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Abstract. The availability of multiple orthogonal channels in a wireless net-
work can lead to substantial performance improvement by alleviating contention
and interference. However, this also gives rise to non-trivial channel coordina-
tion issues. The situation is exacerbated by variability in the achievable data-
rates across channels and links. Thus, scheduling in such networks may require
substantial information-exchange and lead to non-negligible overhead.This pro-
vides a strong motivation for the study of scheduling algorithms that can operate
with limited informationwhile still providing acceptable worst-case performance
guarantees. In this paper, we make an effort in this direction by examining the
scheduling implications of multiple channels and heterogeneity in channel-rates.
We establish lower bounds on the performance of a class ofmaximalsched-
ulers. We first demonstrate that when the underlying scheduling mechanism is
“imperfect”, the presence of multiple orthogonal channels can help alleviate the
detrimental impact of the imperfect scheduler, and yield a significantly better
efficiency-ratio in a wide range of network topologies. We then establish perfor-
mance bounds for a scheduler that can achieve a good efficiency-ratio in the pres-
ence of channels with heterogeneous rates without requiring explicit exchange
of queue-information. Our results indicate that it may be possible to achieve a
desirable trade-off between performance and information.

1 Introduction

Appropriate scheduling policies are of utmost importance in achieving good throughput
characteristics in a wireless network. The seminal work of Tassiulas and Ephremides
yielded athroughput-optimalscheduler, which can schedule all “feasible” traffic flows
without resulting in unbounded queues [8]. However, such anoptimal scheduler is diffi-
cult to implement in practice. Hence, various imperfect scheduling strategies that trade-
off throughput for simplicity have been proposed in [5, 9, 10, 7], amongst others.

The availability of multiple orthogonal channels in a wireless network can poten-
tially lead to substantial performance improvement by alleviating contention and inter-
ference. However, this also gives rise to non-trivial channel coordination issues. The
situation is exacerbated by variability in the achievable data-rates across channels and
links. Computing an optimal schedule, even in a single-channel network, is almost al-
ways intractable, due to the need for global information, aswell as the computational
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complexity. However, imperfect schedulers requiring limitedlocal information can typ-
ically be designed, which provide acceptable worst-case (and typically much better
average case) performance degradation compared to the optimal. In a multi-channel
network, the local information exchange required by even animperfect scheduler can
be quite prohibitive as information may be needed on a per-channel basis. For instance,
Lin and Rasool [4] have described a scheduling algorithm formulti-channel multi-radio
wireless networks that requires information aboutper-channelqueues at all interfering
links.

This provides a strong motivation for the study of scheduling algorithms that can
operate with limited information, while still providing acceptable worst-case perfor-
mance guarantees. In this paper, we make an effort in this direction, by examining the
scheduling implications of multiple channels, and heterogeneity in channel-rates. We
establish lower bounds on performance of a class ofmaximalschedulers, and describe
some schedulers that require limited information-exchange between nodes. Some of the
bounds presented here improve on bounds developed in past work [4].

We begin by analyzing the performance of a centralized greedy maximal scheduler.
A lower bound for this scheduler was established in [4]. However, in a large variety of
network topologies, the lower bound can be quite loose. Thusis particularly true for
multi-channel networks with single interface nodes. We establish an alternative bound
that is tighter in a range of topologies.Our results indicate that when the underlying
scheduling mechanism is imperfect, the presence of multiple orthogonal channels can
help alleviate the impact of the imperfect scheduler, and yield a significantly better
efficiency-ratio in a wide range of scenarios..

We then consider the possibility of achieving efficiency-ratio comparable to the
centralized greedy maximal scheduler using a simpler scheduler that works with limited
information. We establish results for a class of maximal schedulers coupled with local
queue-loading rules that do not require queue-informationfrom interfering nodes.

2 Preliminaries

We consider a multi-hop wireless network. For simplicity, we largely limit our discus-
sion to nodes equipped with a single half-duplex radio-interface capable of tuning to
any one available channel at any given time. All interfaces in the network have iden-
tical capabilities, and may switch between the available channels if desired. Many of
the presented results can also be used to obtain results for the case when each node is
equipped with multiple interfaces; we briefly discuss this issue.

The wireless network is viewed as a directed graph, with eachdirected link in the
graph representing an available communication link. We model interference using a
conflictrelation between links. Two links are said to conflict with each other if it is only
feasible to schedule one of the links on a certain channel at any given time. The conflict
relation is assumed to be symmetric. The conflict-based interference model provides
a tractable approximation of reality – while it does not capture the wireless channel
precisely, it is more amenable to analysis. Such conflict-based interference models have
been used frequently in the past work (e.g., [11, 4]).



Time is assumed to be slotted with a slot duration of 1 unit time (i.e., we use slot
duration as the time unit). In each time slot, the scheduler determines which links should
transmit in that time slots, as well as the channel to be used for each such transmission.

We now introduce some notation and terminology.
The network is viewed as a collection of directed links, where each link is a pair of

nodes that are capable of direct communication with non-zero rate.

– L denotes the set of directed links in the network.
– C is the set of all available orthogonal channels. Thus,|C| is the number of available

channels.
– We say that a scheduler schedules link-channel pair(l ,c) if it schedules linkl for

transmission on channelc.
– rc

l denotes the rate achievable on linkl by operating linkl on channelc, provided
that no conflicting link is also scheduled on channelc. For simplicity, we assume
that rc

l > 0 for all l ∈ L andc ∈ C .1 The ratesrc
l do not vary with time. We also

define the terms:rmax= max
l∈L ,c∈C

rc
l , andrmin = min

l∈L ,c∈C
rc
l . When two conflicting links

are scheduled simultaneously on the same channel, both achieve rate 0.
– βs denotes theself-skew-ratio, defined as the minimum ratio between rates support-

able overdifferentchannels on asinglelink. Therefore, for any two channelsc and

d, and any linkl , we have
rd
l

rc
l
≥ βs. Note that 0< βs ≤ 1.

– βc denotes thecross-skew-ratio, defined as the minimum ratio between rates sup-
portable over thesamechannel ondifferentlinks. Therefore, for any channelc, and

any two linksl andl ′:
rc
l ′

rc
l
≥ βc. Note that 0< βc ≤ 1.

Let r l = max
c∈C

rc
l . Let σs = min

l∈L

∑
c∈C

rc
l

r l
. Note thatσs ≥ 1+βs(|C |−1). Moreover, in

typical scenarios,σs will be expected to be much larger than this worst-case bound.
σs is largest whenβs = 1, in which caseσs = |C |.

– b(l) and e(l), respectively, denotes the nodes at the two endpoints of a link. In
particular, linkl is directed from nodeb(l) to nodee(l).

– E(b(l))andE(e(l))denote the set of links incident on nodesb(l) ande(l), respec-
tively. Thus, the links inE(b(l)) andE(e(l)) share an endpoint with linkl . Since
we focus on single-interface nodes, this implies that if link l is scheduled in a cer-
tain time slot, no other link inE(b(l)) or E(e(l)) can be scheduled at the same
time. We refer to this as aninterface conflict. LetA(l) = E(b(l))∪E(e(l)). Note
that l ∈ A(l). Links in A(l) are said to beadjacentto link l . Links that have an
interface conflict with linkl are those that belong toE(b(l))∪E(e(l)) \ {l}. Let
Amax= max

l
|A(l)|.

– I(l) denotes the set of links that conflict with linkl when scheduled on the same
channel.I(l) may include links that also have an interface-conflict with link l . By
convention,l is considered included inI(l). The subset ofI(l) comprising interfer-
ing links that are not adjacent tol is denoted byI ′(l), i.e., I ′(l) = I(l) \A(l). Let
Imax= max

l
|I ′(l)|.

1 Though we assume thatrc
l > 0 for all l ,c, the results can be generalized very easily to handle

the case whererc
l = 0 for some link-channel pairs.



– Kl denotes the maximum number of non-adjacent links inI ′(l) that can be sched-
uled on a given channel simultaneously ifl is not scheduled on that channel.Kl (|C |)
denotes the maximum number of non-adjacent links inI ′(l) that can be scheduled
simultaneously using any of the|C | channels (without conflicts) ifl is not sched-
uled for transmission. Note that here we exclude links that have an interface conflict
with l .

– K is the largest value ofKl over all linksl , i.e.,K = max
l

Kl . K|C | is the largest value

of Kl (|C |) over all linksl , i.e.,K|C | = max
l

Kl (|C |). Let Imax= max
l

|I ′(l)|. It is not

hard to see that forsingle-interfacenodes:

K ≤ K|C | ≤ min{K|C |, Imax} (1)

We remark that the termK as used by us is similar, but not exactly the same as
the termK used in [4]. In [4],K denotes the largest number of links that may be
scheduled simultaneously if some linkl is not scheduled, including links adjacent
to l . We exclude the adjacent links in our definition ofK. Throughout this text, we
will refer to the quantity defined in [4] asκ instead ofK.

– Let γl be 0 if there are no other links adjacent tol at either endpoint ofl , 1 if there
are other adjacent links at only one endpoint, and 2 if there are other adjacent links
at both endpoints.

– γ is the largest value ofγl over all linksl , i.e.,γ = max
l

γl .

– Load vector: We consider single-hop traffic, i.e., any traffic that originates at a node
is destined for a next-hop node, and is transmitted over the link between the two
nodes. Under this assumption, all the traffic that must traverse a given link can be
treated as a single flow.
The traffic arrival process for linkl is denoted by{λ(t)}. The arrivals in each slott
are assumed i.i.d. with averageλl . The average load on the network is denoted by

load vector
−→
λ = [λ1,λ2, ...,λ|L |], whereλl denotes the arrival rate for the flow on

link l . λl may possibly be 0 for some linksl .
– Queues: The packets generated by each flow are first added to a queue maintained

at the source node. Depending on the algorithm, there could be a single queue for
each link, or a queue for each (link, channel) pair.

– Stability: The system of queues in the network is said to be stable if, for all queues
Q in the network, the following is true [2]:

lim
t→∞

sup
1
t

t

∑
τ=1

E[q(τ)] < ∞

whereq(τ) denotes the backlog in queueQ at timeτ
(2)

– Feasible load vector: In each time slot, the scheduler used in the network deter-
mines which links should transmit and on which channel (recall that each link is a
directed link, with a transmitter and a receiver). In different time slots, the sched-
uler may schedule a different set of links for transmission.A load vector is said to
be feasible, if there exists a scheduler that can schedule transmissions to achieve
stability (as defined above), when using that load vector.



– Link rate vector: Depending on the schedule chosen in a given slot by the sched-
uler, each linkl will have a certain transmission rate. For instance, using our nota-
tion above, if linkl is scheduled to transmit on channelc, it will have raterc

l (we
assume that, if the scheduler schedules linkl on channelc, it does not schedule
another conflicting link on that channel). Thus, theschedulechosen for a time-slot
yields alink rate vectorfor that time slot. Note thatlink rate vectorspecifies rate of
transmission used on each link in a certain time slot. On the other hand,load vector
specifies the rate at which traffic is generated for each link.

– Feasible rate region: The set of all feasible load vectors constitutes the feasible
rate-region of the network, and is denoted byΛ.

– Throughput-optimal scheduler:A throughput-optimalscheduler is one that is ca-

pable of maintaining stable queues for any load vector
−→
λ in the interior ofΛ. For

simplicity of notation, we use
−→
λ ∈ Λ in the rest of the text to indicate a load-vector

vectorλ lying in the interior of a regionΛ.
From the work of [8], it is known that a scheduler that maintains a queue for each
link l , and then chooses the schedule given by argmax−→r ∑l ql r l , is throughput-
optimal for scenarios with single-hop traffic (ql is the backlog in linkl ’s queue,
and the maximum is taken over all possible link rate vectors−→r ). Note thatql is a
function of time, and queue-backlogs at the start of a time slot are used above for
computing the schedule (or link-rate vector) for that slot.

– Imperfect scheduler: It is usually difficult to determine the throughput-optimal link-
rate allocations, since the problem is typically computationally intractable. Hence,
there has been significant recent interest inimperfectscheduling policies that can
be implemented efficiently. In [5], cross-layer rate-control was studied for an im-
perfect scheduler that chooses (in each time slot) link-rate vector−→s such that
∑l ql sl ≥ δ argmax−→r ∑ql r l , for some constantδ (0 < δ ≤ 1).
It was shown [5] that any scheduler with this property can stabilize any load-vector
−→
λ ∈ δΛ. Note that if a rate vector

−→
λ is in Λ, then the rate vectorδ

−→
λ is in δΛ.

δΛ is also referred to as theδ-reduced rate-region. If a scheduler can stabilize all
−→
λ ∈ δΛ, its efficiency-ratiois said to beδ.

– Maximal scheduler: Under our assumed interference model, a schedule is said tobe
maximal if (a) no two links in the schedule conflict with each other, and (b) it is not
possible to add any link to the schedule without creating a conflict (either conflict
due to interference, or an interface-conflict).

We will also utilize the Lyapunov-drift based stability criterion from Lemma 2 of
[6].

3 Scheduling in Multi-channel Networks

As was discussed previously, throughput-optimal scheduling is often an intractable
problem even in a single-channel network. However, imperfect schedulers that achieve a
fraction of the stability-region can potentially be implemented in a reasonably efficient
manner. Of particular interest is the class of imperfect schedulers know asmaximal
schedulers, which we defined in Section 2. The performance of maximal schedulers
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1 Identical channels/gains
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Fig. 1. 2-D visualization of channel heterogeneity

under various assumptions has been studied in much recent work, e.g., [10, 7], with the
focus largely on single-channel wireless networks. The issue of designing a distributed
scheduler that approximates a maximal scheduler has been addressed in [3], etc.

When there are multiple channels, but each node has one or few interfaces, an
additional degree of complexity is added in terms of channelselection. In particular,
when the link-channel ratesrc

l can be different for different linksl , and channelsc, the
scheduling complexity is exacerbated by the fact that it is not enough to assign differ-
ent channels to interfering links; for good performance, the channels must be assigned
taking achievable rates into account, i.e., individual channel identities are important.

Scheduling in multi-channel multi-radio networks has beenexamined in [4], which
argues that using a simple maximal scheduler is used in such anetwork could possibly
lead to arbitrary degradation in efficiency-ratio (assuming arbitrary variability in rates)
compared to the efficiency-ratio achieved with identical channels. A queue-loading al-
gorithm was been proposed, in conjunction with which, a maximal scheduler can stabi-
lize any vector in

(

1
κ+2

)

Λ, for arbitraryβc andβs values. This rule requires knowledge
of of the length of queues at all interfering links, which canincur substantial overhead.

While variable channel gains are a real-world characteristic that cannot be ignored
in designing effective protocols/algorithms, it is important that the solutions not re-
quire extensive information exchange with large overhead that offsets any performance
benefit. In light of this, it is crucial to consider various points of trade-off between
information and performance. In this context, the quantities βs,βc and σs defined in
Section 2 prove to be useful. The quantitiesβs andβc can be viewed as two orthog-
onal axes for worst-case channel heterogeneity (Fig. 1). The quantityσs provides an
aggregate (and thus averaged-out) view of heterogeneity along theβs axis.βs = 1 cor-
responds to a scenario where all channels have identical characteristics, such as band-
width, modulation/transmission-rate, noise-levels, etc., and the link-gain is a function
solely of the separation between sender and receiver.βc = 1 corresponds to a sce-
nario where all links have the same sender-receiver separation, and the same condi-
tions/characteristics for any given channel, but the channels may have different char-
acteristics, e.g., an 802.11b channel with a maximum supported data-rate of 11 Mbps,
and an 802.11a channel with a maximum supported data-rate of54 Mbps.



Vertex representing a link
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Fig. 2.Example of improved bound on efficiency ratio: link-interference topology is a star with a
center link andx radial links

In this paper, we show that in a single-interface network, a simple maximal sched-
uler augmented with local traffic-distribution and threshold rules achieves an efficiency-

ratio at least
(

σs
K|C |+max{1,γ}|C |

)

. The noteworthy features of this result are:

1. This scheduler does not require information about queuesat interfering links.
2. The performance degradation (compared to the scheduler of [4]) when rates are

variable, i.e.,βs,βc 6= 1, is not arbitrary, and is at worstσs
|C | ≥

1+βs(|C |−1)
|C | ≥ 1

|C | .
Thus, even with a purely local information based queue-loading rule, it is possible
to avoid arbitrary performance degradation even in the worst case. Typically, the
performance would be much better.

3. In many network scenarios, the provable lower bound of
(

σs
K|C |+max{1,γ}|C |

)

may

actually be better than1
κ+2. This is particularly likely to happen in networks with

single-interface nodes, e.g., suppose we have three channels a,b,c with ra
l = 1, rb

l =
1, rc

l = 0.5 for all links l . Then, in the network in Fig. 2 (where the link-interference
graph is a star withx radial vertices, and there are no interface-conflicts),K|C | =

x,γ = 0,σs = 2.5, and we obtain a bound of 1
0.4x+1.2, whereas the proved lower

bound of the scheduler of [4] is1
x+2.

The multi-channel scheduling problem is further complicated if the ratesrc
l are time-

varying, i.e.,rc
l = rc

l (t). However, handling such time-varying rates is beyond the scope
of the results in this paper, and we address only the case where rates do not exhibit time-
variation. Note that related prior work on multi-channel scheduling [4] also addresses
only time-invariant rates.

4 Summary of Results

For multi-channel wireless networks with single-interface nodes, we present lower bounds
on the efficiency-ratio of a class of maximal schedulers (including both centralized and
distributed schedulers), which indicate that the worst-case efficiency-ratio can be higher
when there are multiple channels (as compared to the single-channel case). More specif-
ically, we show that:

– The number of links scheduled by any maximal scheduler are within at least aδ
fraction of the maximum number of links activated by any feasible schedule, where:

δ = max

{

|C |

K|C | +max{1,γ}|C |
,

1
max{1,K + γ}

}



– A centralized greedy maximal (CGM) scheduler achieves an efficiency-ratio which
is at least
max{ σs

K|C |+max{1,γ}|C | ,
1

max{1,K+γ}} This constitutes an improvement over the lower

bound for the CGM scheduler proved in [4]. SinceK|C | ≤ min{K|C |, Imax} ≤ κ|C |,
this new bound on efficiency-ratio can often be substantially tighter.

– We show that any maximal scheduler, in conjunction with a simple local queue-
loading rule, and a threshold-based link-participation rule, achieves an efficiency-

ratio of at least
(

σs
K|C |+max{1,γ}|C |

)

. This scheduler is of significant interest as it does

not require information about queues at all interfering links.

Due to space constraints, proofs are omitted. Please see [1]for the proofs.
Note that the text below makes the natural assumption that two links that conflict

with each other (due to interference or interface-conflict)arenot scheduled in the same
timeslot by any scheduler discussed in the rest of this paper.

5 Maximal Schedulers

We begin by presenting a result about the cardinality of the set of links scheduled by
any maximal scheduler.

Theorem 1. Let Sopt denote the set of links scheduled by a scheduler that seeks to
maximize thenumberof links scheduled for transmission, and letSmax denote the set of
links activated byanymaximal scheduler. Then the following is true:

|Smax| ≥ max

{

|C |

K|C | +max{1,γ}|C |
,

1
max{1,K + γ}

}

|Sopt| (3)

The proof is omitted due to lack of space. Please see [1].

6 Centralized Greedy Maximal Scheduler

A centralized greedy maximal (CGM) scheduler operates in the manner described be-
low.

In each timeslot:

1. Calculate link weightswc
l = ql rc

l for all links l and channelsc.
2. Sort the link-channel pairs(l ,c) in non-increasing order ofwc

l .
3. Add the first link-channel pair in the sorted list (i.e., the one with highest weight)

to the schedule for the timeslot, and remove from the list alllink-channel pairs that
are no longer feasible (due to either interface or interference conflicts).

4. Repeat step 3 until the list is exhausted (i.e., no more links can be added to the
schedule).

In [4], it was shown that this centralized greedy maximal (CGM) scheduler can
achieve an approximation-ratio which is at least

(

1
κ+2

)

in a multi-channel multi-radio
network, whereκ is the maximum number of links conflicting with a linkl that may



possibly be scheduled concurrently whenl is not scheduled. This bound holds for arbi-
trary values ofβs andβc, and variable number of interfaces per node.

However, this bound can be quite loose in multi-channel wireless networks where
each device has one or few interfaces.

In this section, we prove an improved bound on the efficiency-ratio achievable with
the CGM scheduler forsingle-interfacenodes. We also briefly discuss how it can be
used to obtain a bound for multi-interface nodes.

Theorem 2. Let Sopt denote the set of links activated by an optimal scheduler that
chooses a set of link-channel pairs(l ,c) for transmission such that∑wc

l is maximized.
Let c∗(l) denote the channel assigned to link l∈ Sopt by this optimal scheduler.
Let Sg denote the set of links activated by the centralized greedy maximal (CGM)

scheduler, and let cg(l) denote the channel assigned to a link l∈ Sg.
Then:

∑
l∈Sg

wcg(l)
l

∑
l∈Sopt

wc∗(l)
l

≥ max

{

σs

K|C | +max{1,γ}|C |
,

1
max{1,K + γ}

}

(4)

The proof is omitted due to lack of space. Please see [1].
Theorem 2 leads to the following result:

Theorem 3. The centralized greedy maximal (CGM) scheduler can stabilize theδ-
reduced rate-region, where:

δ = max

{

σs

K|C | +max{1,γ}|C |
,

1
max{1,K + γ}

}

Proof. We earlier discussed a result from [5] that any scheduler, which chooses rate-
allocation−→s such that∑ql sl ≥ δ argmax∑ql r l , can stabilize theδ-reduced rate-region.
Using Theorem 2 and this result, we obtain the above result.

We remark that the above bound is independent ofβc.

6.1 Multiple Interfaces per Node

We now describe how the result can be extended to networks where each node may
have more than one interface.

Given the original networknode-graph G= (V,E), construct the following trans-
formed graphG′ = (V ′,E′):

For each nodev ∈ V, if v hasmv interfaces, createmv nodesv1,v2, ...vmv in V ′.
For each edge(u,v) ∈ E, whereu,v havemu,mv interfaces respectively, create edges
(ui ,v j),1 ≤ i ≤ mu,1 ≤ j ≤ mv, and setq(ui ,v j ) = q(u,v). Set the achievable channel
rate appropriately for each edge inE′ and each channel. For example, assuming that the
channel-rate is solely a function ofu,v andc, then: for each channelc, setrc

(ui ,v j )
= rc

(u,v).



The transformed graphG′ comprises only single-interface links, and thus Theorem
2 applies to it. Moreover, it is not hard to see that a schedulethat maximizes∑ql r l in
G′ also maximizes∑ql r l in G. Thus, the efficiency-ratio from Theorem 2 for network
graphG′ yields an efficiency-ratio for the performance of the CGM scheduler in the
multi-interface network.

We briefly touch upon how one would expect the ratio to vary as the number of in-
terfaces at each node increases. Note that the efficiency-ratio depends onβs, |C |,K|C |,γ.
Of theseβs and|C | are always the same for bothG andG′. γ is also always the same
for any G′ derived from a given node-graphG, as it depends only on the number of
other node-links incident on either endpoint of a node-linkin G (which is a property
of the node topology, and not the number of interfaces each node has). However,K|C |

might potentially increase inG′ as there are many more non-adjacent interferinglinks
when each interface is viewed as a distinct node. Thus, for a given number of channels
|C |, one would expect the provable efficiency-ratio to initially decrease as we add more
interfaces, and then become static.

While this may initially seem counter-intuitive, this is explained by the observation
that multiple orthogonal channels yielded a better efficiency-ratio in the single-interface
case since there was more spectral resource, but limited hardware (interfaces) to utilize
it. Thus, the additional channels could be effectively usedto alleviate the impact of
sub-optimal scheduling. When the hardware is commensurate with the number of chan-
nels, the situation (compared to an optimal scheduler) increasingly starts to resemble a
single-channel single-interface network.

6.2 Special Case:|C | Interfaces per Node

Let us consider the special case where each node in the network has|C | interfaces, and
achievable rate on a link between nodesu,v and all channelsc∈ C is solely a function of
u,v andc (and not of the interfaces used). In this case, it is possibleto obtain a simpler
transformation. Given the original network node-graphG= (V,E), construct|C | copies
of this graph, viz.,G1,G2, ...,G|C |, and view each node in each graph as having a single-
interface, and each network as having access to a single channel. Then each network
graphGi can be viewed in isolation, and the throughput obtained in the original graph
is the sum of the throughputs in each graph. From Theorem 2, ineach graph we can

show that the CGM scheduler is within
(

1
max{1,K+γ}

)

of the optimal. Thus, even in the

overall network, the CGM scheduler is within
(

1
max{1,K+γ}

)

of the optimal.

7 A Rate-Proportional Maximal Multi-Channel (RPMMC)
Scheduler

In this section, we describe a scheduler where a link does notrequire any information
about queue-lengths at interfering links.

The set of all links in denoted byL . The arrival process for linkl is i.i.d. over all
time-slotst, and is denoted by{λl (t)}, with E[λl (t)] = λl . We make no assumption
about independence of arrival processes for two linksl ,k. However, we consider only



the class of arrival processes for whichE[λl (t)λk(t)] is bounded, i.e.,E[λl (t)λk(t)] ≤ η
for all l ∈ L ,k∈ L , whereη is a suitable constant.

Consider the following scheduler:

Rate-Proportional Maximal Multi-Channel (RPMMC) Scheduler
Each link maintains a queue for each channel. The length of the queue for linkl and
channelc at timet is denoted byqc

l (t). In time-slott: only those link-channel pairs with
qc

l (t) ≥ rc
l participate, and the scheduler computes a maximal schedulefrom amongst

the participating links. The new arrivals during this slot,i.e., λl (t) are assigned to

channel-queues in proportion to the rates, i.e.,λc
l (t) =

λl (t)r
c
l

∑
b∈C

rb
l

Theorem 4. The RPMMC scheduler stabilizes the queues in the network forany load-
vector within theδ-reduced rate-region, where:

δ =
σs

K|C | +max{1,γ}|C |

The proof is omitted due to space constraints. Please see [1].

Corollary 1 The efficiency-ratio of the RPMMC scheduler is always at least:
(

σs

|C |

)(

1
K +max{1,γ}

)

Proof. The proof follows from Theorem 4 and (1).

8 Discussion

The intuition behind the RPMMC scheduler is simple: by splitting the traffic across
channels in proportion to the channel-rates, each link seesthe average of all channel-
rates as itseffective rate. This helps avoid worst-case scenarios where the link may
end up being repeatedly scheduled on a channel that yields poor rate on that link. The
algorithm is made attractive by the fact that no informationabout queues at interfer-
ing links is required. Furthermore we showed that the efficiency-ratio of the RPMMC

scheduler is always at least
(

σs
|C |

)(

1
K+max{1,γ}

)

. Note that 1+ βs(|C |−1) ≤ σs ≤ |C |.

Thus, the efficiency ratio of this algorithm does not degradeindefinitely asβs becomes
smaller. Moreover, in many practical settings, one can expect σs to beΘ(|C |) and the
performance would be much better compared to the worst-caseof σs = 1+βs(|C |−1).

9 Future Directions

The RPMMC scheduler provides motivation for further study of schedulers that work
with limited information. The scheduler of Lin-Rasool [4] and the RPMMC scheduler
represent two extremes of a range of possibilities, since the former uses information



from all interfering links, while the latter uses no such information. Evidently, using
more information can potentially allow for a better provable efficiency-ratio. However,
the nature of the trade-off curve between these two extremities is not clear. For instance,
an interesting question to ponder is the following: If interference extends up toM hops,
but each link only has information uptox < M hops, what provable bounds can be ob-
tained? This would help quantify the extent of performance improvement achievable
by increasing the information-exchange, and provide insights about suitable operating
points for protocol design, since control overhead can be a concern in real-world net-
work scenarios.
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