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Abstract

Many applications in scientific and engineering domains are structured
as large numbers of independent tasks with low granularity. These appli-
cations are thus amenable to straightforward parallelization, typically in
master-worker fashion, provided that efficient scheduling strategies are
available. Such applications have been called divisible loads because a
scheduler may divide the computation among worker processes arbitrar-
ily, both in terms of number of tasks and of task sizes. Divisible load
scheduling has been an active area of research for the last twenty years. A
vast literature offers results and scheduling algorithms for various mod-
els of the underlying distributed computing platform. Broad surveys are
available that report on accomplishments in the field. By contrast, in
this paper we propose a unified theoretical perspective that synthesizes
previously published results, several novel results, and open questions,
in a view to foster novel divisible load scheduling research. Specifically,
we discuss both one-round and multi-round algorithms, and we restrict
our scope to the popular star and tree network topologies, which we
study with both linear and affine cost models for communication and
computation.

Keywords: parallel computing, scheduling, divisible load

Résumé

De nombreuses applications scientifiques se découpent naturellement en
un grand nombre de tâches indépendantes avec une faible granularité.
Ces applications se parallélisent naturellement à l’aide d’une approche
mâıtre/esclave. De telles applications relèvent du modèle des tâches di-
visibles car un ordonnanceur peut diviser les calculs sur les différents
processeurs disponibles, à la fois en terme de nombre de tâches mais
également en terme de taille des tâches. L’ordonnancement de tâches
divisibles a été un domaine de recherche actif durant les vingts dernières
années. On trouve donc dans la littérature de nombreux résultats et al-
gorithmes d’ordonnancement pour différents modèles de plates-formes.
À la différence des états de l’art déja existant sur le sujet, ce rapport
propose une nouvelle approche permettant d’unifier et de retrouver les
résultats de la littérature, de proposer de nouveaux résultats et d’ouvrir
de nouveaux problèmes. Plus précisément, nous présentons les distribu-
tions en une seule tournée et en plusieurs tournées et nous restreignons
aux topologies populaires en étoile et en arborescence, que nous nous
étudions à l’aide de coût de calculs et de communications linéaires puis
affines.

Mots-clés: calcul parallèle, ordonnancement, tâches divisibles
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1 Introduction

Scheduling the tasks of a parallel application on the resources of a distributed computing
platform efficiently is critical for achieving high performance. The scheduling problem has
been studied for a variety of application models, such as the well-known directed acyclic task
graph model for which many scheduling heuristics have been developed [39]. Another popular
application model is that of independent tasks with no task synchronizations and no inter-
task communications. Applications conforming to this admittedly simple model arise in most
fields of science and engineering. A possible model for independent tasks is one for which
the number of tasks and the task sizes, i.e. their computational costs, are set in advance. In
this case, the scheduling problem is akin to bin-packing and a number of heuristics have been
proposed in the literature (see [18, 30] for surveys). Another flavor of the independent tasks
model is one in which the number of tasks and the task sizes can be chosen arbitrarily. This
corresponds to the case when the application consists of an amount of computation, or load,
that can be divided into any number of independent pieces. This corresponds to a perfectly
parallel job: any sub-task can itself be processed in parallel, and on any number of workers.
In practice, this model is an approximation of an application that consists of large numbers of
identical, low-granularity computations. This divisible load model has been widely studied in
the last several years, and Divisible Load Theory (DLT) has been popularized by the landmark
book written in 1996 by Bharadwaj, Ghose, Mani and Robertazzi [10].

DLT provides a practical framework for the mapping on independent tasks onto hetero-
geneous platforms, and has been applied to a large spectrum of scientific problems, includ-
ing Kalman filtering [40], image processing [32], video and multimedia broadcasting [1, 2],
database searching [19, 13], and the processing of large distributed files [41]. These applica-
tions are amenable to the simple master-worker programming model and can thus be easily
implemented and deployed on computing platforms ranging from small commodity clusters
to computational grids [24]. From a theoretical standpoint, the success of the divisible load
model is mostly due to its analytical tractability. Optimal algorithms and closed-form formu-
las exist for the simplest instances of the divisible load problem. This is in sharp contrast with
the theory of task graph scheduling, which abounds in NP-completeness theorems [25, 23] and
in inapproximability results [18, 3].

There exists a vast literature on DLT. In addition to the landmark book [10], two intro-
ductory surveys have been published recently [11, 37]. Furthermore, a special issue of the
Cluster Computing journal is entirely devoted to divisible load scheduling [26], and a Web
page collecting DLT-related papers is maintained [36]. Consequently, the goal of this paper
is not to present yet another survey of DLT theory and its various applications. Instead,
we focus on relevant theoretical aspects: we aim at synthesizing some important results for
realistic platform models. We give a new presentation of several previously published results,
and we add a number of new contributions. The material in this paper provides the level of
detail and, more importantly, the unifying perspective that are necessary for fostering new
research in the field.

We limit our discussion star-shaped and tree-shaped logical network topologies, because
they often represent the solution of choice to implement master-worker computations. Note
that the star network encompasses the case of a bus, which is a homogeneous star network.
The extended version of this paper [6] reviews works that study other network topologies. We
consider two types of model for communication and computation: linear or affine in the data
size. In most contexts, this is more accurate than the fixed cost model, which assumes that
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Figure 1: Heterogeneous star graph, with the linear
cost model.
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Figure 2: Heterogeneous tree graph.

the time to communicate a message is independent of the message size. Works considering
fixed cost models are reviewed in [6].

The rest of this paper is organized as follows. In Section 2, we detail our platform and cost
models. We also introduce the algorithmic techniques that have been proposed to schedule
divisible loads: one-round and multi-round algorithms. One-round algorithms are described in
detail in Section 3 and multi-round algorithms in Section 4. Finally, we conclude in Section 6.

2 Framework

2.1 Target architectures and cost models

We consider either star-graphs or tree-graphs, and either linear or affine costs, which leads to
four different platform combinations.

As illustrated in Figure 1, a star network S = {P0, P1, P2, . . . , Pp} is composed of a master
P0 and of p workers Pi, 1 ≤ i ≤ p. There is a communication link from the master P0 to each
worker Pq. In the linear cost model, each worker Pq has a (relative) computing power wq:
it takes X.wq time units to execute X units of load on worker Pq. Similarly, it takes X.gq

time unites to send X units of load from P0 to Pq. Without loss of generality we assume that
the master has no processing capability (otherwise, add a fictitious extra worker paying no
communication cost to simulate computation at the master).

In the affine cost model, a latency is added to computation and communication costs: it
takes Wq + X.wq time units to execute X units of load on worker Pq, and Gq + X.gq time
units to send X units of load from P0 to Pq. It is acknowledged that these latencies make the
model more realistic.

For communications, the one-port model is used: the master can only communicate with a
single worker at a given time-step. We assume that communications can overlap computations
on the workers: a worker can compute a load fraction while receiving the data necessary for
the execution of the next load fraction. This corresponds to workers equipped with a front end
as in [10]. A bus network is a star network such that all communication links have the same
characteristics: gi = g and Gi = G for each worker Pi, 1 ≤ i ≤ p.

Essentially, the same one-port model, with overlap of communication with computation,
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is used for tree-graph networks. A tree-graph T = {P0, P1, P2, . . . , Pp} (see Figure 2) simply
is an arborescence rooted at the master P0. We still call the other resources workers, even
though non-leaf workers have other workers (their children in the tree) to which they can
delegate work. In this model, it is assumed that a worker in the tree can simultaneously
perform some computation, receive data from its parent, and communicate to at most one of
its children (sending previously received data).

2.2 Algorithmic strategies: one-round versus multi-round

We denote by Wtotal the total load to be executed. The key assumption of DLT is that this load
is perfectly divisible into an arbitrary number of pieces, or chunks. The master can distribute
the chunks to the workers in a single round (also called “installment” in [10]), so that there
is a single communication between the master and each worker. The problem is to determine
the size of these chunks and the order in which they are sent to the workers. We review
one-round algorithms in Section 3. For large loads, the single round approach is not efficient
due to the idle time incurred by the last workers to receive chunks. To reduce the makespan,
i.e. the total execution time, the master can send chunks to the workers in multiple rounds
so that communication is pipelined and overlapped with computation. Additional questions
in this case are: “How many rounds should be scheduled?”; and “What are the best chunk
sizes at each round?” We discuss multi-round algorithms in Section 4.

3 One-round algorithms

For one-round algorithms, the first problem is to determine in which order the chunks should
be sent to the different workers (or equivalently to sort the workers), given that the master
can perform only one communication at a time. Once the communication order has been
determined, the second problem is to decide how much work should be allocated to each
worker Pi: each Pi receives αi units of load, where

∑p
i=1 αi = Wtotal. The final objective is

to minimize the makespan, i.e. the total execution time.

α1g1 α2g2 αpgp
Communication

medium

α1w1P1

α2w2P2

αpwpPp

TfT1 T2 Tp

...

Figure 3: Pattern of a solution for dispatching a divisible load, using a star network and the
linear cost model. All workers complete execution at the same time-step Tf .
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3.1 Star network and linear cost model

This is the simplest platform combination, denoted as StarLinear. Let αi denote the number
of units of load sent to worker Pi, such that

∑p
i=1 αi = Wtotal. Figure 3 depicts the execution,

where Ti denotes idle time of Pi, i.e. the time elapsed before Pi begins its processing. The
goal is to minimize the total execution time, Tf = max1≤i≤p(Ti + αiwi), according to the
linear model defined in Section 2. In Figure 3, all the workers participate in the computation,
and they all finish computing at the same time (i.e. Ti + αiwi = Tf , ∀i). This is a general
result:

Proposition 1. In any optimal solution of the StarLinear problem, all workers participate
in the computation, and they all finish computing simultaneously.

Note that Proposition 1 has been proved for the case of a bus in [10]. To the best of our
knowledge, this is a new result for the case of a heterogeneous star network.

Proof. We first prove that in an optimal solution all workers participate to the computation.
Then, we prove that in any optimal solution, all workers finish computing simultaneously.

Lemma 1. In any optimal solution, all workers participate in the computation.

Proof. Suppose that there exists an optimal solution where at least one worker is kept
fully idle. In this case, at least one of the αi, 1 ≤ i ≤ P , is zero. Let us denote by k the
largest index such that αk = 0.

Case k < n. Consider a solution of StarLinear, where the ordering

P1, . . . , Pk−1, Pk+1, . . . , Pn, Pk

is used. This solution is clearly optimal since Pk did not process any load in the
initial solution. By construction, αn 6= 0, so that the communication medium is
not used during at least the last αnwn time units. Therefore, it would be possible
to process at least αnwn

gk+wk
> 0 additional units of load with worker Pk, which

contradicts the assumption that the original solution was optimal.

Case k = n. Consider the original solution of StarLinear, i.e. with the ordering
P1, . . . , Pn.Moreover, let k′ be the largest index such that αk′ 6= 0. By construction,
the communication medium is not used during at least the last αk′wk′ > 0 time
units. Thus, as previously, it would be possible to process at least

αk′wk′

gn+wn
> 0

additional units of load with worker Pn, which leads to a similar contradiction.

Therefore, in any optimal solution, all workers participate in the computation.

It is worth pointing out that the above property does not hold true if we consider solutions
in which the communication ordering is fixed a priori. For instance, consider a platform
comprising two workers: P1 (with g1 = 4 and w1 = 1) and P2 (with g2 = 1 and w2 = 1).
If the first chunk has to be sent to P1 and the second chunk to P2, the optimal number of
units of load that can be processed within 10 time units is 5, and P1 is kept fully idle in this
solution. On the other hand, if the communication ordering is not fixed, then 6 units of load
can be performed within 10 time units (5 units of load are sent to P2, and then 1 to P1).
In the optimal solution, both workers perform some computation, and both workers finish
computing at the same time, which is stated in the following lemma.
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Lemma 2. In the optimal schedule, all workers finish computing simultaneously.

Proof. Consider an optimal solution. All the αi’s have strictly positive values (Lemma 1).
Consider the following linear program:

Maximize
∑

βi,
subject to
{

LB(i) ∀i, βi ≥ 0

UB(i) ∀i,
∑i

k=1 βkgk + βiwi ≤ T

The αi’s satisfy the set of constraints above, and from any set of βi’s satisfying the set
of inequalities, we can build a valid solution of the StarLinear problem that process
exactly

∑

βi units of load. Therefore, if we denote by (β1, . . . , βn) an optimal solution
of the linear program, then

∑

βi =
∑

αi.

It is known that one of the extremal solutions S1 of the linear program is one of the
convex polyhedron P induced by the inequalities [38, chapter 11]: this means that in
the solution S1, at least n inequalities among the 2n are equalities. Since we know that
for any optimal solution of the StarLinear problem, all the βi’s are strictly positive
(Lemma 1), then this vertex is the solution of the following (full rank) linear system

∀i,
i
∑

k=1

βkgk + βiwi = T.

Thus, we derive that there is an optimal solution where all workers finish their work at
the same time.

Let us denote by S2 = (α1, . . . , αn) another optimal solution, with S1 6= S2. As already
pointed out, S2 belongs to the polyhedron P. Now, consider the following function f :

f :

{

R → R
n

x 7→ S1 + x(S2 − S1)

By construction, we know that
∑

βi =
∑

αi. Thus, with the notation f(x) = (γ1(x), . . . , γn(x)):

∀i, γi(x) = βi + x(αi − βi),

and therefore
∀x,

∑

γi(x) =
∑

βi =
∑

αi.

Therefore, all the points f(x) that belong to P are extremal solutions of the linear
program.

Since P is a convex polyhedron and both S1 and S2 belong to P, then ∀0 ≤ x ≤
1, f(x) ∈ P. Let us denote by x0 the largest value of x ≥ 1 such that f(x) still belongs
to P: at least one constraint of the linear program is an equality in f(x0), and this
constraint is not satisfied for x > x0. Could this constraint be one of the UB(i)’s? the
answer is no, because otherwise this constraint would be an equality along the whole line
(S2f(x0)), and would remain an equality for x > x0. Hence, the constraint of interest
is one of the LB(i)’s. In other terms, there exists an index i such that γi(x0) = 0. This
is a contradiction since we have proved that the γi’s correspond to an optimal solution
of the StarLinear problem. Therefore S1 = S2, the optimal solution is unique, and in
this solution, all workers finish computing simultaneously.
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Figure 4: Comparison of the two possible orderings.

Altogether, this concludes the proof of Proposition 1.

To be able to characterize the optimal solution, there remains to determine the best
ordering for the master P0 to send work to the workers:

Proposition 2. An optimal ordering for the StarLinear problem is obtained by serving the
workers in the ordering of non decreasing link capacities gi.

To the best of our knowledge, Proposition 2 is a new result. Although closed-from solutions
to the heterogeneous StarLinear problem are given in [15], they require that (i) the optimal
ordering be known, and (ii) that all workers finish computing simultaneously. Note that we
have shown that this latter property indeed holds for the optimal schedule (as characterized
by Proposition 2).

Proof. The proof is based on the comparison of the amount of work that is performed by the
first two workers, and then proceeds by induction. To simplify notations, assume that P1 and
P2 have been selected as the first two workers. There are two possible orderings, as illustrated
in Figure 4. For each ordering, we determine the total number of units of load α1+α2 that are
processed in T time-units, and the total occupation time, t, of the communication medium
during this time interval. We denote with upper-script (A) (resp. (B)) all the quantities
related to the first (resp. second) ordering.

Let us first determine the different quantities α
(A)
1 , α

(A)
2 , and t(A) for the upper ordering

in Figure 4:

• From the equality α
(A)
1 (g1 + w1) = T , we get:

α
(A)
1 =

T

g1 + w1
. (1)

• Using the equality α
(A)
1 g1 + α

(A)
2 (g2 + w2) = T , we obtain (from equation (1)):

α
(A)
2 =

T

g2 + w2
−

Tg1

(g1 + w1)(g2 + w2)
. (2)
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Therefore, the overall number of processed units of load is equal to (by (1) and (2)):

α
(A)
1 + α

(A)
2 =

T

g1 + w1
+

T

g2 + w2
−

Tg1

(g1 + w1)(g2 + w2)
. (3)

and the overall occupation time of the network medium is equal to (using the previous equal-

ities and t(A) = α
(A)
1 g1 + α

(A)
2 g2):

t(A) =
Tg1

g1 + w1
+

Tg2

g2 + w2
−

Tg1g2

(g1 + w1)(g2 + w2)
. (4)

A similar expression can be obtained for scenario (B) and we derive that:

(α
(A)
1 + α

(A)
2 ) − (α

(B)
1 + α

(B)
2 ) =

T (g2 − g1)

(g1 + w1)(g2 + w2)
, (5)

and
t(A) = t(B). (6)

Thanks to these expressions, we know that the occupation of the communication medium
does not depend on the communication ordering. Therefore, we only need to consider the
number of processed units of load in both situations. Equation (5) indicates that one should
send chunks to the worker with the smallest gi first.

We now proceed to the general case. Suppose that the workers are already sorted so that
g1 ≤ g2 ≤ . . . ≤ gp. Consider an optimal ordering of the communications σ, where chunks are
sent successively to Pσ(1), Pσ(2), . . . Pσ(p). Let us assume that there exists an index i such that
σ(i) > σ(i + 1). Furthermore, let us consider the smallest such index if multiple ones exist.
Consider now the following ordering:

Pσ(1), . . . , Pσ(i−1), Pσ(i+1), Pσ(i), Pσ(i+2), . . . Pσ(p).

Then, Pσ(1), . . . , Pσ(i−1), Pσ(i+2), . . . Pσ(p) perform exactly the same number of units of load,
since the exchange does not affect the overall communication time, but together, Pσ(i+1) and

Pσ(i) perform
T (gσ(i)−gσ(i+1))

(gσ(i+1)+wσ(i+1))(gσ(i)+wσ(i))
more units of load, where T denotes the remaining

time after communications to Pσ(1), . . . , Pσ(i−1). Therefore, the initial ordering σ is not op-
timal, which is a contradiction. Therefore index i does not exist, which proves that in an
optimal ordering the workers are sorted by non-decreasing values of the gi’s.

According to Proposition 2, we now re-order the workers so that g1 ≤ g2 ≤ . . . ≤ gp. The
following linear program aims at computing the optimal distribution of the load:

Minimize Tf ,
subject to














(1) αi ≥ 0 1 ≤ i ≤ p
(2)

∑p
i=1 αi = Wtotal

(3) α1g1 + α1w1 ≤ Tf (first communication)

(4)
∑i

j=1 αjgj + αiwi ≤ Tf (i-th communication)

Theorem 1. The optimal solution for the StarLinear problem is given by the solution of
the linear program above.



8 O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang

⇔
w0

w1 w2 wi wp

w−1

g0g0

g1

g2 gi

gp

Figure 5: Replacing a single-level tree by an equivalent node.

Proof. Direct consequence of Propositions 1 and 2. Note that inequalities (3) and (4) will
be in fact equalities in the solution of the linear program, so that we can easily derive a
closed-form expression for Tf .

We point out that this is linear programming with rational numbers, hence of polynomial
complexity. Finally, we consider the variant where the master is capable of processing chunks
(with computing power w0) while communicating to one of its children. It is easy to see that
the master is kept busy at all times (otherwise more units of load could be processed). The
optimal solution is therefore given by the following linear program (where g1 ≤ g2 ≤ . . . ≤ gp

as before):

Minimize Tf ,
subject to






















(1) αi ≥ 0 0 ≤ i ≤ p
(2)

∑p
i=0 αi = Wtotal

(3) α0w0 ≤ Tf (computation of the master)
(4) α1g1 + α1w1 ≤ Tf (first communication)

(5)
∑i

j=1 αjgj + αiwi ≤ Tf (i-th communication)

3.2 Tree network and linear cost model

All the results in the previous section can be extended to a tree-shaped network. There is
however a key difference with the beginning of Section 3.1: each worker now is capable of
computing and communicating to one of its children simultaneously. However, because of
the one-round hypothesis, no overlap can occur with the incoming communication from the
node’s parent.

We use a recursive approach, which replaces any set of leaves and their parent by a single
worker of equivalent computing power:

Lemma 3. A single-level tree network with parent P0 (with input link of capacity g0 and
cycle-time w0) and p children Pi, 1 ≤ i ≤ p (with input link of capacity gi and cycle-time wi),
where g1 ≤ g2 ≤ . . . ≤ gp, is equivalent to a single node with same input link capacity g0 and
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cycle-time w−1 = 1/W (see Figure 5), where W is the solution to the linear program:

Maximize W,
subject to






















(1) αi ≥ 0 0 ≤ i ≤ p
(2)

∑p
i=0 αi = W

(3) Wg0 + α0w0 ≤ 1
(4) Wg0 + α1g1 + α1w1 ≤ 1

(5) Wg0 +
∑i

j=1 αjgj + αiwi ≤ 1

Proof. Here, instead of minimizing the time Tf required to execute load W , we aim at deter-
mining the maximum amount of work W that can be processed in one time-unit. Obviously,
after the end of the incoming communication, the parent should be constantly computing .
We know that all children (i) participate in the computation and (ii) terminate execution
at the same-time. Finally, the optimal ordering for the children is given by Proposition 2.
This completes the proof. Note that inequalities (3), (4) and (5) will be in fact equalities in
the solution of the linear program, so that we can easily derive a closed-form expression for
w−1 = 1/W .

Lemma 3 provides a constructive way of solving the problem for a general tree. First we
traverse it from bottom to top, replacing each single-level tree by the equivalent node. We
do this until there remains a single star. We solve the problem for the star, using the results
of Section 3.1. Then we traverse the tree from top to bottom, and undo each transformation
in the reverse ordering. Going back to a reduced node, we know which amount of time it
is working. Knowing the ordering, we know which amount of time each of the children is
working. If one of this children is a leaf node, we have computed its load. If it is a reduced
node, we apply the transformation recursively.

Instead of this pair of tree traversals, we could write down the linear program for the
whole tree: when it receives something, a given node knows exactly what to do: compute
itself all the remaining time, and feed its children in decreasing bandwidth order. However,
the size of the linear program would grow proportionally to the size of the tree, hence the
recursive solution is to be preferred.

3.3 Star network and affine cost model

To the best of our knowledge, the complexity of the StarAffine problem is open. The
main difficulty arises from resource selection: contrarily to the linear case where all workers
participate in the optimal solution, it seems difficult to decide which resources to use when
latencies are introduced. However, the second property proved in Proposition 1, namely
simultaneous termination, still holds true:

Proposition 3. In an optimal solution of the StarAffine problem, all participating workers
finish computing at the same time.

Proof. The proof is very similar to the StarLinear case. Details can be found in Appendix A.

Proposition 4. If the load is large enough, then for any optimal solution (i) all workers
participate and (ii) chunks must be sent in the order of non decreasing link capacities gi.
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Proof. Consider a valid solution of the StarAffine problem with time bound T . Suppose,
without loss of generality, that ασ(1) units of load are sent to Pσ(1), then ασ(2) to Pσ(2), . . . and
finally ασ(k) to Pk, where S = {Pσ(1), . . . , Pσ(k)} is the set of workers that participate to the
computation. Here, σ represents the communication ordering and is a one-to-one mapping
from (1 . . . k] to [1 . . . n]. Moreover, let ntask denote the optimal number of units of load that
can be processed using this set of workers and this ordering.

• Consider the following instance of the StarLinear problem, with k workers P ′
σ(1), . . . , P

′
σ(k),

where ∀i, G′
i = 0,W ′

i = 0, g′i = gi, w
′
i = wi and T ′ = T . Since all computation and

communication latencies have been taken out, the optimal number of units of load ntask
1

processed by this instance is larger than the number of units of load ntask processed by
the initial platform. From Theorem 1, the value of ntask

1 is given by a formula

ntask
1 = f(S, σ) · T,

where f(S, σ) is either derived from the linear program, or explicitly given by a closed
form expression in [15]. What matters here is that the value of ntask

1 is proportional to
T .

• Consider now the following instance of the StarLinear problem, with k workers
P ′

σ(1), . . . , P
′
σ(k), where ∀i, G′

i = 0,W ′
i = 0, g′i = gi, w

′
i = wi and T ′ = T−

∑

i∈S(Gi+Wi).

Clearly, the optimal number of units of load ntask
2 processed by this instance of the

StarLinear problem is lower than ntask, since it consists in adding all the communi-
cation and computation latencies before the beginning of the processing. Moreover, as
previously ntask

2 is given by the formula

ntask
2 = f(S, σ)(T −

∑

i∈S

(Gi + Wi)).

Therefore, we have

f(S, σ)

(

1 −

∑

i∈S(Gi + Wi)

T

)

≤
ntask

T
≤ f(S, σ).

Hence, when T becomes arbitrarily large, then the throughput of the platform, ntask

T
, becomes

arbitrarily close to f(S, σ), i.e. the optimal throughput if there were no communication and
computation latencies. Moreover, we have proved that if there are no latencies, then f(S, σ)
is maximal when S is the set of all the workers, and when σ satisfies

gj > gi =⇒ σ(i) > σ(j).

Therefore, when T is sufficiently large, then all the workers should be used and the chunks
should be sent to workers in the ordering of non decreasing link capacities gi. In this case, if
g1 ≤ . . . ≤ gn, then the following linear system provides an asymptotically optimal solution

∀i,

i
∑

k=1

(Gk + gkαk) + Wi + giwi = T.

This solution is optimal if all gi are different. Determining the best way to break ties among
workers having the same bandwidth is an open question.
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In the general case, we do not know whether there exists a polynomial-time algorithm
to solve the StarAffine problem. However, we can provide the solution (with potentially
exponential cost) as follows: we start from the mixed linear programming formulation of the
problem proposed by Drozdowski [19], and we extend it to include resource selection. In the
following program, yj is a boolean variable that equals 1 if Pj participates in the solution,
and xi,j is a boolean variable that equals 1 if Pj is chosen for the i-th communication from
the master:

Minimize Tf ,
subject to


































(1) αi ≥ 0 1 ≤ i ≤ p (2)
∑p

i=1 αi = Wtotal (3) yj ∈ {0, 1} 1 ≤ j ≤ p
(4) xi,j ∈ {0, 1} 1 ≤ i, j ≤ p (5)

∑p
i=1 xi,j = yj 1 ≤ j ≤ p

(6)
∑p

j=1 xi,j ≤ 1 1 ≤ i ≤ p (7) αj ≤ Wyj 1 ≤ j ≤ p

(8)
∑p

j=1 x1,j(Gj + αjgj + Wj + αjwj) ≤ Tf (first communication)

(9)
∑i−1

k=1

∑p
j=1 xk,j(Gj + αjgj) +

∑p
j=1 xi,j(Gj + αjgj + Wj + αjwj) ≤ Tf

2 ≤ i ≤ p (i-th communication)

Equation (5) implies that Pj is involved in exactly one communication if yj = 1, and in
no communication otherwise. Equation (6) states that at most one worker is activated for
the i-th communication; if

∑p
j=1 xi,j = 0, the i-th communication disappears. Equation (7)

states that no work is given to non participating workers (those for which yj = 0) but is
automatically fulfilled by participating ones. Equation (8) is a particular case of equation (9),
which expresses that the worker selected for the i-th communication (where i = 1 in equa-
tion (8) and i ≥ 2 in equation (9)) must wait for the previous communications to complete
before starting its own communication and computation, and that all this quantity is a lower
bound of the makespan. Contrarily to the formulation of Drozdowski [19], this mixed linear
program always has a solution, even if a strict subset of the resources are participating. We
state this result formally:

Proposition 5. The optimal solution for the StarAffine problem is given by the solution
of the mixed linear program above (with potentially exponential cost).

3.4 Tree network and affine cost model

This is the most difficult platform/model combination, and very few results are known. How-
ever, we point out that Proposition 4 can be extended to arbitrary tree networks: when T
becomes arbitrarily large, latencies become negligible, and an asymptotically optimal behav-
ior is obtained by involving all resources and by having each parent communicate with its
children in order of non decreasing link capacities.

4 Multi-round algorithms

Under the one-port communication model described in Section 2.1, one-round algorithms lead
to poor utilization of the workers. As seen in Figure 3, worker Pi remains idle from time 0
to time Ti. To alleviate this problem, multi-round algorithms have been proposed. These
algorithms dispatch the load in multiple rounds of work allocation and thus improve overlap
of communication with computation. By comparison with one-round algorithms, work on
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Medium

Communication

round 0

αpM−1

P1

P2

P3

P4

round 1

α0

αj

round Mp-1

Figure 6: Pattern of a solution for dispatching the load of a divisible job, using a bus network
(gi = g), in multiple rounds, for 4 workers. All 4 workers complete execution at the same
time. Chunk sizes increase during each of the first M − 1 rounds and decrease during the last
round.

multi-round algorithms has been scarce. The two main questions that must be answered
are: (i) what should the chunk sizes be at each round? and (ii) how many rounds should be
used? The majority of works on multi-round algorithms assume that the number of rounds is
fixed and we review corresponding results and open questions in Section 4.1. In Section 4.2
we describe recent work that attempts at answering question (ii). Finally, we deal with
asymptotic results in Section 4.3, which of course are of particular interest when the total
load Wtotal is very large.

4.1 Fixed number of rounds, homogeneous star network, affine Costs

As for one-round algorithms, a key question is that of the order in which chunks should be
sent to the workers. However, to the best of our knowledge, all previous work on multi-round
algorithms with fixed number of rounds only offer solution for homogeneous platforms, in
which case worker ordering is not an issue. Given a fixed number of rounds M , the load is
divided into p × M chunks, each corresponding to a αj (j = 0, . . . , pM − 1) units of load

such that
∑pM−1

j=0 αj = Wtotal. The objective is to determine the αj values that minimize the
overall makespan.

Intuitively, the chunk size should be small in the first rounds, so as to start all workers as
early as possible and thus maximize overlap of communication with computation. It has be
shown that the chunk sizes should then increase to optimize the usage of the total available
bandwidth of the network and to amortize the potential overhead associated with each chunk.
In the last round, chunk sizes should be decreasing so that all workers finish computing at
the same time (following the same principle as in Section 3). Such a schedule is depicted in
Figure 6 for four workers.

Bharadwaj et al. were the first to address this problem with the multi-installment schedul-
ing algorithm described in [9]. They reduce the problem of finding an optimal schedule to
that of finding a schedule that has essentially the following three properties: (i) there is no
idle time between consecutive communications on the bus; (ii) there is no idle time between
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consecutive computation on each worker; and (iii) all workers should finish computing at
the same time. These properties guarantee that the network and compute resources are at
maximum utilization.

In [9], the authors consider only linear costs for both communication and computation.
The three conditions above make it possible to obtain a recursion on the αj series. This recur-
sion must then be solved to obtain a close form expression for the chunk sizes. One method
to solve the recursion is to use generating functions and the rational expansion theorem [28].

We recently extended the multi-installment approach to account for affine costs [43]. This
was achieved by rewriting the chunk size recursion in a way that is more amenable to the use of
generating functions when fixed latencies are incurred for communications and computations.
Since it is more general but similar in spirit, we only present the affine case here.

For technical reasons, as in [9], we number the chunks in the reverse order in which they
are allocated to workers: the last chunk is numbered 0 and the first chunk is numbered Mp−1.
Instead of developing a recursion on the αj series directly, we define γj = αj ∗ w, i.e. the
time to compute a chunk if size αj on a worker not including the W latency. Recall that in
this section we only consider homogeneous platforms and thus wq = w, Gq = G, gq = g, and
Gq = G for all workers q = 1, . . . , p. The time to communicate a chunk of size αj to a worker
is G + γi/R, where R is the computation-communication ratio of the platform: w/g. We can
now write the recursion on the γj series:

∀ j ≥ P W + γj = (γj−1 + γj−2 + γj−3 + · · · + γj−N )/R + P × G (7)

∀ 0 ≤ j < P W + γj = (γj−1 + γj−2 + γj−3 + · · · + γj−N )/R + j × G + γ0 (8)

∀ j < 0 γj = 0 (9)

Eq. 7 ensures that there is no idle time on the bus and at each worker in the first M − 1
rounds. More specifically, Eq. 7 states that a worker must compute a chunk in exactly the
time required for all the next P chunks to be communicated, including the G latencies. This
equation is valid only for j ≥ P . For j < P , i.e. the last round, the recursion must be
modified to ensure that all workers finish computing at the same time, which is expressed in
Eq. 8. Finally, Eq. 9 ensures that the two previous equations are correct by taking care of
out-of-range αj terms. This recursion describes an infinite αj series, and the solution to the
scheduling problems is given by the first pM values.

As in [9], we use generating functions as they are convenient tools for solving complex
recursions elegantly. Let G(x) be the generating function for the series γj , that is G(x) =
∑∞

j=0 γjx
j . Multiplying Eq. 7 and Eq. 8, manipulating the indices, and summing the two

gives:

G(x) =
(γ0 − P × G)(1 − xP ) + (P × G − W ) + G(x(1−xP−1)

1−x
− (P − 1)xP )

(1 − x) − x(1 − xP )/R
.

The rational expansion method [28] can then be used to determine the coefficients of the above
polynomial fraction, given the roots of the denominator polynomial, Q(x). The values of the
γj series, and thus of the αj series, follow directly. If Q(x) has only roots of degree 1 then the
simple rational expansion theorem can be used directly. Otherwise the more complex general
rational expansion theorem must be used. In [43] we show that if R 6= P then Q(x) has only
roots of degree one. If R = P , then the only root of degree higher than 1 is root x = 1 and it
is of degree 2, which makes the application of the general theorem straightforward. Finally,
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Figure 7: Pattern of a solution for dispatching the load of a divisible job, using a bus network
(gi = g), in multiple uniform rounds, for 4 workers. All workers complete execution at the
same time. Chunk sizes a fixed within the first M − 1 rounds but increase from round to
round. Chunk sizes decrease during the last round.

the value of γ0 can be computed by writing that
∑Mp−1

j=0 γj = Wtotal ×w. All technical details
on the above derivations are available in a technical report [43]. We have thus obtained a
closed-form expression for optimal multi-installment schedule on a homogeneous star network
with affine costs.

4.2 Computed number of rounds, star network, affine costs

The work presented in the previous section assumes that the number of rounds is fixed and
provided as input to the scheduling algorithm. In the case of linear costs, the authors in [10]
recognize that infinitely small chunks would lead to an optimal multi-round schedule, which
implies an infinite number of rounds. When considering more realistic affine costs there is
a clear trade-off. While using more rounds leads to better overlap of communication with
computation, using fewer rounds reduces the overhead due to the fixed latencies. Therefore,
an key question is: What is the optimal number of rounds for multi-round scheduling on a
star network with affine costs?

While this question is still open for the recursion described in Section 4.1, our work in [45]
proposes a scheduling algorithm, Uniform Multi-Round (UMR), that uses a restriction on
the chunk size: all chunks sent to workers during a round are identical. This restriction
limits the ability to overlap communication with computation, but makes it possible to derive
an optimal number of rounds due to a simpler recursion on chunk sizes. Furthermore, this
approach is applicable to both homogeneous and heterogeneous platforms. We only describe
here the algorithm in the homogeneous case. The heterogeneous case is similar but involves
more technical derivations and we refer the reader to [42] for all details.

As seen in Figure 7, chunks of identical size are sent out to workers within each round.
Because chunks are uniform it is not possible to obtain a schedule with no idle time in which
each worker finishes receiving a chunk of load right when it can start executing it. Note in
Figure 7 that workers can have received a chunk entirely while not having finished to compute
the previous chunk. The condition that a worker finishes receiving a chunk right when it can
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start computing is only enforced for the worker Pp, which is also seen in the figure. Finally, the
uniform round restriction is removed for the last round. As in the multi-installment approach
described in Section 4.1, chunks of decreasing sizes are sent to workers in the last round so
that they can all finish computing at the same time.

Let αj be the chunk size at round j, which is used for all workers during that round. We
derive a recursion on the chunk size. To maximize bandwidth utilization, the master must
finish sending work for round j + 1 to all workers right when worker P finishes computing for
round j. This can be written as

W + αjw = P (G + αj+1g), (10)

which reduces to

αj =
( g

Pw

)j

(α0 − γ) + γ, (11)

where γ = 1
w−Pg

× (PG − W ). The case in which w − Pg = 0 leads to a simpler recursion
and we do not consider it here for the sake of brevity.

Given this recursion on the chunk sizes, it is possible to express the scheduling problem
as a constrained minimization problem. The total makespan, M, is:

M(M,α0) =
Wtotal

P
+ MW +

1

2
× P (G + gα0),

where the first term is the time for worker P to perform its computations, the second term
the overhead incurred for each of these computations, and the third term is the time for the
master to dispatch all the chunks during the first round. Note that the 1

2 factor in the above
equation is due to the last round during which UMR does not keep chunk sizes uniform so
that all workers finish computing at the same time (see [45] for details).

Since all chunks must satisfy the constraint that they add up to the entire load, one can
write that:

G(M,α0) =

M−1
∑

j=0

Pαj − Wtotal = 0. (12)

The scheduling problem can now be expressed as the following constrained optimization prob-
lem: minimize M(M,α0) subject to G(M,α0) = 0. An analytical solution using the Lagrange
Multiplier method [7] is given in [45], which leads to a single equation for the optimal number
of round, M∗. This equation cannot be solved analytically but is eminently amenable to a
numerical solution, e.g. using a bisection method.

The UMR algorithm is a heuristic and has been evaluated in simulation for a large number
of scenarios [42]. In particular, a comparison of UMR with the multi-installment algorithm
discussed in Section 4.1 demonstrates the following. The uniform chunk restriction minimally
degrades performance compared to multi-installment when latencies are small (i.e. when costs
are close to being linear). However, as soon as latencies become significant, this performance
degradation is offset by the fact that an optimal number of rounds can be computed and UMR
outperforms multi-installment consistently. Finally, note that a major benefit of UMR is that,
unlike multi-installment, it is applicable to heterogeneous platforms. In this case the question
of worker ordering arises and UMR uses the same criterion as that given in Proposition 2:
workers are ordered by non-decreasing link capacities.
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4.3 Asymptotic performance, star network, affine costs

In this section, we derive asymptotically optimal algorithms for the multi-round distribution
of divisible loads. As in previous sections, we use a star network with affine costs.

The sketch of the algorithm that we propose is as follows: the overall processing time T
is divided into k regular periods of duration Tp (hence T = kTp, but k (and Tp) are yet to
be determined). During a period of duration Tp, the master sends αi units of load to worker
Pi. It may well be the case that not all the workers are involved in the computation. Let
I ⊂ {1, . . . , p} represent the subset of indices of participating workers. For all i ∈ I, the αi’s
must satisfy the following inequality, stating that communication resources are not exceeded:

∑

i∈I

(Gi + αigi) ≤ Tp. (13)

Since the workers can overlap communications and processing, the following inequalities also
hold true:

∀i ∈ I, Wi + αiwi ≤ Tp.

Let us denote by αi

Tp
the average number of units of load that worker Pi processes during one

time unit, then the system becomes











∀i ∈ I,
αi

Tp

wi ≤ 1 − Wi

Tp
(no overlap)

∑

i∈I

αi

Tp

gi ≤ 1 −
P

i∈I
Gi

Tp
(1-port model)

,

and our aim is to maximize the overall number of units of load processed during one time
unit, i.e. n =

∑

i∈I
αi

Tp
.

Let us consider the following linear program:

Maximize
∑p

i=1
αi

Tp
,

subject to


















∀1 ≤ i ≤ p,
αi

Tp

wi ≤ 1 −

∑p
i=1 Gi + Wi

Tp
p
∑

i=1

αi

Tp

gi ≤ 1 −

∑p
i=1 Gi + Wi

Tp

This linear program is more constrained than the previous one, since 1−Wi

Tp
and 1−

P

i∈I
Gi

Tp

have been replaced by 1 −
Pp

i=1 Gi+Wi

Tp
in p inequalities. The linear program can be solved

using a package similar to Maple [14] (we have rational numbers), but it turns out that the
technique developed in [5] enables us to obtain the solution in closed form. We refer the
reader to [5] for the complete proof. Let us sort the gi’s so that g1 ≤ g2 ≤ . . . ≤ gp, and let
q be the largest index so that

∑q
i=1

gi

wi
≤ 1. If q < p, let ǫ denote the quantity 1 −

∑q
i=1

gi

wi
.

If p = q, we set ǫ = gq+1 = 0, in order to keep homogeneous notations. This corresponds
to the case where the full use of all the workers does not saturate the 1-port assumption for
out-going communications from the master. The optimal solution to the linear program is
obtained with

∀1 ≤ i ≤ q,
αi

Tp
=

1 −
Pp

i=1 Gi+Wi

Tp

gi
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and (if q < p):
αq+1

Tp
=

(

1 −

∑p
i=1 Gi + Wi

Tp

)(

ǫ

gq+1

)

,

and αq+2 = αq+3 = . . . = αp = 0.

With these values, we obtain:

n ≥

p
∑

i=1

αi

Tp

=

(

1 −

∑p
i=1 Gi + Wi

Tp

)

(

q
∑

i=1

1

wi

+
ǫ

gp+1

)

.

Let us denote by nopt the optimal number of units of load that can be processed within
one unit of time. If we denote by β∗

i the optimal number of units of load that can be processed
by worker Pi within one unit of time, the β∗

i ’s satisfy the following set of inequalities, in which
the Gi’s have been removed:











∀1 ≤ i ≤ p, β∗
i wi ≤ 1

p
∑

i=1

β∗
i gi ≤ 1

Here, because we have no latencies, we can safely assume that all the workers are involved
(and let β∗

i = 0 for some of them). We derive that:

nopt ≤

(

1 −

∑p
i=1 Gi + Wi

Tp

)

(

q
∑

i=1

1

wi
+

ǫ

gq+1

)

.

If we consider a large number B of units of load to be processed and if we denote by Topt the
optimal time necessary to process them, then

Topt ≥
B

nopt
≥

B
(

∑q
i=1

1
wi

+ ǫ
gq+1

) .

Let us denote by T the time necessary to process all B units of load with the algorithm
that we propose. Since the first period is lost for processing, then the number k of necessary
periods satisfies nTp(k − 1) ≥ B so that we choose

k =

⌈

B

nTp

⌉

+ 1.

Therefore,

T ≤
B

n
+ 2Tp ≤

B
(

∑q
i=1

1
wi

+ ǫ
gq+1

)

(

1

1 −
∑p

i=1
Gi+Wi

Tp

)

+ 2Tp,

and therefore, if Tp ≥ 2
∑p

i=1 Gi + Wi,

T ≤ Topt + 2

p
∑

i=1

(Gi + Wi)
Topt

Tp
+ 2Tp.
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Finally, if we set Tp =
√

Topt, we check that

T ≤ Topt + 2

(

p
∑

i=1

(Gi + Wi) + 1

)

√

Topt = Topt + O(
√

Topt),

and
T

Topt
≤ 1 + 2

(

p
∑

i=1

(Gi + Wi) + 1

)

1
√

Topt

= 1 + O

(

1
√

Topt

)

,

which completes the proof of the asymptotic optimality of our algorithm.
Note that resource selection is part of our explicit solution to the linear program: to

give an intuitive explanation of the analytical solution, workers are greedily selected, fast-
communicating workers first, as long as the communication to communication-added-to-
computation ratio is not exceeded.

We formally state our main result:

Theorem 2. For arbitrary values of Gi, gi, Wi and wi and assuming communication-computation
overlap, the previous periodic multi-round algorithm is asymptotically optimal. Closed-form
expressions for resource selection and task assignment are provided by the algorithm, whose
complexity does not depend upon the total amount of work to execute.

5 Extensions

5.1 Other Platform Topologies

The divisible load scheduling problem has been studied for a variety of platforms. Although
in this paper we have focused on star and tree networks, because we feel they are the most
relevant to current practice, we briefly review here work on a broader class of topologies.

The earliest divisible work load scheduling work studied Linear Network [17], and Bus/Star
Networks [16]. Linear Network refers to scenarios in which each worker has two neighbors, and
data is relayed from one worker to the next. The works in [17, 34, 8] give four divisible load
scheduling on Linear Networks, and [34] compares these strategies. While Linear networks
are not very common in practice, they serves as a good basis for studying more complex
architectures such as 3-D Mesh and Hypercube.

The work in [20, 21] targets a circuit-switched 3-D Mesh network. The nodes in the
network are essentially divided layers. The layers are then equivalent to nodes in a Linear
Network. This layer concept is further formalized in [12, 20, 33] and used for Ging, Tree, Mesh,
and Hypercube network. In this context the work in [27, 22] proposes and compares two data
distribution methods: LLF(Largest Layer First) and NLF (Nearest Layer First). Finally,
the work in [34, 35] targets k-dimensional Meshes, by reducing them to Linear Network of
(k − 1)-dimensional Meshes. Finally note that Hypercubes have also been studied without a
layer models but via recursive sub-division [20, 35].

5.2 Factoring

Divisible load scheduling has also been studied when there is some degree of uncertainty re-
garding chunk computation or communication times. Such uncertainty can be due to the
use of non-dedicated resources and/or to applications with data-dependent computational
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complexity. In these cases, a scheduling algorithm must base its decisions on performance
predictions that have some error associated to them. In such a scenario the scheduling algo-
rithms that we have surveyed in this paper would not be effective as schedules would lead to
potentially long periods of idle times due to mispredictions of communication or computation
times. The multi-round Factoring algorithms has been proposed that address the issue of
chunk computation time uncertainty [31]. Instead of increasing chunk sizes throughout appli-
cation execution, these algorithms start with large chunks and decrease chunk sizes, typically
exponentially, at each round throughout application execution. Chunks are dispatched to
workers in a greedy fashion to avoid the “wait for the last task” problem. Many flavors of
factoring have been proposed [31], including adaptive ones in which chunk sizes are deter-
mined based on feedback from workers [4]. All these approaches have in common the use of
large initial chunk sizes, which presents a major disadvantage: poor overlap of communication
with computation at the beginning of application execution, as for the one-round algorithms
described in Section 3. Note that this issue was not discussed in [31, 29, 4] as the authors
assumes a fixed communication costs, as opposed to a cost that is linear or affine in the chunk
size. Recently, has proposed strategies that initially increase and then decrease chunk sizes
throughout execution to achieve good overlap of communication with computation as well as
robustness to uncertainties [44].

6 Conclusion

The goal of this paper was to present a unified discussion of divisible load scheduling results
for star and tree networks. In Section 3 we have discussed one-round algorithms for which the
two main issues are: (i) selection and ordering of the workers, (ii) computation of the chunk
sizes. Section 4 focused on multi-round algorithms, with the two main issues: (i) computation
of chunk sizes at each round, and (ii) choice of the number of rounds. Section 4 also discussed
multi-round scheduling for maximizing asymptotic application performance. For both classes
of algorithms, we have revisited previously published results, presented novel results, and
clearly identified open questions. Our overall goal was to identify promising research directions
and foster that research thanks to our unified and synthesized framework.

We have discussed affine cost models and have seen that they often lead to significantly
more complex scheduling problems than when linear models are assumed. These models
are generally considered more realistic, and we even contend that, given current trends, lin-
ear models are quickly becoming increasingly inappropriate. In terms of communication,
technology trends indicate that available network bandwidth is rapidly augmenting. There-
fore, latencies account for an increasingly large fraction of communication costs. A similar
observation can be made in terms of computation. Due to the absence of stringent synchro-
nization requirements, divisible workload applications are amenable to deployment on widely
distributed platforms. For instance, computational grids [24] are attractive for deploying large
divisible workloads. However, initiating computation on these platforms incurs potentially
large latencies (i.e., due to resource discovery, authentication, creation of new processes, etc.).
Consequently, it is clear that divisible workload research should focus on affine cost models
for both communication and computation.
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A Star network and affine cost model

In an optimal solution of the StarAffine problem, all participating workers terminate the
execution at the same time.

http://www.ece.sunysb.edu/~tom/dlt.html
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Proof of Proposition 3. Let us consider an optimal solution of the StarAffine problem, and
let us suppose, without loss of generality, that α1 units of load are sent to P1, then α2 to
P2, . . . and finally αj to Pj , where P1, . . . , Pj denotes the set of workers that participate in
the computation. By construction, all the αi’s are non zero. Consider the following linear
program

Maximize
∑

βi,
subject to
{

LB(i) ∀i ≤ j, βi ≥ 0

UB(i) ∀i ≤ j,
∑i

k=1(Gk + βkgk) + Wi + βiwi ≤ T

Clearly, the αi’s satisfy the set of constraints above, and from any set of βi’s satisfying the set
of inequalities, we can build a valid solution of the StarAffine problem that process exactly
∑

βi units of load. Therefore, if we denote by (β1, . . . , βj) an optimal solution of the linear
program, we have

∑

βi =
∑

αi.

Lemma 4. For any optimal solution (β1, . . . , βj) of the linear program, we have

• βk > 0 for all k < j

• UB(j) is an equality, even if Pj does not process any task (i.e. βj = 0)

Proof. Suppose that there exists an index i such that βi = 0, and denote by k the largest
index such that βk = 0. We have to distinguish between two cases:

Case k < j. Consider the number of units of load processed by workers Pk and Pk+1,
and calculate the number of units of load that could be processed by Pk+1 if Pk was
removed from the set of participating workers. When both Pk and Pk+1 are used,
the communication medium is used by Pk and Pk+1 during exactly Gk + Gk+1 +
βk+1gk+1 time-units. If we remove Pk from the set of participating workers, and
let β′

k+1 denote the number of processed units of load by worker Pk+1, then the
condition

Gk+1 + β′
k+1gk+1 ≤ Gk + Gk+1 + βk+1gk+1

ensures that the communication medium is not used longer than previously , and
the condition

Gk+1 +Wk+1 +β′
k+1(gk+1 +wk+1) ≤ Gk +Wk +Gk+1 +Wk+1 +βk+1(gk+1 +wk+1)

ensures that Pk+1 finishes its processing before the time bound. Both condition
are in fact equivalent to

β′
k+1 ≤ βk+1 + min

(

Gk + Wk

gk+1 + wk+1
,

Gk

gk+1

)

.

Therefore, if we set β′
k+1 = βk+1 + + min

(

Gk+Wk

gk+1+wk+1
, Gk

gk+1

)

, then the number of

units of load processed by the platform where Pk has been removed is strictly larger,
what is in contradiction with the optimality of the solution where each Pi processes
βi units of load. Thus, in an optimal solution involving workers P1, . . . , Pj , none
of first j − 1 workers can be kept fully idle.
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Case k = j. We use the same proof as above to prove that there is no other worker
Pi with i < j that is kept fully idle. Moreover, let us denote by tj the time step
when the first j − 1 workers have received their work and therefore, at which the
communication medium is free. Then, T = tj + Gj + Wj, otherwise, Pj would be
able to process some units of load. Therefore, UB(j) is an equality

Finally, if all βi’s are non zero, then the last worker Pj finishes at time T , otherwise it
could proceed more units of load. Therefore, UB(j) is an equality, whether βj = 0 or
not.

To prove that all participating workers complete their processing at time step T , we use,
as previously, a few results on linear programming. It is known that an optimal solution
(that may not be unique a priori) is obtained at some vertex S1 = (β1, . . . , βj) of the convex
polyhedron P defined by the set of inequalities. In solution S1, at least j constraints among
the 2j inequalities are equalities. We show that these equalities are in fact all the UB(i)
constraints:

Lemma 5. In solution S1, all the constraints UB(i), ∀1 ≤ i ≤ j are equalities.

Proof. We know from Lemma 4 that all the constraints LB(i), ∀i < j are tight for an
optimal solution. Therefore, if the constraint LB(j) is tight too for solution S1, then
the property holds true.

Suppose now that the constraint LB(j) is not tight for solution S1, i.e. βj = 0.
Then, consider the other linear program corresponding to the case where only work-
ers P1, . . . , Pj−1 are used. Both linear program have the same optimal value. Reasoning
with the other linear program just as we did previously, we know that none of the first
j − 2 workers may be kept fully idle during the processing. If there existed an optimal
solution where Pj−1 is fully idle, then it would be possible to derive a solution where
workers P1, . . . , Pj−2, Pj would be in use and would process strictly more units of load.
Thus, all the workers P1 to Pj−1 do process some units of load. Therefore, the vertex
of the polyhedron S1 where j − 1 constraints among 2(j − 1) are equalities is such that
all UB(i), 1 ≤ i ≤ j − 1, are equalities. Together with the second part of Lemma 4, we
derive the desired result.

We still have to prove that the result (simultaneous termination) is true for all optimal
solutions, not just the extremal solution S1. Let S2 = (α1, . . . , αj) denote another optimal
solution, and suppose that some constraints UB(i) are tight for i ≤ j. As already noticed, P2

belongs to the convex polyhedron P. Consider the following function f :

f :

{

R → R
j

x 7→ S1 + x(S2 − S1)

By construction, all the points f(x) that belong to P are extremal solutions of the linear
program. Let x0 denote the largest value of x ≥ 1 such that f(x) does belong to P, so that at
least one of the constraints of the linear program is an equality in f(x0). This constraint has
to be one of the LB(i) and, as a consequence of Lemma 4, it has to be LB(j). Therefore, we
know that the j-th component of f(x0) is equal to zero and that the first j−1 components of
f(x0), S

′
2 = (α′

1, . . . , α
′
j−1), constitute an optimal solution of the linear program where only
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the first j−1 workers are involved. Therefore, if we denote by S ′
1 = (β′

1, . . . , β
′
j−1) an optimal

solution obtained at some vertex, (β′
1, . . . , β

′
j−1, 0) is a solution of the original linear program.

Therefore, all the LB(i) are tight for i < j (by Lemma 4); using the same reasoning as before,
we know that the UB(i) are equalities in solution S ′

1 for i < j.
Suppose that S ′

1 6= S ′
2. Consider the following function f ′:

f ′ :

{

R → R
j−1

x 7→ S ′
1 + x(S ′

2 − S ′
1)

By construction, all the points f ′(x) that belong to SP are extremal solution of the linear
program. Therefore, if we denote by x′

0 the largest value of x ≥ 1 such that f ′(x) does belong
to P, so that at least one of the constraints of the linear program is not tight in f ′(x′

0).
This constraint has to be one of the LB(i) and we know by Lemma 4 that it is not possible.
Therefore, we have S ′

1 = S ′
2. Thus, as the UB(i) are not tight at S ′

1 and at S ′
2 for i < j, they

are not tight either at f(x0). Therefore, as the UB(i) are not tight at S1 and at f(x0) for
i ≤ j, they are not tight either at S2, which is in contradiction with our previous hypothesis.

Therefore, at S2, none of constraints UB(i), ∀1 ≤ i ≤ j is tight, which means that in an
optimal solution, all participating workers terminate the execution at the same time.
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