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Abst rac t  

It is w e l l  known t h a t  except  i n  t h e  case of makespan problems, t h e r e  

are hard ly  any a n a l y t i c a l  r e s u l t s  f o r  flowshop problems. This paper  cons ide r s  

of a class of flowshop problems where job  process ing  t i m e  a t  a machine is 

propor t iona te  t o  t h e  process ing  t i m e  on t h e  f i r s t  machine. We show t h a t  f o r  

t h e  pre-emptive ve r s ion  of t h e  problem, in orde r  t o  minimize any r e g u l a r  

measure of performance, i t  is s u f f i c i e n t  t o  cons ide r  permutat ion schedules .  

Also, r e s u l t s  f o r  var ious  o t h e r  measures are der ived.  A c h a r a c t e r i z a t i o n  of 

t h e  opt imal  s o l u t i o n  f o r  t h e  weighed t a r d i n e s s  problem is der ived  which is 

analogous t o  i t s  coun te rpa r t  i n  t h e  s i n g l e  machine case. It is i n d i c a t e d  as 

how t h i s  c h a r a c t e r i z a t i o n  nay be u s e d  t o  develop h e u r i s t i c s  f o r  flowshop 

problems. 
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SCHEDULING I N  PROPORTIONATE FLOWSHOPS 

1.0 In t roduc t ion  

Flowshop problems have been t h e  c e n t e r  of a t t e n t i o n  f o r  r e s e a r c h e r s  bn 

Scheduling Theory f o r  a long pe r iod  of t i m e .  

spec ia l  case of g e n e r a l  jobshop problems, even t h e s e  problems have proven 

themselves t o  be t o o  complex t o  provide many a n a l y t i c  s o l u t i o n s .  As has been 

e s t a b l i s h e d  by Lens t ra  [12] ,  most problems in t h i s  area f a l l  in t h e  NP-complete 

class. There are no known polynomially bounded procedures  f o r  t h i s  class of 

problems and i t  is u n l i k e l y  t h a t  t h e r e  are any such procedures .  Most p r i o r  

r e sea rch  in t h e  f i e l d  of flowshop problems w a s  conf ined  to makespan problems. 

The most widely quoted r e s u l t  is due t o  Johnson [ l o ]  t o  minimize makespan in 

two machine flowshop problem and i t s  ex tens ion  t o  a s p e c i a l  case of t h r e e  

machine flowshop problem. Also, Gilmore and Gomory 161 devised  an  a lgo r i thm 

wi th  a computat ional  burden of O(n2) f o r  t h e  two machine flowshop problem 

where job wa i t ing  is not  permit ted.  There are hard ly  any o t h e r  known poly- 

nomially bounded procedures  f o r  t h e  problems i n  flowshops. Another most 

widely quoted r e s u l t  is due t o  Conway, Maxwell and Miller [4]  proving t h e  

o p t i m a l i t y  of t h e  same permutat ion sequence on t h e  f i r s t  two machines i n  a 

flowshop f o r  any r e g u l a r  measure O E  performance and t h e  a d d i t i o n a l  r e s u l t  

t h a t  t h e  sequence on t h e  last two n a c h h e s  is t h e  same f o r  makespan problems. 

The f a c t  t h a t  t h e s e  r e s u l t s  were discovered more than  two decades ago and no 

f u r t h e r  s i g n i f i c a n t  progress  has been made in t h e  case of flowshop p r o b l e m  i n  

d e r i v i n g  a n a l y t i c a l  a t tes t s  t o  t h e  complexity of t h e s e  problems. Most of t he  

r ecen t  r e sea rch  i n  flowshops has  Saen l a r g e l y  d i r e c t e d  towards f i n d i n g  opt imal  

s o l u t i o n  u s i n g  enumerat ive methods such as branch and bound o r  developing 

Though flowshop problems are a 
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"good" h e u r i s t i c s  f o r  makespan problems [l, 2,3,5,7,13,14,15] There is 

ha rd ly  any s i g n i f i c a n t  work done f o r  o t h e r  impor tan t  measures of performance. 

This  paper addres ses  schedul ing  problems i n  t h e  con tex t  of a p a r t i c u l a r  

k ind  of flowshop where t a s k  process ing  t i m e  of any job  a t  a machine i s  pro- 

p o r t i o n a t e  t o  t h e  process ing  t i m e  on the f i r s t  machine. R e s u l t s  de r ived  i n  

t h i s  paper re la te  t o  t h e  problems where t h e  jobs  can be pre-empted. 

t h a t  i n  such a case, p e r m t a t i o n  schedules  c o n s t i t u t e  t h e  set of dominant 

schedules  f o r  any r e g u l a r  measure of performance and w e  f u r t h e r  d e r i v e  r e s u l t s  

f o r  performance measures based on completion times and/or  t h e  due d a t e s  of t h e  

jobs.  These r e s u l t s  hold good even i n  cases where job -pass ing  is p roh ib i t ed .  

In case of shops where in t e rmed ia t e  queues are p r o h i b i t e d  (once a job  is  begun 

on t h e  f i r s t  machine, it has  t o  be processed wi thout  i n t e r r u p t i o n  a t  any 

subsequent machine), t h e s e  r e s u l t s  hold good except  t h a t  t h e  s ta r t  times on t h e  

f i r s t  machine have t o  be a p p r o p r i a t e l y  delayed. 

We show 

2.0 Permutation Schedules € o r  t h e  p ropor t iona te  flowshops 

I n  t h i s  s e c t i o n ,  we  cons ider  pre-emptive v e r s i o n  of t h e  g e n e r a l  problem 

f o r  t h e  p ropor t iona te  flowshop problem. 

{J J J ... J } so as t o  minimize a r e g u l a r  measure of performance. 

F i r s t l y ,  i t  is  not  unusual  t o  f i n d  jobs being pre-empted i n  practice i n  o rde r  

We wish t o  schedule  a set of jobs ,  

1' 2' 3' n 

t o  exped i t e  them through t h e  product ion system. 

an important  r e l a x a t i o n  of t h e  o r i g i n a l  problem from the computat ional  po in t  

Secondly, pre-emptive case is  

. 

of  view. The fo l lowing  p ropos i t i on  holds  good f o r  t h e  pre-emptive case. 

PROPOSITION 1: For minimizing any r e g u l a r  measure of performance, i t  is  

s u f f i c i e n t  t o  cons ide r  pe rnu ta t ion  schedules .  



Proof: Consider an op t ima l  schedule  i n  which t h e  o r d e r i n g  of jobs is 

Consider any two jobs Ji not  t h e  same on t h e  last two machines m-1 and m. 

and J j  such t h a t  Ji < J j  on machine m and Ji < Ji on machine m-1 as i n  

F igu re  1. 

Ji Machine m 

Machine m-1 

J j  

l J j  I I Ji 1 

FIGURE 1 

Since a l l  jobs have t h e  same process ing  time on any p a r t i c u l a r  machine, 

pa i rwi se  in t e rchange  of any two jobs on a p a r t i c u l a r  machine does not  a f f e c t  

t h e  completion times of any o t h e r  jobs on t h a t  p a r t i c u l a r  machine. So, p a i r -  

wise in t e rchange  of jobs Ji and J j  on machine m-1 does no t  a f f e c t  completion 

time of any o t h e r  job on machine m-1. I f  such p a i w i s e  in t e rchange  on machine 

m-1 i s  forbidden by t h e  schedule  on machine m-2, we can swi t ch  jobs Ji  and J 

on machine m-2 as w e l l  and so on back t o  t h e  f i r s t  machine. Thus, we can 

always form an opt imal  schedule  i n  which machines m-1 and m have t h e  same 

sequence and completion times of jobs on machine m are no g r e a t e r  t han  t h e  

o r i g i n a l  given opt imal  schedule.  Now, we extend t h e  same argument i n d u c t i v e l y  

between machines m-1 and m-2, m-2 and m-3, ... 2 and 1. Since t h e  completion 

times of t h e  jobs are no g r e a t e r  than t h e  completion times i n  t h e  o r i g i n a l  

j 

schedule ,  p e r n u t a t i o n  schedules  c o n s t i t u t e  t h e  set of dominant schedules  f o r  

any regular measure of performance. 

Now we d e r i v e  some r e s u l t s  r e l a t i n g  t o  t h e  completion t i m e s  of t h e  jobs.  

L e t  RK r e p r e s e n t  t h e  processing time f o r  any job  (piece) on machine k. 
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[i I Machine k J 

Consider any p e r n u t a t i o n  schedule.  

t h e  p i e c e  i n  t h e  i t h  p o s i t i o n  on machine k. 

L e t  Ck r e p r e s e n t  t h e  completion t i m e  f o r  
[i I 

The f o l l o w i n g  r e s u l t  holds:  

J 
[ i + l l  

PROPOSITION 11: For any piece.  

Machine k+l 

PROOF: In a permutation schedule ,  same sequence is used on a l l  machines. 

= p1 C1 [11  

[11 C2 = P I  + P2 

I 

[i+ll J [ i l  
J 

The rest of t h e  proof is  by induct ion.  Suppose t h a t  in a permutat ion 

k schedule  Ck - ck 
t r u e  f o r  k-1 and i=2 ,3 ,4  .... n) .  

Dk+l is a cons tan t  and is given by max(Dk 

= D f o r  some p a r t i c u l a r  machine k ( t h i s  is obviously 111 li-11 
k+l - Ck+l = Dk+l where [ i l  I i -11  We show t h a t  C 

' 'k+l) - 
We have two cases t o  consider-  1) pk+l D k and 2) pk+l < Dk 

Case 1: p > D~ k+l  - 

Figure 2 
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[i 1 Machine k+l J 

Ck+l - Ck+l 
In t h i s  case, t h e r e  is no i d l e  t i m e  on machine k-1. 

= Pk+l lnax <Dk, 'k+l) 

Therefore ,  [ i l  ii-1) 

[ i + l ]  

Case 2 : pk+l < Dk 
k 
[i+l] Ck 

[I1 

Machine k 

< > 
Dk 

'k+l 

F igure  3 

In t h i s  case, 

Thus, 

k = D  k+l  - Ck+l 
[i 1 ii-11 C 

= c j +  c i = j  ,j } 
[I 1 i = 2  E C [ i T  [i-11 

= Cj + (i-1) max { Dj-', P j  } 1 

{ Pq 1 j = c + (i-1) max 
[i 1 q = l . .  . j 

We had ea r l i e r  i n d i c a t e d  t h a t  aakespan problems are t h e  most widely 

researched  area in t h e  case of flowshop problems. Fur ther ,  it is w e l l  known 

t h a t  t h e  opt imal  schedule  need not necessa r i ly  be a p e r m t a t i o n  schedule  

except  t h a t  t h e  sequence is t h e  s.iae on t h e  f i r s t  two machines and a l s o  on 

t h e  l a s t  two machines. 

on t h e  f i r s t  machine, t h e  fo l lowing  p ropos i t i on  holds  good in t h e  case of 

However, when a l l  jobs  have equa l  process ing  times 

p ropor t iona te  flowshop. 
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PROPOSITION 111: Any permutat ion schedule  provides  t h e  minimum 

makespan f o r  t h e  p ropor t iona te  flowshop problem i n  t h e  case of jobs wi th  

equa l  p rocess ing  times on t h e  f i r s t  machine. 

PROOF: Let  pmax be t h e  maximum process ing  t i m e  of a job  on some 

machine. 

h a s  t o  undergo process ing  p r i o r  t o  and subsequent t o  t h i s  machine. 

t h e  minimum process ing  t i m e  f o r  t h e s e  ope ra t ions  is CkSl k=m pk - p,,. 
t h e  minimum makespan i s  given by 

Work con ten t  a t  t h i s  p a r t i c u l a r  machine is npmaxo Also, every job 

Therefore ,  

Hence, 

From Propos i t ion  11, i t  is clear t h a t  t h e  minimum makespan is  achieved 

by any p e r m t a t i o n  schedule  and hence t h e  r e s u l t  

Now we d i s c u s s  some measures r e l a t i n g  t o  t h e  completion times of jobs  in 

t h e  case of t h e  p ropor t iona te  flowshop f o r  jobs  w i t h  equa l  process ing  times. 

COROLLARY 1: Any permutat ion schedule  of t h e  p i e c e s  minimizes F. 

- 
PROOF: F i f  a r e g u l a r  measure of performance and p e r m t a t i o n  schedules  

c o n s t i t u t e  t h e  set of dominant schedules .  From Propos i t i on  11, i t  is clear 

t h a t  a l l  permutat ion schedules  have t h e  same F. 

- 
COROLLARY 2: F is  minimized by schedul ing  t h e  jobs accord ing  t o  t h e  

W 

weighted s h o r t e s t  p rocess ing  time r u l e .  
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Ji I 

PROOF: Y i s  a regular measure of performance and w e  need t o  cons ide r  
W 

only p e r n u t a t i o n  schedules .  Completion times of jobs i n  a permutat ion schedule  

J j  I 

i s  given by 

( a p p l i c a t i o n  of P r o p o s i t i o n  11) 

It fol lows d i r e c t l y  from b a s i c  a l g e b r a  t h a t  t h e  product  of two series 

i s  minimized by a r r ang ing  one i n  t h e  ascending o r d e r  and t h e  o t h e r  i n  non- 

a s c e nd i ng o r de r . 

J u s t  as i n  t h e  s i n g l e  machine case, we can show i n  t h i s  case a l s o  t h a t  

a r r a n g i n g  t h e  jobs i n  non i n c r e a s i n g  o r d e r  of t h e  weights  minimizes t h e  

weighted l a t e n e s s  as shown below: 

COROLLARY 3: The Earliest Due Date r u l e  minimizes maximum l a t e n e s s  and 

maximum t a r d i n e s s .  

PROOF: Consider any, two ad jacen t  jobs J and J i n  a given schedule  such 
i j 

t h a t  Ji < J and di > d L e t  t be t h e  completion t i m e  of Ji. 
j j’ 
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Suppose we in te rchange  Ji and Jj.  Maximum l a t e n e s s  among J and J is  g iven  by 
i j 

max{ t - d  t 
j '  

+ P,, - d i  1 . . . ( 2 )  

It is clear t h a t .  (1) > (2 ) .  Thus, by in t e rchang ing  Ji and J t h e  
j '  

schedule  is no worse o f f  and i n  f a c t ,  it would improve i f  t h e  maximum l a t e n e s s  

i n  t h e  o r i g i n a l  sequence occurred  f o r  J ), t h e  

r e s u l t  ho lds  good f o r  maximum t a r d i n e s s  as w e l l .  

S ince Tmax equa l s  max(0, L 1' I M X  

Another important measure of performance is weighted average t a r d i n e s s .  

S ince  t h i s  i s  a r e g u l a r  measure of performance, i t  is s u f f i c i e n t  t o  cons ide r  

only pe rnu ta t ion  schedules .  Following r e s u l t s  relate t o  t h i s  measure of 

performance f o r  jobs wi th  equa l  process ing  t i m e s  on t h e  f i r s t  machine i n  t h e  

case of p ropor t iona te  flowshops. 

PROPOSITION I V :  The opt imal  pre-emptive s o l u t i o n  t o  t h e  Cw T problem 
i i  

i s  found by so lv ing  t h e  l i n e a r  assignment problem. 

PROOF: It is clear from t h e  Propos i t ion  11 t h a t  Cm is independent of 
[i 1 

t h e  job  occupying i t h  p o s i t i o n  i n  t h e  sequence. W e  can form t h e  c o s t  ma t r ix  

t a b l e a u  f o r  t h e  l i n e a r  assignment problem ( J ,  i n d i c a t e s  t h e  pena l ty  incur -  

r e d  i f  J .  is i n  t h e  i t h  p o s i t i o n  in t h e  sequence) as fol lows:  
i j  

J 
k=m 

j'ij = w j max { 0, Ck,l pk + (i- l)*pmax - d j  1 

Solv ing  t h e  l i n e a r  assignment problem us ing  t h e  above c o s t  t ab l eau  y i e l d s  

optimum so lu t ion .  It may be noted t h a t  t h e  s o l u t i o n  procedure has  a computa- 

t i o n a l  burden of t h e  o rde r  of O(n 3 ). 

In f a c t ,  t h e  r e s u l t  i n  t h e  Propos i t ion  I V  can e a s i l y  be gene ra l i zed  t o  

any pena l ty  func t ion  of t h e  completion times of t h e  jobs so long as they are 
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nondecreasing f u n c t i o n s  of t h e  completion times of t h e  jobs  and t h e  performance 

measure is a d d i t i v e  over  t h e  complet ion of t h e  jobs.  

Though P ropos i t i on  I V  provides  us  wi th  a p o l y n o d a l l y  bounded procedure 

f o r  s o l v i n g  t h e  pre-emptive v e r s i o n  of CwiTi, problem, t h e  fo l lowing  

c h a r a c t e r i z a t i o n  of op t imal  s o l u t i o n  f o r  t h e  same problem is i n t e r e s t i n g  

from t h e  p o i n t  of view of developing h e u r i s t i c s  f o r  t h e  flowshop problems. 

PROPOSITION V: Consider a n  opt imal  sequence f o r  Cw T problem f o r  jobs 

wi th  equa l  process ing  times on t h e  f i r s t  machine f o r  t h e  p ropor t iona te  flow- 

shop. i < j (without  loss of g e n e r a l i t y ,  

assume t h a t  job index  is same as t h e  l o c a t i o n a l  index  in the sequence under 

cons ide ra t ion ) .  Then, t he  fo l lowing  proper ty  must be s a t i s f i e d  i n  an  opt imal  

i i  

Consider any two jobs ,  Ji and J 
j’ 

sequence- 

wi 

+ 
m + 7  

( d j  - C [ i ] )  1 -  
(j-i) p max 

PROOF: The proof is similar t o  t h e  proof provided in t h e  appendix of 

a n  e a r l i e r  paper on t h e  myopic h e u r i s t i c s  €OK t h e  s i n g l e  machine t a r d i n e s s  

problem [16] and is omit ted he re  f o r  t h e  sake  of b rev i ty .  

This proper ty  can be cons idered  t o  be v a l i d  f o r  a r e l a x a t i o n  of t h e  

g e n e r a l  problem i n  p ropor t iona te  Elowshops where jobs are permi t ted  t o  be 

preempted a t  u n i t  i n t e r v a l s  on t h e  f i r s t  machine and a l l  such preempted 

pieces have t h e  same due d a t e  as the  o r i g i n a l  job. 

However, i f  a l l  jobs have equal weights  and equa l  p rocess ing  times, then 

t h e  ear l ies t  due d a t e  sequence provides  an  optimum sequence f o r  t h e  average 

t a r d i n e s s  problem as shown i n  t h e  n e x t  p ropos i t ion-  
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Ji 

PROPOSITION VI: I f  a l l  j obs (p ieces )  have equa l  weights ,  t h e  earliest  

due d a t e  sequence minimizes t h e  average  t a r d i n e s s .  

J j  

I 

j 
Case 1: Suppose t h a t  both J and J are e a r l y  or  on t i m e .  Since J 

i j 
i s  e a r l y  o r  on t i m e  and d > d pa i rwise  in te rchange  does no t  degrade t h e  

s o l u t i o n .  
i j' 

Ji J j  I 

Case 2: Both Ji and J are ta rdy .  Pa i rwise  in te rchange  does not  degrade 
j 

t h e  s o l u t i o n  s i n c e  t h e  weights are equal .  

Case 3: J is  ta rdy  and J is  e a r l y  o r  on t i m e .  This  is impossible  
i j 

[ j  lrn s i n c e  di > d and C[ilrn < C 
j 

Case 4 :  J is e a r l y  o r  on time and J is  ta rdy .  
i j 

Subcase 4.1 

j 
d > di 

< 
Pmax 

Figure 6 

Clea r ly ,  pa i rwi se  in te rchange  improves the  s o l u t i o n .  
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Ji I 
I 

Subcase 4.2 

J j  I 
I 

> I I pnlax < 

I Ji I J j  

Clea r ly ,  pa i rwise  in te rchange  improves t h e  s o l u t i o n .  

Subcase 4 . 3  

Cost of Ji and 
J i n  given schedule  
j 

Con t r ibu t ion  
a f t e r  in te rchange  

m - d  - 
- +%ax j 

Sub t rac t ing  ( 4 )  from ( 3 ) ,  

= di  - Cm 
[ i  I 

> o  

.... ( 3 )  

.... ( 4 )  

Therefore ,  pa i rwi se  in te rchange  r e s u l t s  i n  an  improvement. 
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Ji I I 

Subcase 4.4 
di 
1 

d j  
1 

J j  

Cost of Ji 
and J i n  given schedule  

j 

Cont r ibu t ion  
a f t e r  in te rchange  

. 
PQaX 

Figure  9 

m - - 
c [ i ]  + pmax - j 

m 
= c [ i ]  + pmax - di 

.... ( 5 )  

.... ( 6 )  

Since  d > di ( 5 )  (6) .  Therefore ,  pa i rwi se  in te rchange  improves t h e  i 
s o lu  t ion. 

Thus, i n  a l l  cases, pa i rwise  in te rchange  does not  degrade t h e  s o l u t i o n  

and, i n  f a c t ,  may improve it. Since our  arguments employ only informat ion  

about  t h e  i n d i v i d u a l  jobs and not  t h e  l o c a t i o n ,  ensurance of l o c a l  optimum 

a t  a l l  l o c a t i o n s  i n  t h e  sequence ensu res  g l o b a l  optimum and hence t h e  earliest  

due d a t e  r u l e  i s  optimal.  

3.0 Schedules with no job -pass ing  

There is a s p e c i a l  class of flow-shop problems where no job  pass ing  i s  

permit ted.  That is ,  once a job i s  begun on t h e  f i r s t  machine, i t  main ta ins  

same p r i o r i t y  r e l a t i v e  t o  o t h e r  jobs f o r  subsequent process ing  on any o t h e r  

machine. 

s t a t e d  by King [ll], " t h i s  is  t y p i c a l l y  t h e  s i t u a t i o n  i n  many manufacturing 

p l a n t s  where jobs  are moved from s t a t i o n  t o  s t a t i o n  by conveyor." Even i n  

F l e x i b l e  Manufacturing Systems, d u e  t o  problems involved i n  computation of 

No job-pass ing  is a mat te r  of pract ical  and des ign  expediency. As 
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op t ima l  r e source  u t i l i z a t i o n ,  not  more than  two o r  t h r e e  jobs are permit ted 

t o  pass  t h e  o t h e r s  i n  t h e  sequence [ 8 , 9 ] .  

s i g n i n g  i n p u t  b u f f e r s  t o  machines t o  accommodate any scheme o t h e r  t han  F i r s t  

Come, F i r s t  Served is r a t h e r  complex, i n  many s i t u a t i o n s  no j ob -pass ing  

r e s t r i c t i o n  is used. 

Also, s i n c e  t e c h n o l o g i c a l l y  de- 

In case of p ropor t iona te  flowshops, t h e  fo l lowing  remark holds  good. 

REMARK 1: Pernu ta t ion  Schedules e Schedules wi th  no job-passing.  

Hence all r e s u l t s  der ived in s2.0 equa l ly  hold good f o r  jobs with equa l  

p rocess ing  times in propor t iona te  flowshops. 

4.0 Schedules with no j o b - w a i t i n g  

Another special  class of flowshop problems are those  where job  w a i t i n g  

is forbidden. 

w i th  no wai t ing  a t  any o t h e r  machine. 

s i t u a t i o n  [11,17]. 

set of schedules  with no job-passing.  So, h e r e  aga in ,  it s u f f i c e s  t o  cons ide r  

only permutation schedules  f o r  opt imizing any r e g u l a r  measure of performance. 

But, due t o  t h e  no-wait cond i t ion ,  i t  would be necessary have i n s e r t e d  idle 

t i m e  on t h e  f i r s t  machine. 

case of two machines wi th  no job-wait  is given by Gilmore and Gomory [ 6 ] .  

Wismer [17] has shown t h a t  t h e  makespan problem f o r  g e n e r a l  flowshop problem 

w i t h  no j ob  w a i t i n g  can be t r a n s l a t e d  i n t o  an  e q u i v a l e n t  Asymmetric Trave l ing  

Salesman Problem. Lens t r a  [I21 has shown t h a t  t h e  Hamiltonian Path problem 

i s  r e d u c i b l e  t o  makespan problem in flowshops wi th  no job-wait ,  t hus  e s t ab -  

l i s h i n g  t h e  lat ter problem t o  be No-Complete. 

Once a job  is begun on t h e  f i r s t  machine, it must be processed 

Steelmaking is an example of such a 

It is clear t h a t  schedules  wi th  no j o b - w a i t i n g  are a sub- 

An exac t  a lgo r i thm f o r  minimizing makespan f o r  t h e  

King and Spachis [ll] developed 
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h e u r i s t i c s  f o r  t h i s  problem and t e s t e d  them a g a i n s t  random sequences and o t h e r  

h e u r i s t i c s .  

However, i n  t h e  case of jobs with e q u a l  p rocess ing  t i m e s  t o  be processed 

i n  p r o p o r t i o n a t e  flowshop, we can e a s i l y  extend t h e  r e s u l t s  ob ta ined  i n  $2.0 

even f o r  s i t u a t i o n s  where j o b - w a i t i n g  is  no t  permit ted.  

PROPOSITION VII: Any p e r m t a t i o n  sequence f o r  p r o p o r t i o n a t e  flow-shop 

( a l l  jobs with equa l  p rocess ing  times on t h e  f i r s t  machine) can  be scheduled 

so t h a t  completion t i m e s  on t h e  l as t  machine are not changed and t h e  jobs do 

n o t  form queues a t  any machine. 

PROOF: Consider two ad jacen t  jobs,  J and Ji+l. Suppose Ji starts on i - 
machine 1 a t  t i m e  t. Then, 

Ji+l can s tar t  on machine 1 only a t  such a t i m e  t h a t  once i t s  p rocess ing  

has begun, i t  does not  have t o  w a i t  a t  any o t h e r  machine. I n  o r d e r  t o  d e t e r -  

mine when J complete on machine m, we simply l e f t  s h i f t  Ji+l such t h a t  i ts  i+l 

process ing  on machine m can begin immediately a f t e r  Ji is complete on machine 

m (Figure 10) and then r i g h t  s h i f t  i t  t o  t h e  minimum p o s s i b l e  e x t e n t  t o  make 

i t  f e a s i b l e  (Figure 11). 

I I Ji+l , 

<-> i n d i c a t e s  
ove r  l a p  

Figure 13 F igure  11 
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Overlap of J and Ji+l 

on machine j 
m i 

max { 0, c j  - [Ci + pm - Cqq p 1 1 
q = j  q 

Therefore ,  t i m e  d i f f e r e n c e  between completion t i m e s  of two success ive  jobs on 

machine m is given by 
= 

Pmax - pIn + pm Pmax 

Thus, cm 
[i] is given by 

cm + (i-l).*pmax 
[I1 

We no te  t h a t  t h i s  va lue  is same as t h e  one de r ived  i n  P ropos i t i on  XI with  no 

c o n s t r a i n t s  on job-wait ing.  Thus, a l l  t h e  r e s u l t s  der ived  i n  s2.0 hold good 

even i n  t h e  case when job-wai t ing  is prohib i ted .  However, t h e  start  times on 

t h e  f i r s t  machine w i l l  be delayed so  t h a t  t h e r e  are no queues a t  in t e rmed ia t e  

machines. The start  t i m e  f o r  t h e  job i n  t h e  p o s i t i o n  i is given  by 

5.0 Conclusion 

There are hardly any known a n a l y t i c  r e s u l t s  f o r  flowshop problems except  

i n  t h e  case  of makespan problem. 

where job  process ing  times a t  any machine are p ropor t iona te  t o  t h e  t i m e  on the  

f i r s t  machine. 

pre-empted, t h e s e  r e s u l t s  may be u s e d  f o r  developing lower bounds f o r  non- 

preemptive cases. Also, t he  proper ty  developed f o r  c h a r a c t e r i z i n g  an  opt imal  

s o l u t i o n  f o r  t h e  weighted t a r d i n e s s  problem can be used f o r  developing heur i s -  

t i c s  f o r  t h e  flowshop problems. Our pre l iminary  i n v e s t i g a t i o n s  i n  t h i s  d i r e c -  

t i o n  a p p e a r  t o  be promising and t h e s e  a s p e c t s  are c u r r e n t l y  be ing  i n v e s t i g a t e d .  

We have der ived  r e s u l t s  f a r  t h e  s i t u a t i o n  

Though we cons idered  t h e  case where jobs are permi t ted  t o  be 
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