
Scheduling Jobs on Computational Grids Using

Fuzzy Particle Swarm Algorithm

Ajith Abraham1,3, Hongbo Liu2, Weishi Zhang3, and Tae-Gyu Chang1

1 IITA Professorship Program, School of Computer Science and Engineering,
Chung-Ang University, Seoul 156-756, Korea

ajith.abraham@ieee.org
2 Department of Computer, Dalian University of Technology, 116023, Dalian, China

lhb@dlut.edu.cn
3 School of Computer Science, Dalian Maritime University,116024, Dalian, China

teesiv@dlmu.edu.cn

Abstract. Grid computing is a computing framework to meet the grow-
ing computational demands. This paper introduces a novel approach
based on Particle Swarm Optimization (PSO) for scheduling jobs on
computational grids. The representations of the position and velocity of
the particles in the conventional PSO is extended from the real vectors
to fuzzy matrices. The proposed approach is to dynamically generate an
optimal schedule so as to complete the tasks within a minimum period
of time as well as utilizing the resources in an efficient way. We evaluate
the performance of the proposed PSO algorithm with Genetic Algorithm
(GA) and Simulated Annealing (SA) approaches.

1 Introduction

A computational grid is a large scale, heterogeneous collection of autonomous
systems, geographically distributed and interconnected by low latency and high
bandwidth networks [1]. Job sharing (computational burden) is one of the major
difficult tasks in a computational grid environment [2]. Grid resource manager
provides the functionality for discovery and publishing of resources as well as
scheduling, submission and monitoring of jobs. However, computing resources
are geographically distributed under different ownerships each having their own
access policy, cost and various constraints. The job scheduling problem is known
to be NP-complete. Recently genetic algorithms were introduced to minimize
the average completion time of jobs through optimal job allocation on each grid
node in application-level scheduling [3],[5]. Because of the intractable nature of
the problem and its importance in grid computing, it is desirable to explore other
avenues for developing good heuristic algorithms for large scale problems.

Particle Swarm Optimization (PSO) is a population-based optimization tool,
which could be implemented and applied easily to solve various function opti-
mization problems, or the problems that can be transformed to function opti-
mization problems [4]. In this paper, fuzzy matrices are used to represent the
position and velocity of the particles in the PSO algorithm for mapping the job

B. Gabrys, R.J. Howlett, and L.C. Jain (Eds.): KES 2006, Part II, LNAI 4252, pp. 500–507, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Scheduling Jobs on Computational Grids 501

schedules and the particle. Our approach is to dynamically generate an optimal
schedule so as to complete the tasks within a minimum period of time as well as
utilizing all the resources.

Rest of the paper is organized as follows. In Section 2, issues related to grid
resource management and scheduling is provided following by the proposed PSO
based algorithm in Section 3. Experiment results are presented in Section 4 and
some conclusions are provided towards the end.

2 Grid Resource Management and Scheduling Issues

The grid resource broker is responsible for resource discovery, deciding allocation
of a job to a particular grid node, binding of user applications (files), hardware re-
sources, initiate computations, adapt to the changes in grid resources and present
the grid to the user as a single, unified resource [5]. To formulate the problem,
we consider Jj (j ∈ {1, 2, · · · ,n}) independent user jobs on Gi (i ∈ {1, 2, · · · , m})
heterogeneous grid nodes with an objective of minimizing the completion time
and utilizing all the computing nodes effectively. The speed of each grid node
is expressed in number of Cycles Per Unit Time (CPUT), and the length of
each job in number of cycles. Each job Jj has its processing requirement (cycles)
and the node Gi has its calculating speed (cycles/second). Any job Jj has to
be processed in the one of grid nodes Gi, until completion. Since all nodes at
each stage are identical and preemptions are not allowed, to define a schedule it
suffices to specify the completion time for all tasks comprising each job.

To formulate our objective, define Ci,j (i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}) as
the completion time that the grid node Gi finishes the job Jj ,

∑
Ci represents

the time that the grid node Gi completes the processing of all the jobs. Define
Cmax = max{∑Ci} as the makespan, and

∑m
i=1(

∑
Ci) as the flowtime. An

optimal schedule will be the one that optimizes the flowtime and makespan. The
conceptually obvious rule to minimize

∑m
i=1(

∑
Ci) is to schedule Shortest Job

on the Fastest Node (SJFN). The simplest rule to minimize Cmax is to schedule
the Longest Job on the Fastest Node (LJFN). Minimizing

∑m
i=1(

∑
Ci) asks the

average job finishes quickly, at the expense of the largest job taking a long time,
whereas minimizing Cmax, asks that no job takes too long, at the expense of
most jobs taking a long time. Minimization of Cmax will result in maximization
of

∑m
i=1(

∑
Ci).

3 Dynamic Grid Job Scheduling Based on PSO

PSO is a population-based optimization algorithm, which could be implemented
and applied easily to solve various function optimization problems, or the prob-
lems that can be transformed to function optimization problems [4]. In this
Section, we design a fuzzy scheme based on discrete particle swarm optimization
[6] to solve the job scheduling problem.

Suppose G = {G1, G2, · · · , Gm}, and J = {J1, J2, · · · , Jn}, then the fuzzy
scheduling relation from G to J can be expressed as follows:



502 A. Abraham et al.

S =

⎡

⎢
⎢
⎢
⎣

s11 s12 · · · s1n

s21 s22 · · · s2n

...
...

. . .
...

sm1 sm2 · · · smn

⎤

⎥
⎥
⎥
⎦

Here sij represents the degree of membership of the i-th element Gi in domain
G and the j-th element Jj in domain J with reference to S. The fuzzy relation
S between G and J has the following meaning: for each element in the matrix
S, the element

sij = µR(Gi, Jj), i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (1)

µR is the membership function, the value of sij means the degree of membership
that the grid node Gj would process the job Ji in the feasible schedule solution.
In the grid job scheduling problem, the elements of the solution must satisfy the
following conditions:

sij ∈ [0, 1], i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (2)
m∑

i=1

sij = 1, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (3)

According to fuzzy matrix representation of the job scheduling problem, the
position X and velocity V are re-defined as follows:

X =

⎡

⎢
⎢
⎢
⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤

⎥
⎥
⎥
⎦

; V =

⎡

⎢
⎢
⎢
⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vm1 vm2 · · · vmn

⎤

⎥
⎥
⎥
⎦

The elements in the matrix X above have the same meaning as (1). Accord-
ingly, the elements of the matrix X must satisfy the constraint conditions given
in (2), (3). We get the equations (4) and (5) for updating the positions and
velocities of the particles based on the matrix operations.

V (t+1) = w⊗V (t)⊕ (c1 ∗r1)⊗ (X#(t)�X(t))⊕ (c2 ∗r2)⊗ (X∗(t)�X(t)). (4)

X(t + 1) = X(t) ⊕ V (t + 1). (5)

The position matrix may violate the constraints given in (2) and (3) after
some iterations, so it is necessary to normalize the position matrix. First we
make all the negative elements in the matrix to become zero. If all elements
in a column of the matrix are zero, they need be re-evaluated using a series
of random numbers within the interval [0,1]and then the matrix undergoes the
following transformation without violating the constraints:

Xnormal =

⎡

⎢
⎢
⎢
⎣

x11/
∑m

i=1 xi1 x12/
∑m

i=1 xi2 · · · x1n/
∑m

i=1 xin

x21/
∑m

i=1 xi1 x22/
∑m

i=1 xi2 · · · x2n/
∑m

i=1 xin

...
...

. . .
...

xm1/
∑m

i=1 xi1 xm2/
∑m

i=1 xi2 · · · xmn/
∑m

i=1 xin

⎤

⎥
⎥
⎥
⎦



Scheduling Jobs on Computational Grids 503

Since the position matrix indicates the potential scheduling solution, we
choose the element which has the max value, then tag it as “1”, and other num-
bers in the column are set as “0” in the scheduling array. After all the columns
have been processed, we get the scheduling solution from the scheduling array
and the makespan (solution). The scheme based on fuzzy discrete PSO for the
job scheduling problem is summarized as Algorithm 1, in which the job lists and
grid node lists are follows:

– JList1 = Job list maintaining the list of all the jobs to be processed.
– JList2 = Job list maintaining only the list of jobs being scheduled.
– JList3 = Job list maintaining only the list of jobs already allocated (JList3

= JList1 − JList2).
– GList1 = List of available grid nodes (including time frame).
– GList2 = List of grid nodes already allocated to jobs.
– GList3 = List of free grid nodes (GList3 = GList1 − GList2).

4 Experiment Settings, Results and Discussions

In our experiments, Genetic Algorithm (GA) and Simulated Annealing (SA)
were used to compare the performance with PSO. Specific parameter settings of
all the considered algorithms are described in Table 1. Each experiment (for each
algorithm) was repeated 10 times with different random seeds. Each trial had a
fixed number of 50∗m∗n iterations (m is the number of the grid nodes, n is the
number of the jobs). The makespan values of the best solutions throughout the
optimization run were recorded. And the averages and the standard deviations
were calculated from the 10 different trials. In a grid environment, the main
emphasis was to generate the schedules as fast as possible. So the completion
time for 10 trials were used as one of the criteria to improve their performance.

First we tested a small scale job scheduling problem involving 3 nodes and 13
jobs represented as (3,13). The node speeds of the 3 nodes are 4, 3, 2 CPUT,
and the job length of 13 jobs are 6,12,16,20,24,28,30,36,40,42,48,52,60 cycles,
respectively. Fig. 1(a) shows the performance of the three algorithms. The results
(makespan) for 10 GA runs were {47, 46, 47, 47.3333, 46, 47, 47, 47, 47.3333, 49},
with an average value of 47.1167. The results of 10 SA runs were {46.5, 46.5, 46,
46,46, 46.6667, 47, 47.3333, 47, 47}with an average value of 46.6. The results of 10
PSO runs were {46, 46, 46, 46, 46.5, 46.5, 46.5, 46, 46.5, 46.6667}, with an average
value of 46.2667. The optimal result is supposed to be 46. While GA provided
the best results twice, SA and PSO provided the best result three and five times
respectively. Table 2 shows one of the best job scheduling results for (3,13), in
which “1” means the job is scheduled to the respective grid node. Further, we
tested the three algorithms for other three (G, J) pairs, i.e. (5, 100), (8, 60)
and (10, 50). All the jobs and the nodes were submitted at one time. Fig. 1(b)
illustrate the performance curves for the three algorithms during the search
process for (10, 50). The average makespan values, the standard deviations and
the time for 10 trials are illustrated in Table 3. Although the average makespan
value of SA was better than that of GA for (3,13), the case was reversed for



504 A. Abraham et al.

Algorithm 1. A scheduling scheme based on fuzzy discrete PSO
0 If the grid is active and (JList1 = 0) and no new jobs have been submitted,

wait for new jobs to be submitted. Otherwise, update GList1 and JList1.
1 If (GList1 = 0), wait until grid nodes are available. If JList1 > 0, update

JList2. If JList2 < GList1 allocate the jobs on a first-come-first-serve basis
and if possible allocate the longest job on the fastest grid node according to the
LJFN heuristic. If JList1 > GList1, job allocation is to be made by following
the fuzzy discrete PSO algorithm detailed below. Take jobs and available grid
nodes from JList2 and GList3. If m ∗ n (m is the number of the grid nodes, n
is the number of the jobs) is larger than the dimension threshold DT , the jobs
and the grid nodes are grouped into the fuzzy discrete PSO algorithm loop, and
the single node flowtime is accumulated. The LJFN-SJFN heuristic is applied
alternatively after a batch of jobs and nodes are allocated.

2 At t = 0, represent the jobs and the nodes using fuzzy matrix.
3 Begin fuzzy discrete PSO Loop

3.0 Initialize the size of the particle swarm n and other parameters.
3.1 Initialize a random position matrix and a random velocity matrix for each par-

ticle, and then normalize the matrices.
3.2 While (the end criterion is not met) do

3.2.0 t = t + 1;
3.2.1 Defuzzify the position, and calculate the makespan and total flowtime for each

particle (the feasible solution);
3.2.2 X∗ = argminn

i=1(f(X∗(t − 1)), f(X1(t)), f(X2(t)), · · · , f(Xi(t)), · · · , f(Xn(t)));
3.2.3 For each particle, X#

i (t) = argminn
i=1(f(X#

i (t − 1)), f(Xi(t))
3.2.4 For each particle, update each element in its position matrix and its velocity

matrix according to equations (9, 10 and 6);
3.2.5 Normalize the position matrix for each particle;

3.3 End while.
4 End of the fuzzy discrete PSO Loop.
5 Check the feasibility of the generated schedule with respect to grid node avail-

ability and user specified requirements. Then allocate the jobs to the grid nodes
and update JList2, JList3, GList2 and GList3. Un-allocated jobs (infeasible
schedules or grid node non-availability) shall be transferred to JList1 for re-
scheduling or dealt with separately.

6 Repeat steps 0-5 as long as the grid is active.

bigger problem sizes. PSO usually had better average makespan values than
the other two algorithms. The makespan results of SA seemed to depend on
the initial solutions extremely. Although the best values in the ten trials for SA
were not worse than other algorithms, it had larger standard deviations. For SA,
there were some “bad” results in the ten trials, so the averages were the largest.
In general, for larger (G, J) pairs, the time was much longer. PSO usually spent
the least time to allocate all the jobs on the grid node, GA was the second, and
SA had to spent more time to complete the scheduling. It is to be noted that
PSO usually spent the shortest time to accomplish the various job scheduling
tasks and had the best results among all the considered three algorithms.



Scheduling Jobs on Computational Grids 505

Table 1. Parameter settings for the algorithms

Algorithm Parameter name Parameter value

Size of the population 20
Probability of crossover 0.8GA
Probability of mutation 0.02
Scale for mutations 0.1

Number operations before temperature adjustment 20
Number of cycles 10

SA Temperature reduction factor 0.85
Vector for control step of length adjustment 2
Initial temperature 50

Swarm size 20
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

Table 2. An optimal schedule for (3,13)

JobGrid Node
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

G1 0 0 1 0 0 0 1 1 0 1 0 0 1
G2 1 0 0 1 1 0 0 0 1 0 1 0 0
G3 0 1 0 0 0 1 0 0 0 0 0 1 0

Table 3. Performance comparison of the three algorithms

InstanceAlgorithm Item
(3,13) (5,100) (8,60) (10,50)

Average makespan 47.1167 85.7431 42.9270 38.0428
GA Standard Deviation ±0.7700 ±0.6217 ±0.4150 ±0.6613

Time 302.9210 2415.9 2263.0 2628.1

Average makespan 46.6000 90.7338 55.4594 41.7889
SA Standard Deviation ±0.4856 ±6.3833 ±2.0605 ±8.0773

Time 332.5000 6567.8 6094.9 6926.4

Average makespan 46.2667 84.0544 41.9489 37.6668
PSO Standard Deviation ±0.2854 ±0.5030 ±0.6944 ±0.6068

Time 106.2030 1485.6 1521.0 1585.7

Table 4. Run time performance comparison for large dimension problems

(G,J) PSO GA

(60,100) 1721.1 1880.6

(100,1000) 3970.80 5249.80



506 A. Abraham et al.

It is possible that (G, J) is larger than the dimension threshold DT . We con-
sidered two large-dimensions of (G, J), (60,500) and (100,1000) by submitting
the jobs and the nodes in multi-stages consecutively. In each stage, 10 jobs were
allocated to 5 nodes, and the single node flowtime was accumulated. The LJFN-
SJFN heuristic was applied alternatively after a batch of jobs and nodes were
allocated. Fig. 2 and Table 4 illustrates the performance of GA and PSO during
the search process for the considered (G, J) pairs. As evident, even though the
performance were close enough, PSO generated the schedules much faster than
GA as illustrated in Table 4.

0 500 1000 1500 2000
46

47

48

49

50

51

52

53

54

55

Iteration

M
ak

es
p

an

GA
SA
PSO

0 0.5 1 1.5 2 2.5

x 10
4

35

40

45

50

55

60

65

Iteration

M
ak

es
p

an

GA
SA
PSO

Fig. 1. Performance for job scheduling [a] (3,13) and [b] (5,100)

0 2 4 6 8 10 12

x 10
4

0

50

100

150

200

250

300

350

Iteration

M
ak

es
p

an

GA
PSO

0 0.5 1 1.5 2 2.5

x 10
5

0

100

200

300

400

500

600

Iteration

M
ak

es
p

an

GA
PSO

Fig. 2. Performance for job scheduling [a] (60,500) and [b] (100,1000) for GA and PSO

5 Conclusions

In this paper, we evaluated the performance of a fuzzy particle swarm algorithm
for grid job scheduling and compared it performance with genetic algorithms
and simulated annealing. Empirical results reveal that the proposed approach
can be applied for job scheduling. When compared to GA and SA, an important
advantage of the PSO algorithm is its speed of convergence and the ability to
obtain faster and feasible schedules.



Scheduling Jobs on Computational Grids 507

Acknowledgements

This research was supported by the International Joint Research Grant of the
Institute of Information Technology Assessment foreign professor invitation pro-
gram of the Ministry of Information and Communication, Korea.

References

1. Foster,I., Kesselman,C.: The Grid: Blueprint For A New Computing Infrastructure.
Morgan Kaufmann, USA (2004).

2. Laforenza,D.: Grid Programming: Some Indications Where We Are Headed Author.
Parallel Computing, 28(12) (2002) 1733–1752

3. Gao,Y., Rong,H.Q., Huang,J.Z.: Adaptive Grid Job Scheduling With Genetic Algo-
rithms. Future Generation Computer Systems, 21 (2005) 151–161.

4. Kennedy,J., Eberhart,R.: Swarm Intelligence. Morgan Kaufmann (2001)
5. Abraham,A., Buyya,R., Nath,B.: Nature’s Heuristics For Scheduling Jobs on Com-

putational Grids. In: Proceedings of the 8th International Conference on Advanced
Computing and Communications, Tata McGraw-Hill, India, (2000) pp. 45-52.

6. Pang,W., Wang,K., Zhou,C., Dong,L.: Fuzzy Discrete Particle Swarm Optimization
for Solving Traveling Salesman Problem. In: Proceedings of the Fourth Interna-
tional Conference on Computer and Information Technology, IEEE CS Press (2004)
796–800.


	Introduction
	Grid Resource Management and Scheduling Issues
	Dynamic Grid Job Scheduling Based on PSO
	Experiment Settings, Results and Discussions
	Conclusions

