall storage
requirements. However, for efficient execution, one also
needs to guarantee the usage of resources with ample disk
space for the tasks of the workflow and to consider mapping
onto those resources in a way that minimizes the overall ex-
ecution time of the workflow. For the latter, the possible
benefits that might result from replication of data files need



While (there are unscheduled tasks) do

Select the first ready task, i.

For every resource r=1..R
EDU(i) = Input(i) + Output(i).
if (EDUG) + DU(r) ) > DS(r) )
else

End For

if (no resources available) do

else

For (each parent task p of task i) do

End For
End While

Input: Executable Workflow, r=1..R (list of compute resources), information about disk usage
Output: Mapping of Workflow tasks onto resources

Compute expected disk usage of task i on resource r,

Check the maximum disk space of resource r, DS(r), and the current disk space DU(r).
resource r must not be considered for the allocation of task i.
compute earliest finish time of task i on resource r, EFT(i,r).

mark task and repeat the above for the next ready unmarked task.

if all ready tasks are marked then halt algorithm // failure

Assign task i to the resource r that minimizes EFT of task i.
Send task p a message to the resource where task p has been allocated, say resource m.
Request p to transfer all files required by task i to resource s.

Proceed to cleanup of any unnecessary files required from resource m.
Update the current disk usage of resource m, DU(m).

Figure 7. The Storage-Aware Workflow Scheduling Algorithm.

to be weighed as well since these benefits will be obtained
at the expense of additional disk space. This section de-
scribes an algorithm which aims to schedule workflows to
storage-constrained resources and at the same time to min-
imize the overall workflow execution time. The key idea,
when allocating tasks, is to consider first disk space avail-
ability of resources and then prioritize resources depending
on performance (task execution on that resource). The in-
put of the algorithm is a workflow, the execution time esti-
mates for each compute task in the workflow, and the size
of input and output files each compute task may require and
produce. In addition, there is a set of available (compute)
resources, each with its own disk space. The execution time
estimates and input and output file sizes can be obtained
using historical information from the previous runs of the
workflow.

The algorithm consists of three phases: (1) identifica-
tion of all resources that can accommodate the data files
needed for a task; (2) allocation of the task to the resource
which can achieve the earliest finish time for the task; and
(3) cleanup of any unnecessary data files as indicated by
any cleanup jobs inserted using the algorithm in the previ-
ous section.

In the first phase, the expected disk usage (EDU) of a
task, ¢, which is ready for execution (ready means that its
parents have completed their execution) is calculated. The
value of EDU is the sum of the size of the input files of the
task, Input(i), and the size of the output files the task may
generate, Output(i). If the task is allocated to the same re-
source as all its parent tasks, then the value of Input(i) is
set to zero since the disk space for its input data has already
been accounted for under output file sizes of its parent tasks
(Output(k), where k is a parent of task i). The algorithm
then decides if task ¢ can be allocated to a resource by con-
sidering the task’s expected disk space usage, the current
disk space usage and the total disk space this resource has.
If the allocation of task ¢ does not exceed the maximal disk
space of a given resource, this resource is considered to be
a candidate for the next phase. This process is repeated for
each available resource. If no resources at all satisfy the
space requirements of any ready task, the algorithm halts
and results in a failure for allocation.

If there are resources which can accommodate the space
requirements of the task being considered, the algorithm
proceeds to the second phase. In this phase, the expected
finish time of the job (corresponding to this task) on each of



these resources is considered. The finish time is computed
as the sum of the time to transfer any data from parents and
the time to execute the job on the resource. The job is then
allocated to the resource which results in the smallest fin-
ish time. It is noted here that considering the resource that
gives the smallest finish time implicitly evaluates the bene-
fits of data replication. This is because the time to transfer
any data from the parent resources is also considered when
determining the resource that gives the smallest finish time.
Finally, once an allocation decision has been made and all
the files required by a job have been sent to the resource that
executes this job, the files (if they are no longer needed) can
be removed from the parent job’s resource.

An outline of the algorithm is given in Figure 7. Its com-
plexity is O(e + (n x m)), where e is the number of edges,
n is the number of compute tasks and m is the number of
resources available for execution. In practice, however, the
running time is insignificant, since there are only low-cost
operations involved in the algorithm.

5. Evaluation and Discussion

This section evaluates the benefits of the storage-
aware workflow scheduling algorithm against two other ap-
proaches available for workflow scheduling, which either
do not take into account individual resource characteristics
or do not perform any cleanup. The aim is to examine the
rate of failure and the overall performance of the proposed
algorithm with different combinations of network capaci-
ties, disk storage, and the number of available sites.

Same as before, we used simulation and the workflow
shown in Figure 4, containing 166 compute tasks. The total
file size required by the workflow (without cleanup) was ap-
proximately 118 GBytes. We assume that the workflow is
mapped onto homogeneous resources, which are connected
by a network which has the same speed between any two re-
sources. We considered a number of experiments, where we
chose different values for the number of compute resources
available, the network speed between them, and the disk
space available at each of the resources in order to observe
the behavior of different scheduling algorithms. Thus, we
considered a number of: 3, 6, or 9 resources available for
execution, with network speeds between these resources of:
100MB/sec, 10MB/sec or 1MB/sec, and the maximum disk
space available in each resource at the start of the execu-
tion of the workflow of: 10, 15, 20, 25, or 30 GBytes. The
maximum disk space available was the same for each re-
source in all the runs. Therefore, in total, we considered 45
(= 3 x 3 x b) different execution environments.

The results are shown in Table 2. Our proposed storage-
aware scheduling algorithm has been implemented and is
denoted in the table as ‘algl’. The other two algorithms
used in the evaluation are denoted as ‘alg2’ and ‘alg3’. Al-

Network Disk number
Speed (GB per of algl alg2 alg3
(MB/sec) | resource) | resources
100 15-30 9 1444 1739 1444
100 10 9 1444 1739 Fail
10 15-30 9 2404 4395 2404
10 10 9 2404 4395 Fail
1 15-30 9 12002 | 30956 | 12002
1 10 9 12002 | 30956 Fail
100 20-30 6 2154 2548 2154
100 15 6 2154 2548 Fail
100 10 6 2154 Fail Fail
10 20-30 6 3584 6308 3584
10 15 6 3584 6308 Fail
10 10 6 3584 Fail Fail
1 20-30 6 17889 | 43910 | 17889
1 15 6 17889 | 43910 Fail
1 10 6 17889 Fail Fail
100 25-30 3 4281 9957 Fail
100 20 3 4281 Fail Fail
100 10-15 3 Fail Fail Fail
10 30 3 6850 | 12569 Fail
10 20-25 3 6850 Fail Fail
10 10-15 3 Fail Fail Fail
1 30 3 32532 | 87738 Fail
1 20-25 3 32532 Fail Fail
1 10-15 3 Fail Fail Fail

Table 2. Simulated execution time (in sec) for
the LIGO workflow in Figure 4, for different
environment settings and different schedul-
ing algorithms.

gorithm ‘alg2’ considers data cleanup (implementing the al-
gorithm in Section 3 of this paper), but does not take into ac-
count the space available at each individual resource when
allocating tasks onto resources, nor the execution time on
the resource; it simply selects resources randomly to as-
sign tasks. This may lead to the assignment of a task to
a resource which does not have enough storage for the files
needed by a task. On the other hand, ‘alg3’ considers re-
source storage availabilities when allocating jobs and as-
signs the job to the best machine, but the algorithm does
not perform any cleanup (for data files that are no longer
needed). All three algorithms require that all the input data
files of each task are available on the resource that this task
was allocated for the task to start execution.

The results in Table 2 show the execution time of the
workflow for each different setting and algorithm. The en-
try ‘Fail’ means that the corresponding algorithm could not
finish the workflow allocation due to space constraints at
some stage during the execution. Since disk capacity pri-
marily affects the ability to run the workflow, rather than



its overall execution time, the results are grouped when the
outcome does not differ. So, for example, the first row of
the table indicates that the execution time of each algorithm
remains the same for disk capacity per resource of 15-30
GBytes.

It can be seen clearly that our proposed algorithm, ‘algl’,
can give solutions in many cases that the other two algo-
rithms fail. The makespan of these solutions is always bet-
ter than the makespan of ‘alg2’. The difference is more
profound with slower network speeds or a smaller number
of resources. For example, with 1MB/sec network speed,
the makespan of ‘algl’ can be three times faster than the
makespan using ‘alg2’.

The ‘alg3’ algorithm failed to provide solutions in many
cases in the experiments. Especially for small number of
resources and small disk space, ‘alg3’ was unable to finish
the allocation regardless of the network speed. In the case
of 6 resources, it can be seen that ‘algl’ can run in settings
with half the available disk space that ‘alg3’ needs (i.e., 10
GB/resource as opposed to 20 GB/resource), a result which
is in line with our findings (see Table 1) that the cleanup pro-
cess reduces the disk requirements of the simulated LIGO
workflow by about half.

The results clearly demonstrate that it is not sufficient
to consider only data relocation or data locality when run-
ning data-intensive workflows in space-constrained envi-
ronments.

6. Related Work

With Directed Acyclic Graphs (DAGs) being a conve-
nient model to represent workflows, the vast amount of lit-
erature on DAG scheduling is of relevance to the problem of
workflow scheduling [21]. In recent years, there has been a
revival of interest in the context of problems especially mo-
tivated by scientific workflow execution and heterogeneous
environments [22, 23, 24,25, 26,27, 28, 29]. In the majority
of these works the aim is to minimize the workflow execu-
tion time. No work has taken into account the available data
storage when selecting resources, which has proved to be a
critical factor when executing data-intensive workflows.

The most interesting work in the context of this pa-
per, which considers data placement, has been presented
in [30, 31]. Their proposed scheduling and replication algo-
rithm keeps track of the popularity of datasets and replicates
those datasets to different sites. However, the data replica-
tion approach does not work well in a storage-constrained
environment as it may increase the demand of data storage
and may lead to heavy storage requirements for individual
resources. To draw an analogy, ‘alg3’ in Section 5 is a sim-
ple version of a data replication approach; however, it did
not complete the execution in many cases because there was
not enough space for data storage.

7. Conclusions

We examined the problem of mapping scientific work-
flows onto distributed resources where the amount of disk
space at the resources is limited. We presented a two-prong
approach where we minimized the disk space footprint of
the workflow by removing data as soon as it is no longer
needed and where we scheduled the workflow tasks by
first taking into account the data requirements of the work-
flow and the data space availability at the resources. Using
our approach we were able to decrease the space needed
by a workflow used by gravitational-wave physicists by as
much as 57% as compared to the un-optimized version of
the workflow. Additionally, we presented an algorithm for
scheduling the workflow that demonstrated that taking into
account space constraints when scheduling workflow tasks
onto resources with limited disk space yields not only feasi-
ble solutions, where other algorithms may fail, but also does
not compromise the overall workflow performance.

In the future, we plan to study disk space-aware algo-
rithms further, in particular examining the tradeoffs be-
tween space and time optimizations. We also intend to
consider optimizations for scheduling the workflow onto re-
sources that can evaluate the properties of the workflow as a
whole in order to make more informed decisions about task
allocation. While the results presented in this paper were
obtained using simulations, we also plan to do experiments
on real operational Grid infrastructure such as TeraGrid [3]
in order to demonstrate the efficacy of the presented algo-
rithms.
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