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Abstract Robust scheduling aims at the construction of a
schedule that is protected against uncertain events. A stable
schedule is a robust schedule that changes only little when
variations in the input parameters arise. This paper presents
a model for single-machine scheduling with stability ob-
jective and a common deadline. We propose a branch-and-
bound algorithm for solving an approximate formulation of
the model. The algorithm is exact when exactly one job is
disrupted during schedule execution.

Keywords Single-machine scheduling · Uncertainty ·
Robustness · Branch-and-bound

1 Introduction

Manufacturing schedules are rarely executed in a ‘vacuum’
environment and regularly suffer disruptions from a variety
of sources such as resource unavailability, tardy deliveries
of material or sub-assemblies, altered work content of cer-
tain jobs, etc. At the planning stage, uncertainty can be an-
ticipated in multiple ways. A first option is to eliminate the
use of schedules altogether and to adhere to a scheduling
‘policy’, which determines dynamically which jobs to dis-
patch through time. We refer to Part 2 of Pinedo (2002) for
a survey in machine scheduling and to Stork (2001) for a
project-scheduling setting.
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Alternatively, a schedule can be constructed despite the
uncertainty inherent in the scheduling environment. Such a
predictive schedule (pre-schedule) or baseline schedule has
some very important functions. One of these is to allocate
resources to the different activities so as to optimize some
measure of performance and/or because advance bookings
of key staff or equipment are necessary to guarantee their
availability. The baseline schedule is also the starting point
for communication and coordination with external entities in
the company’s inbound and outbound supply chain: it con-
stitutes the basis for agreements with suppliers and subcon-
tractors (e.g., for planning external activities such as mater-
ial procurement and preventive maintenance), as well as for
commitments to customers (delivery dates). The usefulness
of a predictive schedule is further discussed in Aytug et al.
(2005), Mehta and Uzsoy (1998), and Wu et al. (1993).

When disruptions occur during schedule execution, the
baseline schedule needs to be rescheduled. If we wish to ex-
ploit the coordination purposes of a schedule as well as pos-
sible, the actual start of each job should occur as closely as
possible to its baseline starting time. We refer to stability as
a quality of the scheduling environment when there is little
deviation between the baseline and the executed schedule.
Stability can be aimed for during rescheduling and is then
alternatively referred to as minimally disruptive, minimal-
perturbation and minimum-deviation (re)scheduling; see for
instance Akturk and Gorgulu (1999), Bean et al. (1991),
Calhoun et al. (2002), Raheja and Subramaniam (2002),
Rangsaritratsamee et al. (2004), and Wu et al. (1993).

A baseline with express anticipation of disruptions,
which is protected against certain undesirable consequences
of rescheduling, is called robust. The option explored in this
paper is to introduce stability into the baseline schedule,
i.e., as a robustness measure. This stability concept has also
been termed solution robustness or predictable scheduling.
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Examples from the literature are sparse; we mention Leus
(2003), Mehta and Uzsoy (1998), and O’Donovan et al.
(1999).

In the following section we introduce some notation and
develop a formal problem statement. Section 3 presents
a branch-and-bound algorithm for optimally solving the
problem under study, and Sect. 4 discusses a number of
benchmark heuristics. Computational experiments with the
proposed algorithms are presented in Sect. 5. Finally, con-
clusions are presented in Sect. 6.

2 Notation and problem statement

2.1 Definitions and objective function

A set of jobs N = {1,2, . . . , n} with deterministic baseline
durations di (i ∈ N ) is to be scheduled on a single ma-
chine; all jobs are available for processing at the beginning
of the planning period. A baseline schedule is an n-vector
s, which specifies a starting time si for each job i. There
is a common deadline ω for all the jobs (e.g., one day’s
production-shift length): si + di ≤ ω,∀i ∈ N . The actual
duration of i is a stochastic variable Di , which need not
always equal di . The actual starting time Si(s) of job i is
a random variable that is dependent on s (see Sect. 2.2).
Non-negative integer cost ci is incurred per unit-time devi-
ation in the start time of job i, as a penalty for the resulting
system nervousness and shop-coordination difficulties and
the delivery delay for the customer. The expected weighted
deviation between actual and planned job starting times is
the stability measure for schedule s: we minimise objective
function

∑
j∈N cj |E[Sj (s)] − sj |, where E[·] is the expec-

tation operator. In the remainder of the article we omit the
argument s when there is no danger of confusion.

Stochastic job duration Di is modelled by means of dis-
crete scenarios, a choice that was also made by, e.g., Daniels
and Carrillo (1997), Daniels and Kouvelis (1995), Kouvelis
and Yu (1997), and Kouvelis et al. (2000). Specifically, let
a random variable Li denote the increase in di if i is ‘dis-
rupted’, which takes place with probability πi ; Di equals the
baseline duration di with probability (1 − πi). The variable
Li is discrete with probability-mass function gi(·), which
associates non-zero probability with positive values lik ∈ Ψi ,
where Ψi denotes the set of disruption scenarios for the dura-
tion of job i,

∑
k∈Ψi

gi(lik) = 1 and gik is used as shorthand
for gi(lik); the lik-variables are indexed from small to large.
Disruption lengths lik are assumed to be integers, and the Di

for different jobs i are independent. For encoding reasons,
we require all values πi to be rational numbers (represented
by two integers), and gi to map into the set of rational num-
bers.

2.2 No early start

Stability considerations will often make it undesirable, if
not impossible, to commence processing a job earlier than
its baseline starting time. We model this restriction by im-
posing that jobs are not started earlier than planned, i.e.,
si ≤ Si,∀i ∈ N , which guarantees that actual production
will strictly cling to the baseline if no disruptions occur.
In effect, the baseline starting times become ‘release dates’
for schedule execution. This type of constraint is inherent in
course scheduling, sports timetabling and railway and air-
line scheduling. In manufacturing, job execution cannot start
before auxiliary resources and tooling have been freed else-
where in the shop and before the necessary parts and mate-
rials have been delivered to the processing site, and the due
date communicated to the parties responsible for these pre-
requisites is normally the baseline starting time at the time
of initial schedule development. ‘Forbidden early shipment’
restrictions at earlier stages in the production process (see,
e.g., Christy and Kanet 1990, Kanet and Christy 1984, and
Yano 1987) also constitute a source of this behaviour.

When the baseline schedule is implemented, the realiza-
tion of Di becomes known when job i is executed. The
exact timing of this information is not important since we
reschedule by right-shifting the remaining jobs without re-
sequencing. If we define [i] to be the job that is scheduled
in the ith position, then
{

S[1] = s[1],
S[i] = max{s[i];S[i−1] + D[i−1]}, i = 2, . . . , n.

The ‘no early start’ assumption has a major impact on
the model. Removing this assumption, however, leaves two
options:

1. All jobs are executed contiguously from time 0. This does
not seem useful considering the particular choice for the
objective function.

2. Additional decisions need to be taken during schedule
execution in order to determine when exactly each job
is to be started. The additional complexity of this choice
appears to be virtually impossible to deal with.

For reasons of tractability, we will, therefore, examine only
the situation where the ‘no early start’ restriction is imposed.

2.3 Model formulation

The problem under study has an irregular objective func-
tion: an optimal solution need not necessarily exist without
inserted idle time and a permutation of the jobs may not suf-
fice to produce a solution. A survey of classical scheduling
problems with this characteristic is given in Kanet and Srid-
haran (2000). In our particular environment of variable job
durations, inserted idle time can be envisaged as buffer time,
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Fig. 1 Schedule for the example problem when ω = 9.

used to cushion the propagation of a disruption towards the
successors of the disrupted job. We illustrate this problem
setting by means of a brief example. Consider a problem in-
stance with n = 6 jobs where all jobs have equal duration
di = 1, and a time horizon of ω = 9 time units is allotted to
the set of jobs. Consequently, we have three spare units of
time that can serve as a buffer. A feasible solution to this in-
stance is depicted in Fig. 1. In this schedule the starting time
of job 5 is protected from a disruption of up to two time units
in the duration of jobs 1, 2 or 6.

The following decision variables are defined:

Xip =
{

1, if job i is processed in position p,
0, otherwise,

i,p = 1, . . . , n.

Values Xip are gathered into the vector x. X represents the
set of 0/1-vectors that satisfy (1) and (2), which ensure that
each position corresponds with exactly one job:

n∑

p=1

Xip = 1, i = 1, . . . , n, (1)

n∑

i=1

Xip = 1, p = 1, . . . , n. (2)

There is a one-to-one correspondence between each x ∈ X
and a total order1 T (x) of N : for any x ∈X ,

T (x) = {
(i, j) ⊂ N × N |
∃p,q ∈ {1, . . . , n} : p < q ∧ XipXjq = 1

}
.

A second set of decision variables is the collection of

Fp = the size of the buffer immediately after the job
in position p (p = 1, . . . , n).

Values Fp are collected into the vector f. F(ω) is the set of
(component-wise) non-negative vectors f that comply with
the following equation (specifying the available total buffer

1An order relation is a subset of the Cartesian product C × C of its
ground set C (in the context of the paper, a set of job pairs) fulfill-
ing the requirements of irreflexivity, anti-symmetry and transitivity.
A complete or total order relation R on C additionally satisfies the
comparability condition that either (a, b) ∈ R or (b, a) ∈ R for any
a, b ∈ C,a �= b.

space):

n∑

p=1

Fp = ω −
n∑

i=1

di.

A set of sequencing decisions x and buffer sizes f com-
pletely determines a baseline schedule s(x, f ) in the follow-
ing way:

si(x, f ) =
n∑

p=1

Xip

(
p−1∑

q=1

(

Fq +
n∑

j=1

Xjqdj

))

,

i = 1, . . . , n. (3)

Note that implicitly s[1] = 0.
This enables us to provide a conceptual formulation for

the problem under study, subsequently referred to as STA-
BILITY:

min
n∑

i=1

ci

(
E[Si] − si

)
, (4)

subject to

S[1] = s[1](x, f ),

S[i] = max{s[i](x, f );S[i−1] + D[i−1]}, i = 2, . . . , n,

x ∈X , f ∈F(ω).

In what follows, the arguments to s are not mentioned if
there is no risk of confusion.

To evaluate the objective-function value (4) for a fea-
sible solution s, little less seems to be possible than to
evaluate all

∏
i∈N(|Ψi | + 1) possible combinations of du-

ration disruptions. In line with Elmaghraby (2005), we ob-
serve that “any approach that aspires to confront uncertainty
head-on is computationally overwhelming”. Evaluation can
be performed in pseudo-polynomial time O(n2lmaxΨmax),
with Ψmax = maxi∈N |Ψi | and lmax = maxi∈N li|Ψi |, similar
to the ‘forward-backward’ algorithm for the determination
of the distribution of a sum of independent discrete random
variables (see, for instance, Fearnhead and Meligkotsidou
2004). As this remains computationally unattractive, we de-
velop a model that focuses only on the main effects of the
separate disruption of each of the n jobs rather than on all
possible disruption interactions.

Define Ii to be the indicator variable that is 1 if job i is
disrupted, and 0 otherwise, so K := ∑

i∈N Ii is the number
of disrupted activities. The objective function (4) is altered
as follows, yielding problem STABILITY WITH ONE DIS-
RUPTION (SWOD):

min
n∑

i=1

ci

(
E[Si |K = 1] − si

)
. (5)
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The model assumes that exactly one job suffers a disruption
from its baseline duration. The resulting restricted model is
useful when disruptions are sparse and spread over time,
so that the number of interactions is limited. Our compu-
tational results (Sect. 5) show that the model is quite ro-
bust to variations in the expected number of disrupted jobs∑

i∈N πi . We elaborate on the validity of the model in
Sect. 2.5. Stand-alone evaluation of this objective function
requires O(n2Ψmax) time. Comparable restrictions of scope
have been made by Adiri et al. (1989) (a single determin-
istic or stochastic machine breakdown), Leon et al. (1994)
(one disruption on a single fallible machine in a job shop),
and Mehta and Uzsoy (1998) (the distance from a schedule
with all jobs disrupted is minimized). Finally, a reasoning
quite akin to ours in a graph-coloring context can be found
in Yáñez and Ramírez (2003), where the robustness of a col-
oring is measured as the probability of the coloring remain-
ing valid after one random complementary edge is added to
the edge set.

The following probabilities are readily computed:

P [0] := P [K = 0] =
n∏

i=1

(1 − πi),

P [1] := P [K = 1] =
n∑

i=1

πi

n∏

j=1
j �=i

(1 − πj ),

and more generally

P [k] := P [K = k] =
∑

V ⊆N
|V |=k

(∏

i∈V

πi

)( ∏

i∈N\V
(1 − πi)

)

,

k = 0,1, . . . , n,

assuming that
∏

i∈∅
(·) = 1. We can also compute the values

pi := P [Ii = 1|K = 1] =
(

πi

∏

j �=i

(1 − πj )

)/
P [1],

i = 1, . . . , n, (6)

representing the probability that job i is the unique disrupted
job, conditional on exactly one job being disrupted.

We define an additional decision variable:

Δijk = the delay in the start time of job j due to
a disruption according to scenario k of
job i, when K = 1.

SWOD can now be formulated as follows, with αijk =
pigikcj :

min
n∑

i=1

n∑

j=1

|Ψi |∑

k=1

αijkΔijk, (7)

subject to

Δijk +
q−1∑

r=p

Fr ≥ lik(Xip + Xjq − 1),

i, j,p, q = 1, . . . , n; i �= j ;
k = 1, . . . , |Ψi |; p < q, (8)

all Δijk ≥ 0, (9)

x ∈X , f ∈F(ω). (10)

In the objective (7) the expected value of the starting-time
delay of job j is computed by summing the values Δijk

weighted with probability pigik and cost cj . Restrictions
on the values Δijk are imposed by (8) for indexes i and
j that are assigned to positions p and q , respectively (the
other equations are not restrictive). The corresponding de-
lay in the start time of job j due to disruption in job i will
be equal to zero or lik − ∑q−1

r=p Fr , the disruption length of
i minus the buffer size in place between the positions p and
q , whichever is larger.

2.4 Illustration

We continue the example introduced in Sect. 2.3. Tasks in-
dexed 5 and 6 are considered to be of high importance, the
cost of delay in their starting times is c5 = c6 = 4; the other
jobs i �= 5,6 have ci = 1. Remaining data is provided in Ta-
ble 1. Job 1, for instance, has a probability of three out ten
of suffering a duration disruption, and, if this occurs, dura-
tion will increase by either one or two time units, both cases
equally likely.

An optimal solution to the corresponding instance of
SWOD is depicted in Fig. 1; the optimal objective-function
value is 0.804962. Clearly, the available idle time is put to
good use: if we reduce ω to 6 (no idle time anymore), the
optimal solution attains an associated cost of 3.45742 for
job sequence 6–2–5–4–1–3. Sequence 6–2–1–5–4–3 (opti-
mal for ω = 9) corresponds with a cost of 5.08227 when
ω = 6, whereas 6–2–5–4–1–3 achieves a cost of at least
1.25092 when the scheduling horizon is nine time units.

2.5 Properties

The scheduling problem SWOD as set out above has been
shown to be NP-hard in the ordinary sense by Leus and
Herroelen (2005), even if all |Ψi | = 1, assuming that all
pi are rational numbers. This study used a reduction from
P 2||∑wjCj (whose decision-problem version was proved
to be ordinarily NP-complete via reduction from SUBSET
SUM by Bruno et al. 1974). A similar proof can be set up to
show strong NP-hardness by reduction from P ||∑wjCj ,



J Sched (2007) 10: 223–235 227

Table 1 Disruption data for the example problem. Values pi are computed according to (6). P [0] = 0.282791 and P [1] = 0.414383, so∑n
k=2 P [k] = 0.302826

Job i 1 2 3 4 5 6

πi 0.3 0.05 0.3 0.1 0.25 0.1

|Ψi | 2 2 1 2 2 1

li1 (gi1) 1 (0.5) 1 (0.7) 2 (1) 2 (0.5) 1 (0.5) 2 (1)

li2 (gi2) 2 (0.5) 2 (0.3) – 4 (0.5) 2 (0.5) –

pi 0.292474 0.035918 0.292474 0.075827 0.22748 0.075827

πiEi [Li ]/ci 0.45 0.065 0.6 0.3 0.09375 0.05

piEi [Li ]/ci 0.438712 0.046693 0.584949 0.22748 0.085305 0.037913

which is said by the website2 on complexity results for
scheduling problems maintained at the University of Os-
nabrück to have been shown strongly NP-hard, based on
an unpublished reference by Lenstra.

We also show the following result, which is reassuring in
view of our difficulties when dealing with STABILITY:

Theorem 1 Problem STABILITY is NP-hard.

For the proof of Theorem 1, we first derive some inter-
mediate results.

Lemma 1 For any given set of values pi ∈ [0;1], i ∈ N,

there exists a corresponding set of values πi ∈ [0;1], i ∈ N ,
fulfilling the set of equations (6).

Proof From (6) we derive

piP [1](1 − πi) = πiP [0] ∀i ∈ N

or

(
P [1]
P [0]

)

pi = πi

1 − πi

∀i ∈ N. (11)

An arbitrary choice of πi ∈ [0;1] for one job i determines
(P [1]
P [0] ) and, thereby, the other π -values. All πi ∈ [0;1] be-

cause all πi/(1 − πi) ≥ 0. �

Define πmax = maxi∈N πi .

Lemma 2 For sufficiently low πmax, each optimal schedule
to STABILITY is also optimal to the corresponding instance
of SWOD it is derived from by means of (11).

2http://www.mathematik.uni-osnabrueck.de/research/OR/class/.

Proof The objective function for STABILITY is

n∑

i=1

ciE[Si − si |K = 1]P [1]

+
n∑

i=1

ci

n∑

k=2

E[Si − si |K = k]P [k]. (12)

The absolute value of the smallest possible non-zero change
in the first term of (12) is ≥P [1]

G
, with G the product of

the denominators of the values αijk (as an upper bound on
their least common multiple). In SWOD it is not difficult to
show that we can restrict attention to integer values for Δijk .
Therefore, it suffices to show that, for suitably selected val-
ues π , P [1]

G
exceeds (in absolute value) the largest possible

change in the second term of (12), so that any optimal so-
lution to the STABILITY-instance automatically optimizes
the SWOD-objective (5), or

P [1]
G

>

n∑

i=1

ci

n∑

k=2

E[Si − si |K = k]P [k]. (13)

The right-hand side of (13) is smaller than or equal to

n2cmaxlmax

n∑

k=2

P [k],

and

n∑

k=2

P [k] ≤
n∑

k=2

(
n

k

)

π2
max < 2nπ2

max,

with cmax = maxi∈N ci . P [1] in turn is ≥πmax(1−πmax)
n−1.

Hence, (13), and a fortiori (12), certainly holds if

πmax(1 − πmax)
n−1

G
≥ n2cmaxlmax2nπ2

max

or

(1 − πmax)
n−1

πmax
≥ C,
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with C = n2cmaxlmax2nG. An equivalent condition is

1 ≥ n−1
√

Cπmax + πmax, (14)

which certainly holds if πmax ≤ (2n−1C)−1, in which case
each of the two terms on the right of the latter inequality is
≤0.5. �

Equality in (14) leads to πmax = (C + 1)−1 for n = 2, but
a solution for general n does not seem to be straightforward,
which is the reason why we (further) underestimate the re-
quired πmax for a sufficient condition. Lemmas 1 and 2 al-
low for a polynomial reduction from SWOD to STABILITY,
which proves Theorem 1: πmax corresponds to each activity
with maximal pi and can, therefore, be appropriately chosen
(in polynomial time). At the same time this substantiates our
earlier claim that SWOD produces high-quality schedules in
case of suitably scarce disruptions. Nevertheless, not all op-
tima for SWOD are valid for STABILITY. In the example
discussed in Sect. 2.4 and in Fig. 1, E[S5|K = 1] = s5, and
so increasing c5 does not change optimality for SWOD of
this schedule. For STABILITY, however, large enough c5

will lead to a lower objective-function value when s5 = 6.
When the available float is zero, i.e., for the case

ω = ∑
i∈N di (= 6 for the example), ordering the jobs

in non-decreasing expected weighted disruption length
piEi[Li]/ci , with Ei[·] the expectation operator with re-
spect to Li , leads to an optimal schedule to SWOD, which
is easily shown by an adjacent-interchange argument. The
same holds for STABILITY for quantity πiEi[Li]/ci . We
refer to this rule as the EWDL-rule (for expected weighted
disruption length); the rule always leads to the same se-
quence(s) for the two problems. Application to the example
problem leads to the sequence 6–2–5–4–1–3.

Protection of the deadline is not taken up separately
in this paper, since this can be modelled by introducing
a dummy job with sufficiently large expected disruption
length, so that the dummy is scheduled last in any optimal
schedule. Finally, we also have the following result:

Lemma 3 Without loss of generality, we can set all job du-
rations equal to zero, if we accordingly subtract

∑n
i=1 di

from ω.

Proof Model (7–10) remains unchanged if the proposed
change is made. �

Based on this lemma, all durations are assumed to be zero
in the remainder of this paper.

3 An implicit-enumeration algorithm

In light of the discussion in the previous section on the com-
plexity status of SWOD, an exact algorithm with better than
exponential time complexity is unlikely to exist, which is
why we devise a branch-and-bound algorithm to perform
implicit enumeration of the solution space.

3.1 General approach of the branch-and-bound algorithm

We develop a branch-and-bound (B&B) algorithm for solv-
ing SWOD. From front to back of the machine, we fill one
job position at each level of the search tree. In this way we
gradually partition X into subsets Xh, which are defined
by order relations Ah on N : Xh = {x ∈ X : Ah ⊆ T (x)}.
The subscript h represents the index of the corresponding
search-tree node. ϕ(N,Ah,ω) denotes the best (minimal)
objective-function value reachable by any individual x ∈Xh

(with deadline ω). We initialize activity set J0 = ∅ and or-
der relation A0 = ∅. Branching from node l to node h cor-
responds to the selection of one element σl ∈ N\Jh, and we
construct Jl = Jh ∪ {σl} and Al = Ah ∪ {(i, σl) | i ∈ Jh}. Ah

is a complete order on Jh. When Jh = N , Xh is a singleton
and the restricted problem boils down to inserting buffers
into a fully specified job sequence.

An illustration of the branching scheme is provided in
Fig. 2. Nodes in the search tree are numbered in order of ex-
ploration and we traverse the tree in a depth-first manner (or
last-in-first-out), since at low-indexed levels the bounds are
not very tight, and because we can reduce the computations
in a node by using information from its direct parent node
(see Sect. 3.4). The latter benefit has been referred to as the
calculation-restart advantage (Parker and Rardin 1988).

Fig. 2 Illustration of the
branching scheme. Set Ah is
described next to each node h
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3.2 Bounding the objective function

By re-arranging and simplifying the terms in formulation
(7–10) (with zero durations, cf. Lemma 3), we derive the
following formulation for SWOD in search node h.

ϕ(N,Ah,ω) = min
∑

(i,j)∈T (x)

|Ψi |∑

k=1

αijkΔijk, (15)

subject to

si(x) ≤ sj (x), (i, j) ∈ T (x), (16)

si(x) ≤ ω, i ∈ N, (17)

si(x) + lik − sj (x) ≤ Δijk, (i, j) ∈ T (x), k ∈ Ψi, (18)

all Δijk, si(x) ≥ 0, (19)

x ∈Xh. (20)

There is a one-to-one correspondence between a set of non-
negative starting times fulfilling (16) and (17), on the one
hand, and a set of feasible buffer sizes, on the other hand;
the constraint f ∈ F(ω) is, therefore, redundant and not re-
tained (in notations f is also eliminated as an argument to s).
Equations (18) determine the disruption lengths and are ob-
tained from (8): first we add

∑p−1
r=1 Fr − ∑p−1

r=1 Fr (= 0) to
the left-hand side of (8). Next we eliminate all X-values by
retaining only the necessary running indexes by means of
T (x); the starting times si and sj , as defined in (3), can then
be recognized.

For arbitrary h, let Δ∗
ijk be the set of Δijk-values in an

optimum for model (15–20). In any search node h, it holds
that

∑

i∈Jh

∑

j∈N\Jh

|Ψi |∑

k=1

αijkΔ
∗
ijk

≥
∑

i∈Jh

∑

j∈N\Jh

|Ψi |∑

k=1

αijk max{0; lik − ω} = q(ω,h),

because N\Jh is appended after the chain of jobs Jh, and no
more than ω time units can be inserted between i and j .

Every feasible solution assigns float quantity f (0 ≤ f ≤
ω) to N\Jh (to be inserted between N\Jh-jobs) and (ω−f )

is available for Jh, if we neglect the buffer F[|Jh|]. Therefore,
in any search node h,

ϕ(N,Ah,ω) ≥ q(ω,h) + min
0≤f ≤ω

{
ϕ(Jh,Ah,ω − f )

+ ϕ(N\Jh,∅, f )
}
. (21)

In Sect. 3.4 we discuss how function ϕ(Jh,Ah, ·) is actually
computed. ϕ(N\Jh,∅, f ) is further bounded from below

in two different ways. The first bound lb1 exploits the fact
that scheduling with zero float is easy (we use the EWDL-
rule). We create an auxiliary problem with job set N\Jh, in
which the disruption length in each scenario k of each job i

is set equal to max{0; lik − f }, and the deadline is 0. lb1

does indeed constitute a lower bound because the available
float is re-used between each job pair. Plugging lb1 into (21)
yields the lower bound LB1 for ϕ(N,Ah,ω).

A different bound lb2 for ϕ(N\Jh,∅, f ) is based on
Jensen’s Inequality: if we replace all disruption scenarios
k ∈ Ψi of the jobs i ∈ N\Jh by one single disruption with
length Ei[Li], the resulting objective function is a lower
bound to that of the original problem. Replacing all cost
coefficients ci by ci∗ with i∗ being the job in N\Jh with
the lowest cost, and, likewise, taking the same lowest prob-
ability and disruption length for all jobs does not increase
the objective value. For the resulting set of |N\Jh| identical
jobs sequencing is no longer needed and optimal starting
times can be obtained by means of network-flow techniques
(see Sect. 3.4). We call the resulting bound LB2.

Unfortunately, the determination of both LB1 and LB2

requires a significant amount of computational effort. Both
lb2 and ϕ are convex in f enabling Golden Section Search;
LB1 is computed by considering all discrete values for
f ∈ [0;ω] – cf. also the Appendix. We have, therefore,
also implemented ‘simpler’ lower bounds SLBx = q(ω,h)+
ϕ(Jh,Ah,ω) + lbx(ω,h), x = 1,2, in which both terms in
the expression to be minimized in (21) receive the maxi-
mum float ω. The SLBx -bounds are never tighter than their
LBx -counterparts due to the monotonicity of ϕ and lbx in f .
Preliminary computational experience has indicated that the
use of SLB1 and SLB2 leads to a more efficient overall algo-
rithm, which is why we restrict ourselves to this choice in
the experiments of Sect. 5.

3.3 Further algorithmic details

Dominance rule 1 A pairwise-interchange argument
shows that for any two consecutive jobs i, j in an opti-
mal solution either picjELj

Lj ≤ pjciELi
Li or a non-zero

buffer should be inserted between the two positions; other-
wise, the solution is dominated. We restrict our search to
integral buffer sizes, since an optimal solution exists with
integral starting times, which follows from our discussion
in Sect. 3.4. Hence, ‘non-zero’ leads to ‘≥1’, and this addi-
tional constraint is explicitly imposed on the starting times
of the jobs in Jh. When the cumulative minimal buffer sizes
exceed ω, the current search node can be fathomed; this
test is performed implicitly by the flow computations in
Sect. 3.4. In any node h of the search tree, we let δh

ij denote
the minimal distance between i and j . This gives rise to a
starting time constraint in the form of (22) to replace (16):

si(x) + δh
ij ≤ sj (x), (i, j) ∈ T (x). (22)
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The cumulative δ-values can be subtracted from the float
f that is available for jobs N\Jh in lower-bound compu-
tations. The impact of dominance rule 1 is explained in the
computational experiments.

Dominance rule 2 Jobs with zero cost coefficient can be
sequenced last: this is always a dominant decision. Simi-
larly, jobs i with zero piELi

Li can be scheduled first on the
machine without loss of better solutions. Dominance rule 2
has less impact than rule 1 but does not consume a signif-
icant amount of CPU-time either, so its impact is not dis-
cussed in Sect. 5.

Order of exploration Due to the fact that the lower-bound
computations are intimately tied to the incremental con-
struction of solutions (see Sect. 3.4), it is difficult to use
them as the basis for determining the order of exploration
of the child nodes of a node in the search tree, since the
bounds would then need to be computed for all branching
alternatives before one of the alternatives is implemented.
We, therefore, order the candidate jobs in decreasing order
of a pseudo-cost of insertion, which is an estimate of the
true cost but not a bound. The role of this pseudo-cost is in
guiding heuristic decisions in the algorithm, not in generat-
ing incumbent solutions or in proving fathomability (Parker
and Rardin 1988). In our implementation we simply scan the
branching alternatives in EWDL-order.

3.4 Network flows

In the single-disruption setting outlined in the previous sec-
tions, Herroelen and Leus (2004) have examined how to
schedule activities without resource constraints but subject
to a partial order. This solution method is invoked to com-
pute ϕ(Jh,Ah,ω). Jh is augmented with jobs 0 and (n + 1),
both with zero cost and zero disruption probability, which
come first and last in Ah, respectively. δh

ij = 0 if i or j are 0
or (n + 1). We obtain the formulation below. The model fo-
cuses on the relative position of the jobs in time rather than
on absolute values of starting times, which is reflected in the
absence of sign constraints for the s-variables:

min
∑

(i,j)∈Ah

|Ψi |∑

k=1

αijkΔijk, (23)

subject to

sj − si ≥ δh
ij , (i, j) ∈ Ah, (24)

Δijk + sj − si ≥ lik, (i, j) ∈ Ah, k ∈ Ψi, (25)

s0 − sn+1 ≥ −ω, (26)

all Δijk ≥ 0; all si unrestricted in sign. (27)

If we assign non-negative multipliers xij , yijk and v to the
constraints (24), (25) and (26), respectively, the dual of the
foregoing linear program can be written as follows:

max
∑

(i,j)∈Ah

δh
ij xij +

∑

(i,j)∈Ah
k∈Ψi

likyijk − ωv, (28)

subject to

∑

(i,j)∈Ah

xij −
∑

(j,i)∈Ah

xji +
∑

(i,j)∈Ah
k∈Ψi

yijk −
∑

(j,i)∈Ah
k∈Ψj

yjik

=
{0, i ∈ Jh, i �= 0, n + 1,

v, i = 0,
−v, i = n + 1,

(29)

0 ≤ yijk ≤ αijk; 0 ≤ xij , (i, j) ∈ Ah, k ∈ Ψi. (30)

This is a minimum-cost network-flow problem (MCNFP)
with the node set Jh and the arc set Ah together with the
return arc (n+1,0). Each arc (i, j) ∈ Ah is actually a multi-
arc, representing |Ψi |+1 individual arcs with flow quantities
xij and yij1 to yij |Ψi |; xij has the lowest profit δh

ij = 0 or 1
and is incapacitated, while yijk has profit coefficient lik and
flow capacity αijk .

Each MCNFP is solved using an implementation of the
strongly polynomial minimum-mean cycle-canceling algo-
rithm (Ahuja et al. 1993), in which the successive negative-
cost augmenting directed cycles in the residual network are
identified by the algorithm of Karp (1978) as the negative
cycles with minimum mean cost (the mean cost of a cycle
is its cost divided by the number of arcs it contains). Note
that the residual network is always strongly connected be-
cause of the presence of the incapacitated x-arcs and return
flow v, so that Karp’s algorithm is easily implemented. Effi-
ciency enhancements such as those proposed by Dasdan and
Gupta (1998) have been tested but are of little value because
of the density of the network.

An optimal solution to model (28–30) for search node k

constitutes a good feasible starting solution for the new
search nodes branched into from k. In order to maintain a
feasible flow on backtracking, the flow on arcs whose ca-
pacity is re-set to zero is re-routed to the x-arcs.

If the MCNFP is unbounded, the primal model is in-
feasible because the cumulative minimal starting-time dif-
ferences δh

ij exceed ω, in which case we fathom the cur-
rent search node and backtrack. Otherwise, once an opti-
mal MCNFP-solution is found, an optimal solution to model
(23–27) can be constructed via complementary slackness;
this is only necessary for storing new incumbents at level n.
The following cases are distinguished:

1. yijk = 0. Since Δijk = 0 (complementary slackness),
sj ≥ si + lik .
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2. 0 < yijk < αijk . This leads to Δijk + sj − si = lik (com-
plementary slackness) and again Δijk = 0, so sj = si +
lik .

3. yijk = αijk . In this case, Δijk + sj − si = lik , and since
Δijk ≥ 0, we obtain that si ≥ sj − lik .

For the x-arcs, we have

1. xij = 0. This gives sj ≥ si + δh
ij .

2. xij > 0. This yields sj = si + δh
ij .

Using these observations we find a solution to the primal
problem by solving a longest-path problem in the residual
network (which may have negative arc lengths), where arc
lengths are equal to the minimum timelags between the job
starting times. The longest path from 0 to i minimizes si
subject to the equality and inequality constraints. Without
loss of better solutions, we choose s0 = 0 and sn+1 = ω.
The remaining starting times are well-defined because the
residual network does not contain a positive cycle, from op-
timality of the MCNFP-solution. Because of the structure
of the profit coefficients, at most one arc corresponding to
each multi-arc carries the flow at a value strictly between its
lower and upper bounds, which allows us to identify the pre-
decessor disruption scenario up to which jobs are protected.
The longest-path problem is solved using an adaptation of
the FIFO label-correcting algorithm: from s0 and sn+1, we
can obtain permanent starting times for intermediary jobs
i if equality restrictions relate si to other permanent start-
ing times (while in principle, for label-correcting algorithms
such as the FIFO algorithm, all labels are temporary until
termination of the algorithm, see Ahuja et al. 1993).

4 Heuristics

The performance of the proposed one-disruption model for
the stability objective is compared with four simple heuris-
tics. Two possibilities are considered for sequencing: a full
order on N is determined (1) as the EWDL-order (“E”) and
(2) randomly (in increasing order of job index, “I”). Note
that any job sequence leads to feasible primal solutions.

After the sequencing phase, the jobs are scheduled (or
buffers inserted), (1) optimally, using the network-flow tech-
niques of Sect. 3.4 (“N”), and (2) by means of the ADFF-
heuristic (“A”). ADFF (activity-dependent float factor), pro-
posed in Herroelen and Leus (2004) in a slightly adapted
version, does not rely on optimization, but outperformed
other ‘buffer insertion’ heuristics in the study cited. The al-
gorithm proceeds as follows: for a full order A on N , that is
input to the algorithm, the starting time of an activity i is the
integer nearest to δi(A)ω, with

δi(A) =
∑

(j,k)∈A:
(k,i)∈A∨k=i

pjELj
Lj ck

∑
(j,k)∈A:

(k,i)∈A∨k=i

pjELj
Lj ck + ∑

(j,k)∈A:
(i,j)∈A∨i=j

pjELj
Lj ck

.

If (i, j) ∈ A then δi(A) ≤ δj (A), so that si ≤ sj , and we
also have ω ≥ si for every i ∈ N , since δi ∈ [0;1], so the
resulting schedule is feasible.

The foregoing results in four heuristics HEA, HEN, HIA
and HIN, in which the second and third letter identify the
sequencing and the scheduling method applied, respectively.

5 Computational experiments

In this section we discuss the experimental setup of our com-
putational experiments (Sect. 5.1), we provide some figures
to illustrate the computational performance of our B&B-
algorithm (Sect. 5.2), and we compare the optimal solutions
to our model with the output of the heuristics (Sect. 5.3).

5.1 Experimental setup

To examine the performance of the B&B-algorithm pre-
sented in Sects. 3.1–3.4 and the underlying single-disruption
model, a series of computational experiments using ran-
domly generated test problems has been conducted. Our im-
plementation takes all integer inputs. Since the values pi and
gik may be fractional, primal objective-function coefficients
are multiplied by the factor 10 000 and rounded to the lower
integer. The coding was performed in C using the Microsoft
Visual C++ 6.0 programming environment, and the experi-
ments were run on a Dell Latitude D800 portable computer
with a Pentium M processor with 1400 MHz clock speed
and 512 MB RAM, equipped with Windows XP.

The experimental design adopted for this study consists
of datasets of 25 problem instances involving n = 8,12,16
and 20 jobs. For each job i, we directly generate pi -values
rather than πi . Half of the jobs in each instance have uncer-
tain duration. For each such uncertain job i, a value qi is se-
lected from the discrete domain [1;10] and these values are
normalized to probabilities pi . Cost coefficients ci are inte-
ger values randomly selected from [0;5]. For each activity i

in each instance of these datasets the disturbance length Li is
a discrete random variable for which gi is a discretization of
the linear function hi(x) = 2(1/Ii −x/I 2

i ), for which the in-
tercept Ii with the abscissa is a realization of a discrete uni-
form random variable with support [2;25]. Scenarios k ∈ Ψi

are determined as follows: li1 is randomly selected from the
discrete values in [1;min{4, Ii − 1}] and additional scenar-
ios lik = li,k−1 + 5 are added while lik ≤ Ii − 1.

5.2 Computational performance

For the dataset with n = 16 the behavior of the B&B-
algorithm is examined in Fig. 3 for ω varying from 0 to 42.
We observe that the computational effort in terms of seconds
of CPU-time is largest for ω ranging from 12 to 18 and then
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Fig. 3 The evolution of the number of nodes and the CPU-time (left
ordinate) and the optimal objective function (right ordinate) as a func-
tion of ω, expressed in percentage points compared with case ω = 1
(n = 16)

decreases with increasing ω. At the same time, the num-
ber of nodes in the search tree more or less stabilizes from
ω = 12 onwards. This phenomenon may be caused by the
fact that the MCNFP-computations consume less time be-
cause the objective function to be reached is simply lower,
while the number of examined solutions remains approxi-
mately the same. The same graph also provides an indica-
tion of the evolution of the optimal objective-function value.
A significant stability gain can be achieved with moderate
float values: the objective function falls steeply in the left
part of the graph, and then levels off. Similar observations
apply for other n-values.

The IP-formulation (7–10) (with dominance rule 2 en-
forced) was passed to the Lindo-solver (Industrial Lindo/PC
release 6.01 (1997); the associated dynamic link library (dll)
is called from our C-code). The running times of the solver
(“IP”) and of our algorithm (“B&B”) are provided in Table 2
for different values for ω. The trends are obvious: we are
able to produce optimal solutions to SWOD in considerably
less computation time. It is likely that the IP-approach can
be improved since we have only considered a straightfor-
ward implementation of the basic formulation, but we con-
clude that our B&B-code delivers at least competitive per-
formance.

For the B&B-algorithm without dominance rule 1, Ta-
ble 3 gives the CPU-times and the number of nodes ex-
pressed as a percentage of the corresponding values in Ta-
ble 2. Clearly, this dominance rule is especially valuable for
small idle times, and its usefulness increases with n.

5.3 Objective-function comparison with heuristics

Figure 4 summarizes the results of our comparisons with
the benchmark heuristics. All simulations are based on in-
dependent job-duration distributions with parameters πi ,
which are derived from the generated pi -values in order to

correspond to a specified expected number of disruptions
R = E[K] = ∑

i∈N πi . Higher R-values correspond to more
variability in the system. From Sect. 2.5 we derive that

πi = pi

P [0]
P [1] + pi

, i = 1, . . . , n.

Every πi is monotone decreasing in P [0]
P [1] . A good initial

guess for a given value of R is (P [0]
P [1] )

(0) = ( 1
R

− 1
n
), which

is exact if all pi are equal (pi = 1/n). This results in R(0) =
∑

i∈N π
(0)
i , with π

(0)
i being the corresponding first guess for

the πi . The numerical method regula falsi is applied to pro-
duce better estimates until the desired R is reached within
a margin of at most 0.01 (three iterations are usually suffi-
cient).

Compared with the B&B-algorithm, the running times
are negligible for all four heuristics. Per scheduling in-
stance and corresponding schedule, we estimated the ex-
pected weighted deviation by averaging the objective of
50 000 simulation runs. All results in this section pertain to
the test set with n = 16 (results for other values of n ex-
hibit comparable behavior). A vertical line in Fig. 4 indicates
that for a particular problem instance the reference schedule
SWOD has an objective-function value of 0 for higher ω-
values, and so this instance is not included in the results to
the right.

Case R = 1 (low variability, one activity disrupted on av-
erage) is closest to the one-disruption assumption of SWOD,
and the model does indeed outperform the heuristics in this
setting. Additionally, the introduction of a higher degree of
uncertainty has only a limited effect on the results: SWOD
still does considerably better than the heuristics, especially
for large float values. We conclude that the output of SWOD
is quite robust to deviations from the one-disruption assump-
tion.

For low ω-values, the sequencing approach is the key per-
formance determinant: HEN and HEA cross the ordinate at
100% (the EWDL-rule is optimal for ω = 0), versus almost
200% for HIN and HIA. From comparison of HEN with
HEA and HIN with HIA, it can be concluded that the use of
the network-flow technique for buffer insertion is valuable
for an arbitrary input job sequence.

6 Summary and conclusions

In the field of scheduling under uncertainty, the stability ob-
jective is a new topic. This paper has examined the devel-
opment of a stable one-machine schedule, in which small
changes due to job-duration fluctuations have only a local
effect and do not propagate throughout the scheduling hori-
zon. Deterministic schedules were proposed with explicitly
inserted idle time serving as protective buffer time. We have
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Table 2 Average CPU-times for the B&B-algorithm and the Lindo solver, for n = 8,12,16,20. The settings without entry were not run to
termination because of excessive computation time

n ω = 1 ω = 3 ω = 9 ω = 15

B&B IP B&B IP B&B IP B&B IP

8 0.00 s 0.14 s 0.00 s 0.14 s 0.00 s 0.12 s 0.00 s 0.11 s

12 0.01 s 25.9 s 0.02 s 27.6 s 0.02 s 29.1 s 0.02 s 29.4 s

16 0.10 s >1000 s 0.37 s >1000 s 0.47 s >1000 s 0.62 s >1000 s

20 3.37 s – 32.29 s – 111.86 s – 146.49 s –

Table 3 Average CPU-times and number of examined search nodes for the B&B-algorithm without dominance rule 1, expressed as a percentage
of the values obtained by the final version of the algorithm

n ω = 1 ω = 3 ω = 9 ω = 15

CPU Nodes CPU Nodes CPU Nodes CPU Nodes

12 117.5% 127.3% 109.3% 105.2% 98.7% 100.5% 91.8% 100.0%

16 204.3% 195.1% 106.1% 114.1% 101.3% 101.4% 103.1% 100.2%

20 815.0% 678.4% 160.9% 164.5% 102.7% 105.4% 99.8% 101.0%

(a) Results for HEN (b) Results for HIN

(b) Results for HEA (c) Results for HIA

Fig. 4 For each heuristic, the corresponding graph represents the objective function resulting from simulation with independent job durations,
expressed in percentage points compared to the optimal SWOD-schedule. ω is on the abscissa. The four curves (highest to lowest) correspond with
R = 1,2,3 and 4, respectively. Each vertical line indicates exclusion of one problem instance for all observations to the right of the line.
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observed that a significant stability gain can be achieved
with moderate buffer sizes; the incremental benefit of in-
creasing the buffers has been decreasing.

A mathematical-programming model was presented to
minimize the expected weighted deviation in starting times
of the jobs when exactly one job suffers a deviation from its
baseline duration. This model only considers the main ef-
fects of the separate disruption of each of the jobs rather than
all possible disruption interactions. The model was shown to
yield consistently good results for a wide range of variability
settings.

The branch-and-bound procedure that we have developed
to solve the proposed model is several orders of magnitude
faster than a general IP-solver. The size of the scheduling in-
stances that can be solved to guaranteed optimality remains
limited but is comparable with the size of problems solvable
by other combinatorial-optimization approaches to schedul-
ing under uncertainty (see, e.g., Daniels and Carrillo 1997;
Daniels and Kouvelis 1995; or Kouvelis et al. 2000). An ad-
ditional complication of the stability objective is the fact that
optimal schedules need not (and generally will not) be ac-
tive. Further research is needed if stable schedules are to be
developed for realistically sized scheduling problems; we
are convinced that the insights provided in this paper can
serve as guidelines in this process. It is worth noting that
the incorporation of precedence constraints between jobs re-
duces the size of the search space and may actually render
algorithms more efficient; the same may hold for other ad-
ditional constraints on feasible schedules.

Each job’s baseline duration is currently its minimum
possible duration; this choice by itself constitutes a topic for
further research (related to the issue of duration estimation,
which is studied by Britney 1976, amongst others). Finally,
one particular variation of the ‘no early start’ assumption
can be suggested that would probably enhance the practical
validity of the proposed model, namely the generalization
towards time buckets that make up the scheduling horizon,
and in which each job is available for execution at the earli-
est at the start of its assigned time bucket.
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Appendix: Counterexample for convexity of lb1

We examine the behavior of lb1 for a scheduling prob-
lem with N\Jh = {1,2} containing two jobs, as a func-
tion of f for f = 0 to f = 3, if c1 = c2 = 1, p1 = 0.99,
p2 = 0.01, Ψ1 = {1,2,3}, Ψ2 = {50,51,52}, and all gik

equal. For successive values of f = 0,1,2,3, we have lb1 =
0.51,0.5,0.33,0, such that the speed of descent increases
with f , and the function cannot be convex.
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