
 Open access Proceedings Article DOI:10.1109/ICASSP.1995.480106

Scheduling for optimum data memory compaction in block diagram oriented software
synthesis — Source link

S. Ritz, M. Willems, Heinrich Meyr

Published on: 09 May 1995 - International Conference on Acoustics, Speech, and Signal Processing

Topics: Block diagram, Memory management, Dataflow, Scheduling (computing) and Integer programming

Related papers:

 Ptolemy: a framework for simulating and prototyping heterogeneous systems

 Software Synthesis from Dataflow Graphs

 Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing

 Joint Minimization of Code and Data for Synchronous DataflowPrograms

 Synchronous data flow

Share this paper:

View more about this paper here: https://typeset.io/papers/scheduling-for-optimum-data-memory-compaction-in-block-
dv41ta7pen

https://typeset.io/
https://www.doi.org/10.1109/ICASSP.1995.480106
https://typeset.io/papers/scheduling-for-optimum-data-memory-compaction-in-block-dv41ta7pen
https://typeset.io/authors/s-ritz-3u3s02hr2d
https://typeset.io/authors/m-willems-2rd0jvdtzb
https://typeset.io/authors/heinrich-meyr-53vji8bvmo
https://typeset.io/conferences/international-conference-on-acoustics-speech-and-signal-14bc3mci
https://typeset.io/topics/block-diagram-2zj55cv3
https://typeset.io/topics/memory-management-32wzxu7n
https://typeset.io/topics/dataflow-3sxhbina
https://typeset.io/topics/scheduling-computing-3elthrty
https://typeset.io/topics/integer-programming-237ni9is
https://typeset.io/papers/ptolemy-a-framework-for-simulating-and-prototyping-50cl496a5h
https://typeset.io/papers/software-synthesis-from-dataflow-graphs-49xutk7odo
https://typeset.io/papers/static-scheduling-of-synchronous-data-flow-programs-for-1a43c05p3v
https://typeset.io/papers/joint-minimization-of-code-and-data-for-synchronous-op0kfsmr6a
https://typeset.io/papers/synchronous-data-flow-3ep4od6m20
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/scheduling-for-optimum-data-memory-compaction-in-block-dv41ta7pen
https://twitter.com/intent/tweet?text=Scheduling%20for%20optimum%20data%20memory%20compaction%20in%20block%20diagram%20oriented%20software%20synthesis&url=https://typeset.io/papers/scheduling-for-optimum-data-memory-compaction-in-block-dv41ta7pen
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/scheduling-for-optimum-data-memory-compaction-in-block-dv41ta7pen
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/scheduling-for-optimum-data-memory-compaction-in-block-dv41ta7pen
https://typeset.io/papers/scheduling-for-optimum-data-memory-compaction-in-block-dv41ta7pen

SCHEDULING FOR OPTIMUM DATA MEMORY COMPACTION

IN BLOCK DIAGRAM ORIENTED SOFTWARE SYNTHESIS

Sebastian Ritz Markus Willems Heinrich Meyr

������ ISS� RWTH� ����� Aachen� Germany

ABSTRACT

For the design of complex digital signal processing systems�
block diagram oriented synthesis of real time software for
programmable target processors has become an important
design aid� The synthesis approach discussed in this paper
is based on multirate block diagrams with scalable synchro�
nous data	ow
SSDF� semantics� For this class of data	ow
graphs we present scheduling techniques for optimum data
memory compaction� These techniques can be employed to
map signals of a block diagram onto a minimum data me�
mory space� In order to formalize the data memory com�
paction problem� we �rst derive appropriate implementa�
tion measures� Based on these implementation measures it
can be shown that optimum data memory compaction con�
sists of optimum scheduling as well as optimum memory
allocation� For the class of single appearance
SA� block
diagrams with SSDF semantics� scheduling can be reduced
to an integer linear programming
ILP� problem� Due to
the computational complexity of ILP� we also present a sub�
optimum scheduling selection criterion� which can be used
for SA and non SA�schedulers�

�� INTRODUCTION
Memory compaction is an important optimization techni�
que for systems with memory resource constraints� Espe�
cially in the implementation of digital signal processing sy�
stems we often �nd memory constraints due to limited avai�
lable on�chip memory of programmable target architectures�
In this paper we focus on data memory compaction in

the context of the synthesis of real time software using a
block diagram speci�cation of a signal processing system�
As target processors digital signal processors
DSPs� are
of special interest because of architectural features tailored
to the speci�c needs of signal processing tasks� DSPs have
stringent on�chip program memory limits and o�chip me�
mory access is in general ine�cient� In case of commercially
available DSP cores� the on�chip RAM�ROM memory space
may be adapted to the application speci�c needs� Since the
size of the required memory space determines the costs� it
is important to minimize the required memory space�
The block diagrams used for software synthesis are da�

ta	ow oriented and consist of blocks and signals� From the
implementational point of view blocks are software modules

supplied by the user or the system� and signals are FIFO
buers in the data memory space� In case each block of
a block diagram consumes and produces a �xed number
of data samples� the block diagram is based on the �syn�
chronous data 	ow�
SDF� ��� paradigm� These numbers�
called rates in the sequel� must be speci�ed a priori� e�g� at
con�guration time� Up� or downsampling within a block
results in multi rate block diagrams� If all blocks of a block
diagram may consume and produce any integer multiple of
the prede�ned SDF�rates per activation� we call the SDF
graph scalable� resulting in a scalable synchronous data	ow

SSDF� graph ���� Due to the scalability� SSDF block dia�

grams can be optimally vectorized ���� Vectorization in the
context of SSDF graphs is regarded as a transformation
on an SSDF graph raising the number of consumed and
produced samples per activation to a certain integer multi�
ple of the prede�ned SDF�rates� Because of the instruction
and�or arithmetic pipelining of DSPs� vectorization leads to
enhanced throughput of the synthesized software� Because
of the increased vector lengths� vectorization also increases
data memory consumption� which can be drastically redu�
ced by the proposed data memory compaction�
The heuristic minimization of data memory consumption

by means of looped schedules for SDF block diagrams has
been discussed in ���� The approach therein minimizes the
vectorization opportunities for each block� thus is applica�
ble for applications where throughput is not the primary
optimization goal�
In section � we will introduce some of the basic forma�

lisms of SSDF graphs� It follows the presentation of some
implementation measures which serve as optimization cri�
terions� In section � the optimum scheduling problem is
treated� Afterwards we derive a suboptimum scheduling
heuristics and �nally demonstrate the scheduling strategies
by means of an application example�
�� SCALABLE SYNCHRONOUS DATAFLOW�

BACKGROUND AND NOTATION
We suppose that a digital signal processing system is spe�
ci�ed by means of a scalable synchronous block diagram
F �
B�S� A�E�D��� A block bj � B speci�es a signal
processing component of arbitrary granularity� The signals
si � S specify the data 	ow between the blocks� The to�
pology of the block diagram is represented by the functions
A
� and E
� de�ned on the signal set S� A
si� is the block
producing samples which are written in si and E
si� is the
block consuming samples which are stored in si and have
been produced by A
si�� The number of initial samples on
a signal si are speci�ed by D�
si�� An initial sample repre�
sents a phase shift of one sample� According to the synchro�
nous data 	ow semantics a block bj � A
si� produces O
si�
samples written into signal si and consumes I
sk� samples
from the signals sk� where bj � E
sk�� Additionally in
the SSDF domain a block may consume and produce any
integer multiple n
bj� of the prede�ned rates� where n
bj�
denotes the local blocking factor associated with block bj �
A schedule� of an SSDF block diagram F is an activation

sequence � � fa��a��� � � �apg of blocks� where an activation
ak �
bj � n
bj�� either denotes the activation of a block with
the local blocking factor n
bj� or the activation of a subsche�
dule �l with a looping factor kl� ak �
�l� kl�� The latter
describes a hierarchical schedule� which may be implemen�
ted with nested loops ������ The looping factor kl denotes
the number of repetitions of the subschedule �l� In the fol�
lowing we assume that all activations of a schedule � are
valid in the sense that at the time of the activation of a block
bj there are at least as many samples at each input port as
the block requires according to rates I
si���si � E
si� � bj �

The activation ak �
bj � n
bj�� of a block bj is called an
appearance of block bj � If every block bk appears exactly
once in �� the schedule is called single appearance sche�
dule
SAS�� In case of a SAS each block has a unique local
blocking factor n
bj��
In this paper we are interested in in�nite schedules� where

each block is activated in�nitely often� For the software syn�
thesis� we have to guarantee that an in�nite valid schedule
can be implemented with �nite memory space for each sig�
nal� A su�cient condition for �nite memory is that each
block bj of a scalable synchronous block diagram F is exe�
cuted at least qF
bj� times for one schedule period � ����
which can be repeated in�nitely often� This condition en�
sures that in each schedule period as many samples are
written to as are read from each signal� For multirate block
diagrams for at least one block qF
bj� � � holds�
The vectorization of a given scalable synchronous block

diagram determines the local blocking factor n
bj� for each
block bj� Since there is a unique local blocking factor for
each block in case of SA�schedules� vectorization can also
be regarded as a transformation on F increasing the rates
of the input and output ports of the blocks� The vectoriza�
tion is valid� if after vectorization there still exists a valid
schedule� For all blocks the minimum number of executions
qF
bj� per schedule period can be increased by the global
blocking factor Ng� which describes the global vectorization
degree� In the sequel we assume that the block diagram has
an associated SA�schedule and is vectorized� i�e� each block
has a local blocking factor assigned� Also we restrict the
discussion on 	at SA�schedules� which means that we do
not consider looped schedules�

�� IMPLEMENTATION MEASURES FOR
DATA MEMORY CONSUMPTION

In order to derive optimum strategies for data memory com�
paction we �rst have to de�ne the optimization criterion�
Let di
k� denote the number of signal samples in signal si
in scheduling step k� � � k � p� Then

Mmax
�� �
X

��i�Ns

max
k
fdi
k�g
��

describes the total memory needed in case we allocate me�
mory for each signal separately� Each signal si needs at
least maxk fdi
k�g memory space� For single appearance
schedules and for signals si with D�
si� � �

max
k
fdi
k�g � qF
bj�O
si�Ng bj � A
si�
��

holds� since there is one write access followed by one read
access on signal si per schedule period� Thereby p deno�
tes the length of the period� which is equal to the number
of blocks in case of SA�schedules and Ns denotes the total
number of signals� For signals with D�
si� � �� the highwa�
ter maxk fdi
k�g depends on whether due to the schedule
� the �rst access to the buer is read or write�

max
k
fdi
k�g �

n
D�
si� � qF
bj�O
si�Ng if �rst write
D�
si� if �rst read

��
Note that the condition D�
si� � qF
bj�O
si�Ng has to
be ful�lled in case the �rst access is a read� i�e� E
si� is
activated before block A
si��
Signals with D�
si� � � can be mapped onto static buf�

fers of length M
si� � qF
bj�O
si�Ng� A buer is said to
be static i the write resp� read access of the incident block
occurs at the same memory oset in each schedule period�
Static buers can be e�ciently synthesized� since blocks ac�
cessing those buers just need a constant pointer to the me�
mory segment allocated for the buers� On the other hand�
signals with D�
si� � � i�g� can mapped only onto dynamic
circular buers of length M
si� � D�
si� � qF
bj�O
si�Ng

orM
si� � D�
si�� i�e� read and write accesses occur at dif�
ferent osets from one period to the next� Dynamic buers
i�g� require oset computation at runtime thus exhibiting
runtime overhead�
For both cases� D�
si� � � and D�
si� � �� the imple�

mentation measure Mmax
�� describes the expected data
memory consumption for a given schedule � in case buers
use mutually exclusive memory spaces� From eq�
�� and

�� it can be seen that there is an optimization potential in
evaluating a schedule � such that the total amount of me�
mory needed for the signals si with D�
si� � � is minimi�
zed by activating the proper reading blocks �rst� It can be
shown that this optimization problem is a nonlinear sche�
duling problem� Note that the memory consumption can
be optimized only by minimizing the lengths of the buers
corresponding to these signals and not by sharing memory
between dynamic buers� Dynamic buers i�g� can not be
mapped onto shared memory segments since write and read
accesses are scattered to the whole buer� In the sequel we
will concentrate on optimally sharing memory for signals
with D�
si� � �� Signals si for which D�
si� � � holds will
be denoted as s�i� The optimization problem is regarded
as more important� since i�g� there are much more signals
without initial samples� especially after transformations like
retiming� where explicitly initial samples are concentrated
such that vectorization is optimized ����
In order to take the eects of shared buers into account

another implementation measure is of interest� The number
of signal samples present in all signals si with D�
si� � �
at schedule step k after activation ak �
bj � n
bj�� can be
described with the number of live signal samples Ml
k��
� � k � p�

Ml
k� �
X
�s�

i

dj
k� � Ml
k � �� �Mout
bj� �Min
bj�
��

where Ml
�� � ��
Mout
bj� denotes the total number of output samples pro�

duced on all signals s�i upon activation of block bj � A
s�i��

Mout
bj� � n
bj�
X

�A�s�
i
��bj

O
si�
��

andMin
bj� denotes the total number of input samples con�
sumed from all signals s�i upon activation of block bj �
E
s�i��

Min
bj� � n
bj�
X

�E�s�
i
��bj

I
si�
��

Note that n
bj� � qF
bj�� since � is a 	at SA�schedule� In
case of non�inplace computation all input and output sig�
nal buers have to be mapped onto disjunct memory spaces�
Thus upon activation of block bj we need Mout
bj� additio�
nal memory space for the storage of output samples� Note
that signals si with D�
si� � � are assumed to have sepa�
rately allocated memory� It follows that for each activation
ak � � there must be at least

Mact
ak� � Ml
k����Mout
bj�� ak �
bj � n
bj��
��

memory space� Taking the maximum of all Mact
ak� du�
ring a schedule period� leads to the implementation measure
Mact
���

Mact
�� � max
ak��

fMact
ak�g
��

This implementation measure describes the minimum
achievable amount of data memory for the signals si with
D�
si� � � in case all blocks do not process signal samples
in�place� This implementation measure thus may serve as
an optimization criterion for �nding an optimum schedule�
i�e� a schedule � which minimizes Mact
��� Fig� � shows a
block diagram with two associated SA�schedules�

b1
4

8

b2 b3
4 5

8 7
1

14
b4 b5

10s2

s1

s3

s4

a��� � f�b�� �b�� b�� �b�� b	g �Mact
��� � ��
b��� � f�b�� �b�� b	� �b�� b�g �Mact
��� � ��

Figure �� In�uence of the scheduling on Mact

In a second step the signals of the block diagram have
to be mapped onto memory segments� In �g� � the signals
of the block diagram of �g� � are mapped onto memory
according to the live times which can be determined by the
schedule� For both schedules exactly Mact
����� memory
is needed�

k1 2 3

M s1

s3

s410

34

a)

k1 2 3

M

38

s1

s2

s3

s4

b)

s2

a��a � f�b�� �b�� b�� �b�� b	g� non�inplace
b��b � f�b� � �b�� b	� �b�� b�g� non�inplace

Figure �� Mapping of signals onto memory segments

Notice that the optimum data memory compaction is a
two�step optimization problem� First a schedule has to be
found which yields minimum Mact
�� and second all signal
buers have to be mapped onto memory such that buers
optimally share memory and Mact
�� is the amount of data
memory needed� In the sequel we derive the optimum sche�
duling problem� Optimum memory allocation based on op�
timum scheduling will be presented in a forthcoming paper�

�� SCHEDULING FOR OPTIMUM DATA
MEMORY COMPACTION

Given a block diagram F for which an optimum SA�schedule
is to be found� In order to derive the number of live samples
after schedule step n we de�ne the cost matrix � �
cij� for
all signals with D�
si� � � �

cij �

�
�qF
bj�I
si� if E
si� � bj �D�
si� � �
�qF
bj�O
si� if A
si� � bj �D�
si� � �
� else

For the evaluation of the schedule we de�ne the schedule
variables aj�k� � � j� k � Nbl � p�

aj�k �
n

� if block bj is activated at k
� else

The number of live samples Ml
n� in all signals si with
D�
si� � � after schedule step n can be computed now by
means of the cost matrix � and the schedule variables�

Ml
n� �

NsX
i��

NblX
j��

cij

�
nX

k��

aj�k

�
� � n � p
��

For the evaluation of Mact
�� we further de�ne the cost
matrix �� �
c�ij��

c
�
ij �

n
O
si�qF
bj� A
si� � bj �D�
si� � �
� else

With this cost matrix we can describe the implementation
measure Mact
���

Mact
�� � max
��n�Nbl

�
Ml
n � �� � IT��a
n�

�

���

The vector I denotes the unity vector and a
n� the sche�
duling vector a
n� �
a��n � a��n� � � � � aNbl �n�

T � Goal of the
optimization is to �nd an optimum schedule �opt such that

Mact
�opt� � min
all �

fMact
��g

In order to linearize this min�max optimization criterion�
we introduce a new variable MACT together with Nbl con�
straints�

minimize MACT
���

such that for � � n � Nbl

MACT �

NsX
i��

NblX
j��

cij

�
n��X
k��

aj�k

�
�

NsX
i��

NblX
j��

c
�
ijaj�n
���

holds� Beside this linear optimization criterion we have to
derive linear constraints on the schedule variables� The �rst
class of constraints can be derived from the fact� that � is
a SASA�schedule�

NblX
k��

aj�k � � � � j � Nbl
���

Since we are interested in a sequential schedule� only one
block may be activated at time k�

NblX
j��

aj�k � �� � � k � Nbl
���

The last class of constraints follows from the signals of the
block diagram� which can be regarded as simple precedence
relations between adjacent blocks bl � A
si�� bj � E
si��
since F has an associated SA�schedule�
NblX
k��

kal�k � kaj�k� � �� �si � D�
si� � n
bj�qF
bj�I
si�

���
Thus optimization criterion � together with the constraints
�� �� and �� form an integer linear programming problem�
which can be solved using standard software packages�
Since an ILP is np�hard� we introduce a novel scheduling

heuristics� which is derived from the above ILP�
�� SUBOPTIMUM SCHEDULING FOR

MINIMUM DATA MEMORY
CONSUMPTION

In the following we present a scheduling criterion which de�
cides at time k which of the blocks to activate next� This cri�
terion can be used for S�class scheduling algorithms which
successively schedule a block depending on whether there
are enough input samples available for a block� Although
we restrict the discussion to SA�schedules� the presented
criterion can also be used for multiple appearance schedu�
les�
Due to eq�
�� and
�� scheduling a block bj at step n de�

termines the number of live samples Ml
n� and the number
of output samples for which additional memory space has
to be allocated� Thus if at time n� � more than one block
can be activated� we have to select one of these blocks in a
way that Mact
�� is minimized�
Given now a candidate set of blocks

C � fbj j �siE
si� � bj � di
n� �� � O
si�g
���

which all may be activated at time n� we can split this set
into two sets� The �rst set of blocks includes all blocks
whose activation does not increase the number of live sam�
ples� i�e� Ml
k� �Ml
k � ��� k � n�

C� � fbj j bj � C �Min
bj� �Mout
bj�g
���

The second set C� includes all blocks which increase the
number of live samples upon their activation� i�e� Ml
k� �
Ml
k � ��� k � n�

C� � fbj j bj � C �Min
bj� � Mout
bj�g
���

We now regard all kCk� permutations of blocks of C which
form a valid possible subschedule

�m � fak j ak �
bj � n
bj��� bj � Cg

for blocks of C and ignore the previous activations ak with
k � n� Then the subschedule �opt � f�����g with

�� � fak j ak �
bj � n
bj��� bj � C�g
���

�� � fak j ak �
bj � n
bj��� bj � C�g
���

exhibits the minimum number of maximum live samples�

max
ak��opt

fMl
k�g � Ml
n� �
X
bj�C

Mout
bj��
X
bj�C

Min
bj�

� max
�m ���opt

fMl
k�g n � k � n� kCk

Since we have only regarded all subschedules �m this might
be a local but not a global minimum�
Now the question arises how to minimize Mact
�m� of

all subschedules �m� This minimization can be achieved by
sorting the blocks bj � bi � C� according to Mout
bj��

Mout
bj� �Mout
bi�� bi before bj
���

It can be shown that this sorting is su�cient for obtaining
minimum Mact
��m� concerning all permutations kC�k� of
valid schedules ��m of blocks in C��
The same can be shown for the second set C�� Sorting

all blocks of C� with

Min
bj� �Min
bi�� bj before bi
���

yields minimum Mact
��m� concerning all permutations
kC�k� of valid schedules ��m�
Thus a scheduling algorithm based on this heuristic mi�

nimization criterion simply has to insert each successor of
the last scheduled block which can be activated into C� or
C� and has to sort within these sets according to rule �� or
rule ��� In �gure � an example for such a heuristic sche�

b1

8

8

b2 b3
8 4

8 2
1

2
b4 b5

4

b6

1

1

1

1

�opt � fb�� b�� b	� b�� b�� b
g �Mact
�� � ��

Figure �� Optimum schedule through the heuristic schedule
criterion

dule algorithm is shown� At n � �� C� � fb�� b�g and C�
is empty� Since Mout
b�� � � � Mout
b�� � �� block b� is
scheduled before b�� In the next step n � �� C� � fb�� b	g
holds� Since Mout
b	� � � � Mout
b�� � �� b	 is scheduled
next� This schedule is also the optimum one�
An example for the suboptimality of the selection crite�

rion can be seen in the schedule for the block diagram of
�gure �� At n � �� C� � fb�g and C� � fb�g� Following
the above selection criterion� block b� is scheduled before
b�� which is suboptimal�

�� APPLICATION

As an example for the derived scheduling methods� a reali�
stic application example is given� In �g��� the block diagram
of a mobile satellite receiver is shown ��� �

4

4
11

11

10

10

11

10

11

10

240

240

240

240

240

240

A B C

D E F G

H

IJ

K

L

MN

P

Q

R

S

T

UV

W

11

11

Figure �� Rates within the mobile satellite receiver block dia�
gram

The heuristic scheduling results in
�� � ����A� ���B� ��C� ��G� ��H� ��I� ���J� ����D� ���E�
��F� ��K���L� ��M� ���N� ���P� ���S� ���U�V� Q�R�W �
requiring ���� words of memory�
One optimum scheduling sequence
there are several� is
�� � ����A� ���B� ��C� ��G� ����D� ���E� ��F� ��K���L�
��M� ���N� ��H� ��I� ���J� ���P� ���S� ���U� V�Q�R�W �
requiring ���� words of memory� It took about � days to
solve the ILP problem� whereas the heuristic approach de�
livered its result within �� seconds�

�� CONCLUSION

We have presented a novel optimum scheduling approach
resulting in a minimum of data memory consumption for
single appearance constellations� This approach has been
identi�ed as an ILP problem� driving us to de�ne an e�cient
heuristic� For a realistic application this heuristic has been
shown to result in a minor degradation of data memory
e�ciency� oering a reliable complexity estimation within a
signi�cantly reduced amount of time�

REFERENCES
��� E� A� Lee and D� G� Messerschmitt� �Static scheduling of syn�

chronous data �ow programs for digital signal processing��
IEEE Trans� on Computers� vol� C�	
� No� �� pp� ��	�� Ja�
nuary �����

��� S� Ritz� M� Pankert� and H� Meyr� �High level software
synthesis for signal processing systems�� in Proceedings of
the Intl� Conf� on Application�Speci�c Array Processors�
pp�
��
�	� Prentice Hall� IEEE Computer Society� �����

�	� S� Ritz� M� Pankert� V� �Zivojnovi�c� and H� Meyr� �Op�
timum vectorization of scalable synchronous data�ow gra�
phs�� in Intl� Conf� on Application�Speci�c Array Processors�
pp� �����
� Prentice Hall� IEEE Computer Society� ���	�

��� S� Bhattacharyya and E� Lee� �Scheduling synchronous da�
ta�ow graphs for e�cient looping�� Journal of VLSI Signal
Processing� pp� ��� ���� Dec� ���	�

��� V� �Zivojnovi�c� S� Ritz� and H� Meyr� �Retiming of DSP pro�
grams for optimum vectorization�� in Proc� of ICASSP��� �
Adelaide� April �����

�
� S� Ritz and H� Meyr� �Exploring the design space of a DSP�
basedmobile satellite receiver�� in Proc� of ICSPAT��� � Dal�
las� Oct� �����

