Scheduling Distributed Applications:
the SimGrid Simulation Framework

Arnaud Legrand Loris Marchal

Laboratoire de I'Informatique du Parallélisme

Ecole Normale Supérieure de Lyon

Abstract— Since the advent of distributed computer
systems an active field of research has been the inves-
tigation of scheduling strategies for parallel applications.
The common approach is to employ scheduling heuris-
tics that approximate an optimal schedule. Unfortu-
nately, it is often impossible to obtain analytical results
to compare the efficacy of these heuristics. One possi-
bility is to conducts large numbers of back-to-back ex-
periments on real platforms. While this is possible on
tightly-coupled platforms, it is infeasible on modern dis-
tributed platforms (i.e. Grids) as it is labor-intensive
and does not enable repeatable results. The solution
is to resort to simulations. Simulations not only enables
repeatable results but also make it possible to explore
wide ranges of platform and application scenarios.

In this paper we present the SimGrid framework
which enables the simulation of distributed applica-
tions in distributed computing environments for the spe-
cific purpose of developing and evaluating scheduling
algorithms. This paper focuses on SimGrid v2, which
greatly improves on the first version of the software with
more realistic network models and topologies. SimGrid
v2 also enables the simulation of distributed scheduling
agents, which has become critical for current schedul-
ing research in large-scale platforms. After describing
and validating these features, we present a case study
by which we demonstrate the usefulness of SimGrid for
conducting scheduling research.

I. INTRODUCTION

Since the advent of distributed computer systems,
the question of scheduling parallel applications has gen-
erate a very large body of work. The process of schedul-
ing consists in assigning the tasks of an application to
available resources, both in time and space, with as
objective the minimization of a metric (e.g. execution
time, throughput, resource utilization, monetary cost).
Most scheduling problems are NP-hard. Even when an
optimal solution to a scheduling problem can be found
in polynomial time, it is often the case that small mod-
ifications of the underlying assumptions (e.g. addition
of non-zero network latencies) render the problem NP-
hard. As a result, a common approach is to use heuris-
tics to approximate an optimal schedule. Heuristics

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

Henri Casanova

Dept. of Computer Science and Engineering
San Diego Supercomputer Center
University of California at San Diego

have been developed by several researchers for different
classes of scheduling problems While these heuristics
have low complexity and can thus be used in practice.
it is generally not possible to quantify their efficacy an-
alytically. Consequently, scheduling heuristics must be
compared by performing many experiments in many
scenarios.

One approach is to perform experiments with real
applications on real resources. However, modern com-
puting platforms are increasingly distributed and often
span multiple administrative domains [17]. Therefore,
resource availability fluctuations makes it impossible to
conduct repeatable experiments for relatively long run-
ning applications are problematic. Another problem is
that the number of platform configurations that can
be explored is limited. As a results of these difficulties
with real experimentations, most researchers have re-
sorted to discrete-event simulation (which we will refer
to as “simulation”).

Simulation has been used extensively as a way to
evaluate and compare scheduling strategies as simu-
lation experiments are configurable, repeatable, and
generally fast. In spite of these advantages, we claim
that there are two main limitations to the simulation
methodology used for scheduling research. First, there
is no simulation standard in the scheduling research
community. Typically, researchers build “throw-away”
simulators using a variety of programming languages
and tools. This makes it very difficult for other re-
searchers to reproduce results presented in papers, and
therefore to compare results among papers. This pre-
vents scientific advances and is in contrast to other
research communities in which simulation standards
have been adopted (e.g. networking, computer archi-
tecture). This lack of standard simulation procedure
and software was somewhat justifiable when the sim-
ulation models in use were simplistic. However, tradi-
tional models and assumptions about computing plat-

YFF.F.

COMPUTER
SOCIETY

forms are no longer valid for modern platforms, which
leads us to the second limitation of simulations used
in the scheduling literature. The simplistic network
models used in most scheduling literature do not hold
for modern computing platforms in which compute re-
sources are connected over complex network topologies
with complex link contention behaviors. The assump-
tion that the behavior of the compute platform is per-
fectly predictable also needs to be revisited as modern
platforms exhibit dynamic resource availabilities. Real-
istic simulation must make it possible to simulate such
fluctuations as they cause uncertainty about the plat-
form knowledge that a scheduler can obtain.

Consequently, there is a need for a simulation frame-
work designed for conducting research on distributed
application scheduling. To be useful this framework
must meet the following objectives. It must provide
good usability so that users can focus on scheduling
research and not on simulation issues. It must make
it possible to run fast simulations because enormous
numbers of simulation experiments must be conducted
to evaluate and compare scheduling algorithms. This
framework must make it possible to build configurable,
tunable, and extensible simulations. In particular, it
should be possible to go from “traditional” simulation
models to more realistic ones without having to re-
think the implementation of the simulation. Finally,
the simulation framework must be scalable and sustain
simulations with tens of thousands of resources and ap-
plication tasks. We claim that no available simulation
framework currently matches these requirements.

To address these issues, we have designed the SiMm-
GRID simulation framework. This paper focuses on
SIMGRID v2, which greatly improves on the first ver-
sion of the software [6]. Enhancements include im-
proved and more realistic network models, means
to import platform simulation models from platform
monitoring tools, and improved APIs. Most impor-
tantly, a new software layer makes it easier to build
complex simulation by providing higher-level abstrac-
tions. In particular, it provides capabilities for simu-
lating distributed scheduling agents. This is becom-
ing critical in scheduling research on large-scale plat-
forms in which a centralized scheduler is a single point
of failure and reduces scalability. SIMGRID has al-
ready been used successfully for a number of research
works [13, 35, 2, 3, 39, 34].

II. BACKGROUND AND RELATED WORK

A large number of software tools have been devel-
oped for users to build and run simulations in many

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

application domains. In this section we review those
tools that could be employed to conduct research in
the area of distributed application scheduling.

Several software libraries and environments pro-
vide ways to construct generic discrete-event simula-
tions [31, 38, 28, 15, 18, 20]. Such generic-purpose
tools could be used for simulating parallel applications
on distributed platforms. An impediment is that the
Application Programming Interfaces (APIs) provided
by these tools are not tailored to the investigation of
scheduling algorithms. The APIs are low-level, be-
cause generic, and a user who wishes to do research
on scheduling algorithms is faced with the task of im-
plementing many higher-level abstractions. Each re-
searcher would probably build different such abstrac-
tions, thereby not solving the problem of simulation
standardization identified in Section I. Besides, re-
searchers in the area of scheduling seldom use these
low-level simulation packages in current practice.

An area in which simulation is used extensively is
networking research. In order to understand how
large telecommunication networks scale and behave
in various situations, several network simulators have
been developed. Example of such simulators include
NS [29, 1], DaSSF [23] or OMNeT++ [30]. These sim-
ulators focus on precise simulation of packets traveling
on the network, rather than on the network behavior
as it is experienced by an application. The main in-
tent is to help identifying limitations of network pro-
tocols and help developing improvements. Although
it is possible to perform application-level simulation
with certain of these tools (e.g. with DaSSF [23] or
OMNeT++ [30]), it is labor-intensive and a number
of capabilities need to be implemented from scratch.
Furthermore, due to their highly detailed simulation
models, most network simulators induce long simu-
lation times (e.g. they implement the TCP stack).
This issue is exacerbated when one wishes to simu-
late “background” network traffic generated by other
users/applications as one may then need to simulate
thousands of connections at the packet-level. This is
prohibitive for conducting the large numbers of simu-
lation experiments mandated by scheduling research.

Another limitation of network simulators for our pur-
pose is that they do not simulate the entire platform.
Even though the network is a fundamental component
of a distributed computing platform, other components
are required for investigating scheduling algorithms:
compute resources and application processes. A num-
ber of projects address the simulation of a complete
distributed computing platforms for studying paral-

YFF.F.

COMPUTER
SOCIETY

lel applications. We review here three representative
projects: LAPSE, MicroGrid, and Albatross.

LAPSE (Large Application Parallel Simulation En-
vironment) [10] is a tool designed to simulate parallel
applications. The main goal is to make it possible to
test the scalability of parallel application while running
them only on a few processors. A focus of the project
is precise network event simulation. The application
code is instrumented so as to account for the number
of instructions executed between two consecutive com-
munication. LAPSE was originally targeted to the In-
tel Paragon architecture, but allows the simulation of
other platforms. One important limitation is that the
network model cannot capture contention and cannot
easily model background network traffic.

Microgrid [33], a more recent project, targets the
simulation of Grid environments. It follows somewhat
the same philosophy as LAPSE in that it emulates
large, complex, virtual platforms on small, physical
platforms. The software virtualizes every resource of
a Grid platform (memory, CPU, and network). Just
as in LAPSE, this virtualization is achieved by trap-
ping every relevant library call. In Microgrid’s first
version, the network was simulated through a modified
version of the NS [1] simulator but the latest version
uses DaSSF [23]. At the moment, Microgrid does not
allow the simulation of variable, background network
traffic.

The Albatross [21] project focuses on platforms that
consist of multiple clusters or MPPs that are connected
by wide-area networks (WANSs). In the context of this
project, work based on the Panda library [8] addresses
the simulation of these platforms. Unlike LAPSE and
Microgrid, the network is not simulated but emulated
by slowing down LAN links to model WAN links. This
makes it straightforward to dynamically modify net-
work behavior during a simulation. A limitation is that
heterogeneity is modeled only for WAN links.

In these three projects, portions of the application
are effectively executed on an emulated architecture.
The rationale is that emulation is realistic because it
can capture more detailed and idiosyncratic behaviors.
However, a consequence is that the ratio of simulated
time to simulation time can be very large. This is pro-
hibitive for comparing scheduling algorithms in tens of
thousands of scenarios.

We conclude that no existing simulation framework
satisfies the requirements that we have identified in Sec-
tion I. In the rest of this paper we describe our work
on SIMGRID which addresses these requirements. The
Bricks simulator [37] is related to SIMGRID but targets

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

the simulation of client-server applications and follows
a different approach for implementing the simulation,
which we discuss further in Section IV-C. Note that the
GridSim [4] project is very related to our work in scope
and intent. GridSim is is based on SimJava [20] and im-
plements a number of abstractions to enable simulation
of Grid environments. At the time this article is being
written, we were unable to successfully install and test
the GridSim software distribution, hence preventing us
from comparing it with our work.

III. SiMGRID v2.0
A. History

The first version of SIMGRID was a discrete-event
simulation toolkit. It provided a set of core abstrac-
tions and functionalities that can be used to easily build
simulators for specific application domains and/or com-
puting environment topologies. This allows the simula-
tion of arbitrary performance fluctuations such as the
ones observable for real resources due to background
load. However, this first version lacked a number of
abstractions (e.g. routing, scheduling agents). With
SIMGRID v2 we have added a new software layer to
provide high-level abstractions and the software thus
provides two interfaces:

SG : The original low-level toolkit presented in [6],
by which the simulation is done in terms of explicitly
scheduling tasks on some resources;

MSG : A simulator built using SG. This layer imple-
ments realistic simulations based on the foundational
SG and is more application-oriented. Simulations are
built in terms of communicating agents.

In all that follows, we focus on the MSG interface as
we anticipate it will become the standard interface for
the vast majority of SIMGRID users. Also, “SIMGRID”
denotes version 2 of the software throughout.

B. Fundamental Concepts

SIMGRID implements the following core abstractions:

Agent — An agent is an entity which makes scheduling
decisions. An agent is defined by a code, private data,
and the location at which it executes.

Location — A location (or host) is the place in the sim-
ulated topology at which an agent runs. Thus it is de-
fined by a computational resource, a number of mail-
boxes that enable communication with other agents,
and private data that can be only accessed by agents
at the same location.

Task — A task is an activity of the simulated applica-
tion and for now can be a computation and/or a data

YFF.F.

COMPUTER
SOCIETY

transfer. A task is defined by an amount of computing,
a data size, and private data.

Path — The low-level, original SG layer in the software
did not provide any abstraction for message routing
among locations. This made the task of the user ardu-
ous when simulating complex platforms. SIMGRID now
provides a routing abstraction so that the user (and the
scheduler) can rely of a logical topology of the platform
rather than targeting the physical topology directly. A
path is an agglomeration of communication resources
representing a set of physical network links. Locations
are then interconnected through paths. The simulated
application cannot access links directly (in the same
way as a real application does not choose which routers
its packets go through).

Channel — Communication between agents is embed-
ded in the channel abstraction. A channel embodies
the concept of communication ports opened by agents
at locations.

With these abstractions, scheduling algorithms with
SIMGRID should always be described in terms of agents
that run at locations and interact by sending, receiv-
ing, and processing simulated application tasks. Agent
does not have direct access to paths but can send a
task to another location using a channel. In fact, a
location may have many mailboxes and a channel is
then simply a mailbox number. So sending a task to
a location using a channel amounts to transferring the
task on a particular path, depending on the emitter
location and on the destination, and to put it in a par-
ticular mailbox. We claim that these abstractions are
sufficient to conduct scheduling research while isolat-
ing the user from details of the simulation that are not
directly relevant to scheduling algorithms.

C. Building a Simulation with SIMGRID

A SIMGRID program always follows the following
steps:
1. Definition of the code of each agent (i.e. modeling
the application): the modeling of the agents is done
with functions such as MSG_task_get, MSG_task_put
or MSG_task_execute to handle tasks. Even if these
functions are blocking, they are sufficient to encode
any programming style (synchronous or asynchronous
message passing, remote procedure call or process mi-
gration) since it is possible to create dynamically some
new agents. Simple examples of resource selection and
monitoring are provided but it is entirely free and has
to be implemented by the user;
2. Creation of resources (i.e. modeling of the physi-
cal platform). It consist in defining hosts, links, and

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

a routing table that specifies paths. It can be done
either by hand using functions like MSG_host_create,
MSG_link_create, MSG_routing_table_set,...or au-
tomatically by reading a platform description file (see
section IV-B);

3. Creation and allocation of agents to locations (i.e.
the deployment of the application). It is done with the
function MSG_process_create.

4. Simulation can then be started with the function
MSG_main. Different levels of traces can be enabled
with the MSG_set_verbosity function.

The SIMGRID software distribution provides documen-
tation as well as a number of tutorial examples that
illustrate these four steps.

IV. PLATFORM MODELING WITH SIMGRID

SIMGRID provides several mechanisms for construct-
ing simulated computing platforms. In this section we
review the basic resource models, describe how realis-
tic platform topologies can be generated, and describe
how SIMGRID simulates bandwidth-sharing.

A. Basic Resource Models

Low-level resource objects in SIMGRID are hosts and
links. A host is described by its computational speed
relative to that of a reference host, and by its CPU
availability (a value between 0 and 100%). A link is
described by a latency and a bandwidth. By default,
SIMGRID uses the traditional models of task execution
time equal to the computational cost divided by the
computational speed, and of data transfer time equal
to the latency plus the data size divided by the band-
width. Note that the units of these values are not spec-
ified. Instead the user must ensure coherence between
units of data size and bandwidth, and of task computa-
tional cost and computational speed. All values char-
acterizing SIMGRID resources can be either fixed, of
varying according to a trace (a series of time-stamped
values).

An important question is that of resource sharing
among tasks of the simulation (including computa-
tional tasks and data transfer tasks). SIMGRID imple-
ments three different sharing modes: (i) First In First
Out (FIFO); (ii) First Ready First Out (FRFO); (iii)
Shared. In the FIFO mode tasks on a resource exe-
cute in the order they were scheduled on that resource.
In the FRFO mode, tasks that are ready for execu-
tion execute first. If there is a tie, then the task that
was scheduled first executes first. In the Shared mode
all ready tasks execute concurrently on a resource and
SIMGRID allows the user to implement fair sharing or

YFF.F.

COMPUTER
SOCIETY

proportional sharing with task priorities. These differ-
ent modes provide some flexibility and make it possible
to implement simulations with traditional assumptions
from the scheduling literature.

The strength of SIMGRID is that the user can easily
use the API to tune the behavior of the simulated en-
vironment. For instance, moving from resources with
constant performance characteristics to resources with
characteristics that vary according to traces can be
achieve by just modifying a few parameters of the re-
source creation API functions.

The current trend in high-performance computing
is to move to Grid platforms in which resources are
interconnected over complex wide-area networks. For
applications to benefit from such platforms it is neces-
sary that novel scheduling approaches be designed that
can accommodate complex networks. As a result, it is
necessary to provide simulation tools that can capture
the behavior of these networks and which can in turn
enable new scheduling research. The default resource
models in SIMGRID described above do not fully en-
able the transition from traditional parallel computing
to Grid computing scheduling research.

We identify two challenges that must be addressed
to enable this transition. First, it must be possible
for users to construct large simulated platforms that
are representative of existing platforms. Second, it
must be possible to simulate the complex network con-
tention behaviors of applications executing on these
platforms. In the next two section we describe how
SIMGRID addresses these two challenges and makes it
easy for users to build realistic simulation models for
studying scheduling on Grid platforms.

B. Modeling Grid Topologies

Most simulations reported in the scheduling litera-
ture have used either simple topology models (e.g. a
ring or a star), representations of a real topology (e.g.
the Arpanet), or randomly-generated flat topologies
using a variation of Waxman’s edge-probability func-
tion. Recently, complex randomly-generated hierarchi-
cal models have been used to better approximate the
Internet’s hierarchical structure. Many studies on In-
ternet topologies are available [11, 5, 14, 27]. Using
snapshots of the Internet, simple power-laws of the In-
ternet topology have been derived, leading to several
public-domain generators of “representative” Internet
topologies [19, 26, 36].

While these generators constitutes an excellent start-
ing point for building a realistic simulation model, they
lack several critical elements for our purpose. Typi-

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

cally, there is no information concerning the traffic (e.g.
the available bandwidth throughout time) and no in-
formation on the characteristics of network links. Com-
mon techniques involve the use of simulated sources of
traffic using random laws which are seldom validated
against real traffic. Finally, several parameters have to
be hand-tuned to obtain realistic platforms. In sum-
mary, the “art” of building a realistic platform model
requires both significant experience and good intuition.

The alternative is, rather than simulating traffic
sources, to collect traffic traces from a real environ-
ment. These traces can then be replayed for conducting
repeatable simulation experiments, which is needed for
the investigation of scheduling algorithms. To enable
this, SIMGRID makes it possible for users to automat-
ically tmport platform descriptions obtained with Ef-
fective Network View (ENV) [32]. ENV is a tool that
discovers a variety of characteristics of a Grid testbed
including the network and its effective topology. The
obtained topology can be used to deploy NWS sensors
and record real-time traces which are directly usable in
SIMGRID. The combination of ENV and NWS makes
it possible to instantiate platform models which repre-
sent realistic platforms both in terms of topology and in
terms of traffic, as demonstrated in [22]. These models
can then be used as is, or as basis for generating re-
alistic randomized collections of models for conducting
large numbers of simulations.

C. Bandwidth Sharing Models in SIMGRID

Modeling realistic topologies is a critical step forward
to enable scheduling research for emerging computing
platforms such as the Grid. An important question is
then that of simulating contention among data trans-
fers on these topologies. The default resource mod-
els in SIMGRID as described in Section IV-A do not
enable realistic simulation of network traffic on topolo-
gies in which paths between hosts use multiple network
links. Indeed, the basic models implement a simple
store-and-forward scheme, without any notion of pack-
ets or network pipelining. Furthermore, if the Shared
resource sharing mode is used for network links, it is not
clear how to assign priorities among competing trans-
fers (it is well-known that bandwidth-sharing among
TCP flows is not fair [9, 16, 25]).

A possibility is to simulate the network at the packet-
level. While this is fully implemented in simulators like
NS [29], it leads to prohibitive simulation times for our
purpose. A simplified version of packet-level network
simulation is is available in SIMGRID as well as in the
Bricks simulator [37]. The user can trade-off speed ver-

YFF.F.

COMPUTER
SOCIETY

sus accuracy by tuning the packet size (large packet
sizes are cheaper to simulate). This approach has two
limitations. First, the actual network protocols are not
modeled. Second, the trade-off between accuracy and
simulation speed is difficult to quantify.

Another approach is to use macroscopic models of
bandwidth-sharing and to implement these models di-
rectly in the simulation, thereby drastically shortening
simulation times. Such models are typically derived
via an analogy between network connections, or flows,
and fluids in pipes while ignoring the packet granu-
larity [24]. Several authors have proposed theoreti-
cal models for TCP traffic [9, 16, 25]. Building on
these results, SIMGRID implements an efficient algo-
rithm for simulating TCP flows competing over multi-
path routes. Due to lack of space we only give here the
main ideas (see 7] for details). The algorithm first con-
siders all links and determines bottleneck links for some
flows. These flows are assigned bandwidth on these
links inversely proportionally to their round-trip times.
These flows consume this bandwidth end-to-end, and
thus our algorithm reduces the bandwidth capacity of
links traversed by all these flows in the network ac-
cordingly. This process is repeated until bandwidth
has been allocated to all flows. We have proved the cor-
rectness of our algorithm and validated our model with
the Network Simulator (NS) [29]. Bandwidth-sharing
is completely transparent to the SIMGRID user.

SIMGRID makes it possible to define two types of
links for the purpose of bandwidth-sharing: links on
which the bandwidth is shared among flows of the sim-
ulated applications, and links on which it is not. On
these latter links it is assumed that all competing flows
of the simulation application achieve the same, con-
stant data-transfer rate. The rationale is that, over a
congested backbone, the contention due to interaction
between flows of the simulated application is negligible
compared to that of the many (thousands) flows going
through the backbone. SIMGRID computes bandwidth-
sharing for topologies that contain both types of links.
This makes it possible to build Grid models as sites
interconnected by backbone links while each site has
its own internal topology (see [7] for a discussion). We
conjecture that such a model is simple enough to be
instantiated easily while it capture the relevant net-
work behaviors necessary for conducting meaningful
Grid computing scheduling research. We are validat-
ing this conjecture in current work and will report on
results in upcoming papers.

A key strength of SIMGRID is that its simple API
makes it possible to use a wide variety of platform mod-

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

the—doors canaria moby
114.44 MFlops

34.33 Mflops 34.33 Mflops
—_

[)
e > e
l | |
] I routeur_backbone routeur_giga
-~ 0.59 MB/s /
— =~ 4.04 MB/s

domain ens-lyon.fr I
Illllllllllrllllllllllllllrllllllllll
domain popc.private

L]
. ~ — sci0 Py
myri0 popcO
48.49 Mflops 22.15 Mflops scil
myril myri2

48.49 Mflops 48.49 Mflops

-1-""-- T

7 nodes: each 48.49 Mflops
Fig. 1. Realistic platform imported from ENV.

els interchangeably without impacting the implementa-
tion of the scheduling algorithms. It is possible for ev-
ery user to pick and choose which model is appropriate
for his/her research and to increase the model com-
plexity when warranted. The conjectural Grid model
that we briefly described above is just one of the many
possible models that can be implemented with Sim-
GRID. The question of which Grid model is “right” is
not answered here, but SIMGRID provides framework
for making progress towards an answer.

V. CASE STUDY

To better illustrate the capabilities and ease-of-use
of SIMGRID we present a small case study. The target
application is a high-throughput master-worker appli-
cation such as the ones being deployed in many global
computing systems [12]. A master dispatches input
data for computational tasks to p workers one at a
time. The question we wish to answer is: “Given n
independent, identical tasks that must be distributed
to workers, how should the master fulfill requests for
work from the workers?”

This is a classical scheduling problem and a straight-
forward strategy is to employ a greedy algorithm by
which the master allocates tasks on a first-come first
serve basis. We denote this strategy as Work Queue.
Another approach is to maintain a “pool” of pending
requests, p/2 such requests in our example, and to dis-
patch work according to priorities. Several criteria for
prioritization are possible and in this case study we
implemented the following three:

o Computing power: tasks are sent with higher pri-
ority to workers with faster computing speed;

YFF.F.

COMPUTER
SOCIETY

1600

‘Work‘Queu‘e r—
L Computing power —— |
1400 Bandwidth ——
° 1200 F Throughput
=
£ 1000 f
E
3 800
5
= 600
g
o 400
200
0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
Task number
Fig. 2. Comparison of various strategies of independent task
allocation.

o Bandwidth: tasks are sent with higher priority to
workers with faster bandwidth;

o Throughput: if ¢; (resp. w;) denotes the time
needed by the i-th worker to process (resp. receive
data for) a task, then the ratio w;/(¢; + w;) represent
the throughput for that worker. Tasks are sent with
higher priority to workers with higher throughput.

Using SIMGRID, it took under two hours to set up
the entire simulation framework from scratch with the
Work Queue scheduling algorithm and for a platform
imported from ENV (shown in Figure 1). Twenty
additional minutes were needed to add simulation of
bandwidth and processing power measurements for the
workers and to use these measurements for implement-
ing the three aforementioned priority-based heuristics.
In these simulations, the request data size was set to
100KB and the request computational cost (on the
master) was set to 0.1 MFlops. The task data size
was set to 10MB and the task computational cost was
set to 1000 MFlops. Network and processor speeds are
shown in Figure 1.

A number of experiments can be conducted with the
simulator and Figure 2 plots the performance of the
four scheduling strategies on the simulated platform in
terms of overall execution time versus task number (i.e.
the time at which the z*® task completes). These sim-
ulations ran in less than four minutes on a PIII-733 .
The somewhat surprising result is that it is most effi-
cient to prioritize workers according to bandwidth only.
In other terms, the master should delegate work as fast
as possible. Note that this type of result has been ob-
tained in previous work [2] and that this case study
simply confirms this phenomenon on a more realistic
platforms.

This case study and other SIMGRID examples were
used for educational purposes in a course on Parallel

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 |IEEE

Algorithms and Architectures at the Ecole Normale
Supérieure de Lyon during the Fall 2002 semester.

VI. CONCLUSION

In this paper we have recognized two important lim-
itations of simulations used for scheduling research:
(i) there is no simulation standard; (ii) simulation
methodologies are not appropriate for modern dis-
tributed computing platforms such as the Grid. We
have presented SIMGRID v2 which enables scalable,
configurable, extensible, and fast simulations for in-
vestigating novel scheduling techniques for these plat-
forms. SIMGRID has already been used successfully
in [13, 35, 2, 3, 39, 34] and the SIMGRID user com-
munity is currently undergoing a dramatic expansion.
SIMGRID is also used for educational purposes in a
course on Parallel Algorithms and Architectures at the
Ecole Normale Supérieure de Lyon.

Future directions include mechanisms to import
Brite [26] topologies and associate them link charac-
teristics in an ENV [32] fashion for SIMGRID. We are
also creating a repository where SIMGRID users can
download pre-generated topologies.

A difficult question is that of simulation validation
and few projects have addressed it successfully. The
rationale is that a simulation implements a model that
makes it possible to explore and reason about a sys-
tems. Whether the model actually reflects reality is
somewhat of a different question. SIMGRID implements
a number of models that have been widely accepted in
the scheduling research community. Nevertheless, we
have also designed and implemented models that we be-
lieve are more realistic and for which we have conducted
initial validation experiments (see Section IV-C).

All details, publications, and software for SIMGRID
are available at: http://grail.sdsc.edu/simgrid.

REFERENCES

1] BaJjaj, S., Bresrau, L., EstrIN, D., FaLL, K., FLOYD,
S., HALDAR, P., HANDLEY, M., HELMY, A., HEIDEMANN,
J., Huang, P., KumMAR, S., McCANNE, S., REJAIE, R.,
SHARMA, P.; VArRaDHAN, K., XU, Y., Yu, H., AND ZAP-
PALA, D. Improving simulation for network research. Tech.
Rep. 99-702, University of Southern California, 1999.

2] BeauMONT, O., CARTER, L., FERRANTE, J., LEGRAND,
A., AND ROBERT, Y. Bandwidth-centric allocation of in-
dependent tasks on heterogeneous platforms. In Inter-
national Parallel and Distributed Processing Symposium
IPDPS’2002 (2002), IEEE Computer Society Press. Ex-
tended version available as LIP Research Report 2001-25.

[3] BreauMONT, O., LEGRAND, A., AND ROBERT, Y. Optimal
algorithms for scheduling divisible workloads on heteroge-
neous systems. Tech. Rep. 2002-36, LIP, Oct. 2002.

YFF.F.

COMPUTER
SOCIETY

(10]

11]

[12]
13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)

Buvyya, R., AND MURSHED, M. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource Manage-
ment and Scheduling for Grid Computing. The Journal of
Concurrency and Computation: Practice and Ezxperience
(CCPE) (2002). to appear.

CALVERT, K. L., DOAR, M. B., AND ZEGURA, E. W. Mod-
eling internet topology. IEEE Communications Magazine
35, 6 (June 1997), 160-163.

CasaNova, H. Simgrid: A Toolkit for the Simulation of
Application Scheduling. In Proceedings of the IEEE Inter-
national Symposium on Cluster Computing and the Grid
(CCGrid’01) (May 2001), pp. 430-437.

CASANOVA, H., AND MARCHAL, L. A network model for
simulation of grid application. Tech. Rep. 2002-40, LIP,
Oct. 2002.

CHEN, Y., WINSLETT, M., Kvo, S., CHO, Y., SUBRAMA-
NIAM, M., AND SEAMONS, K. E. Performance modeling for
the Panda array 1/O library. In Proceedings of Supercom-
puting '96 (1996), ACM Press and IEEE Computer Society
Press.

Cuiu, D. N. Some observations on fairness of bandwidth
sharing. Tech. rep., Sun Microsystems, 1999.

DickeNs, P. M., HEIDELBERGER, P., AND NicoL, D. M. A
distributed memory LAPSE: Parallel simulation of message-
passing programs. In Proceedings of the 8th Workshop on
Parallel and Distributed Simulation (PADS °94) (1994).

DOAR, M. A better model for generating test networks. In
Proceedings of Globecom ’96 (Nov. 1996).

ENTROPIA. URL: http://www.entropia.com.

FAERMAN, M., BIRNBAUM, A., CasaNova, H., AND
BERMAN, F. Resource Allocation for Steerable Parallel Pa-
rameter Searches. In Proceedings of the Grid Computing
Workshop (Nov. 2002).

Favoutsos, M., FaLoutsos, P., aND FaLouTsos, C. On
power-law relationships of the internet topology. In SIG-
COMM (1999), pp. 251-262.

FisHwick, P. SimPack: Getting Started With Simulation
Programming In C And C++. In Proceedings of the Winter
Simulation Conference (1992), pp. 154-162.

Froyp, S., AND FALL, K. Promoting the use of end-to-end
congestion control in the Internet. [IEEE/ACM Transac-
tions on Networking 7, 4 (1999), 458-472.

FOSTER, 1., AND KESSELMAN, C., Eds. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann
Publishers, Inc., San Francisco, USA, 1999.

GoMES, F., FRANKS, S., UNGER, B., X1A0, Z., CLEARY, J.,
AND COVINGTON, A. SimKit: A High Performance Logical
Process Simulation Class Library in C++. In Proceedings of
the 1995 Winter Simulation Conference (December 1995),
pp. 706-713.

GT-ITM: Georgia Tech Internetwork Topology Models.
http://www.cc.gatech.edu/projects/gtitm/.

HoweLL, F.; AND R., M. SimJava: A Discrete Event Simu-
lation Package for Java with Applications in Computer Sys-
tems Modelling. In Proceedings of the First International
Conference on Web-based Modelling and Simulation (Jan
1998).

KieLMANN, T., BaL, H. E., MAASSEN, J., VAN NIEUW-
POORT, R., EYRAUD, L., HOFMAN, R., AND VERSTOEP, K.
Programming environments for high-performance grid com-
puting: the albatross project. Future Generation Computer
Systems (2002).

0--7695-1919-9/03 $17.00 © 2003 IEEE

(28]

[29]
[30]

31]

32]

[38]

[39]

LEGRAND, A., AND LEROUGE, J. Metasimgrid : Towards
realistic scheduling simulation of distributed applications.
Tech. Rep. 2002-28, LIP, July 2002.

Liu, J., AND NicoL, D. M. DaSSF 3.1 User’s Manual, Apr.
2001.

MASSOULIE, L., AND ROBERTS, J. Bandwidth sharing: Ob-
jectives and algorithms. In INFOCOM (3) (1999), pp. 1395~
1403.

MATHIS, M., SEMKE, J., AND MAHDAVI, J. The macroscopic
behavior of the TCP congestion avoidance algorithm. Com-
puter Communications Review 27, 3 (1997).

MEDINA, A., LAKHINA, A., MAaTTA, I., AND BYERS, J.
BRITE: Universal topology generation from a user’s per-
spective. Tech. Rep. 2001-003, Computer science depart-
ment Boston University, 1 2001.

MEDINA, A., MATTA, I., AND BYERS, J. On the origin
of power laws in internet topologies. Tech. Rep. 2000-
004, Computer Science Departement, Boston University, 20,
2000.

MILLER, A., NAIR, R., AND ZHANG, Z. JSIM: A Java-Based
Simulation and Animation Environment. In Proceedings of
the 30th Annual Simulation Symposium (ANSS’97) (April
1997), pp. 31-42.

The network simulator - ns-2.
http://www.isi.edu/nsnam/ns.
Objective modular network testbed.

http://www.hit.bme.hu/phd/vargaa/omnetpp.htm.

SCHWETMAN, H. CSIM: A C-based, process oriented simu-
lation language. In Proceedings of the 1986 Winter Simu-
lation Conference (December 1986), pp. 387-396.

SHAO, G., BERMAN, F., AND WoLsKI, R. Using effective net-
work views to promote distributed application performance.
In International Conference on Parallel and Distributed
Processing Techniques and Applications (June 1999).

Song, H. J., Liu, X., JAKOBSEN, D., BHAGWAN, R., ZHANG,
X., TAURA, K., AND CHIEN, A. A. The microgrid: a scien-
tific tool for modeling computational grids. In Supercom-
puting (2000).

Su, A., BERMAN, F., AND CASANOVA, H. Performance Mod-
eling for Entity-level Simulations. In Proceedings of the Par-
allel and Distributed Scientific and Engineering Computing
with Applications Workshop, Nice, France (April 2003). to
appear.

Su, A., Casanova, H., AND BErMAN, F. Utilizing DAG
Scheduling Algorithms for Entity-Level Simulations. In Pro-
ceedings of the 10th Symposium on High Performance Com-
puting 2002 (HPC’02) (Apr. 2002).

Suvci, J. W. Inet-3.0: Internet topology generator. Tech.
Rep. 456-02, Computer science department University of
Michigan, 2002.

TAKEFUSA, A., MATSUOKA, S., NAKADA, H., ApaA, K., AND
NaGasHIMA, U. Overview of a Performance Evaluation Sys-
tem for Global Computing Scheduling Algorithms. In In
Proceedings of the 8th IEEE International Symposium on
High Performance Distributed Computing (HPDC-8) (Au-
gust 1999), pp. 97-104.

ToH, S. SimC: A C Function Library for Discrete Simula-
tion. In Proceedings of the 11th Workshop in Parallel and
Distributed Simulation (January 1993), pp. 18-20.

YANG, Y., AND Casanova, H. UMR: A Multi-Round Algo-
rithm for Scheduling Divisible Workloads. In Proceedings of
the International Parallel and Distributed Processing Sym-
posium (IPDPS’03), Nice, France (April 2003). to appear.

YFF.F.

COMPUTER
SOCIETY

