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Scheduling Live Migration of Virtual Machines

Vincent Kherbache, Member, IEEE, Éric Madelaine, Member, IEEE, and Fabien Hermenier, Member, IEEE

Abstract—Every day, numerous VMs are migrated inside a datacenter to balance the load, save energy or prepare production servers

for maintenance. Although VM placement problems are carefully studied, the underlying migration schedulers rely on vague adhoc

models. This leads to unnecessarily long and energy-intensive migrations.

We present mVM, a new and extensible migration scheduler. To provide schedules with minimal completion times, mVM parallelizes

and sequentializes the migrations with regards to the memory workload and the network topology. mVM is implemented as a plugin of

BtrPlace and its current library allows administrators to address temporal and energy concerns. Experiments on a real testbed shows

mVM outperforms state-of-the-art migration schedulers. Compared to schedulers that cap the migration parallelism, mVM reduces the

individual migration duration by 20.4% on average and the schedule completion time by 28.1%. In a maintenance operation involving

96 VMs migrated between 72 servers, mVM saves 21.5% Joules against BtrPlace. Compared to the migration model inside the cloud

simulator CloudSim, the prediction error of the migrations duration is about 5 times lower with mVM. By computing schedules involving

thousands of migrations performed over various fat-tree network topologies, we observed that the mVM solving time accounts for about

1% of the schedule execution time.

Index Terms—Live Migration, Scheduling, Virtual Machines

✦

1 INTRODUCTION

I NFRASTRUCTURE As A Service (IaaS) clouds provide clients

with resources via Virtual Machines (VMs). To deploy applica-

tions (web services, data analytics etc.) in an IaaS cloud, a client

installs the appropriate application and selects a Service Level

Agreement (SLA) offered by the provider. Currently, public cloud

providers advertise 99.95% availability [1], [2]. To ensure this,

any management operation on the provider side must be done

on the fly, with a minimal interference over the VM availability.

Live migration [3] makes these management operations possible: it

relocates a running VM from one server to another with negligible

downtime under idyllic conditions.

Today, live-migrations occur continuously. For example, dy-

namic VM placement algorithms relocate the VMs depending on

their resource usage to distribute the load between the servers or to

reduce the datacenter power consumption [4], [5], [6], [7]. These

solutions work in two passes. The first pass consists in computing

the new placement for some VMs according to specific objectives.

The second pass consists in enacting the new VM placement

using live-migrations. Datacenter operators heavily rely on live-

migration to perform maintenance operations over production

infrastructures [8]. For example, the VMs running on a server to

update must be first relocated elsewhere to keep VMs availability.

A maintenance operation occurs at the server scale but also at rack

or cluster scale. At a small scale, the operator may want to find

a destination server and relocate the VMs by himself. At a larger

scale, the operator is assisted by a placement algorithm.

A live-migration is a costly operation. It consumes network

bandwidth and energy. It also temporarily reduces the VM avail-

ability. When numerous VMs must be migrated, it is important to

schedule the migrations wisely, in order to minimize the impact

on both the infrastructure and the delivered quality of service [9].

In practice, the duration of a migration depends on the allocated

bandwidth and its memory workload. A sequential execution leads

to fast individual migrations but long standing completion time

(i.e. time to complete all the migrations). On the opposite, an

excessive parallelism leads to a low per-migration bandwidth

allocation hence long or even endless migrations. Additionally,

the datacenter operator and the customers have restrictions in

terms of scheduling capabilities. For example, it may be re-

quired to synchronize the migration of strongly communicating

VMs [10], while a datacenter must also cap its power usage to

fit the availability of renewable energies or ensure power cooling

capabilities [11]. This advocates for a scheduling algorithm that

can take the benefits from the knowledge of the network topology,

the VM workload but also the clients and the datacenter operator

expectations to compute fast and efficient schedules.

Despite VM placement problems are carefully studied, we

observe that the scheduling algorithms enacting the new place-

ments do not receive the same level of attention. Indeed, un-

derlying scheduling models that estimate the migration duration

are often inaccurate. For example, Entropy [4] supposes a non-

blocking homogeneous network coupled with a null dirty pages

rate. These hypotheses are unrealistic, prevent from computing

efficient schedules and finally reduce the practical benefits of the

placement algorithms [7].

In this paper, we present mVM, a migration scheduler that

relies on realistic migration and network models to compute the

best moment to start each migration and the amount of bandwidth

to allocate. It also decides which migrations are executed in

parallel to provide fast migrations and short completion times.

In practice, mVM is implemented as a set of extensions for the

customizable VM manager BtrPlace [12].

The evaluation of mVM is performed over a blocking network

testbed against two representative schedulers: An unmodified

BtrPlace that maximizes the migration parallelism similarly to [4],

[6], [13], and a scheduler that reproduces Memory Buddies [14]

decisions by statically capping the parallelism. The migration

model accuracy is finally evaluated against representative cloud

simulators models such as CloudSim [13] that tend to simplify the

actual migration behavior, and SimGrid [15] which provides more

realistic results. Our main results are:

Prediction accuracy: On 50 migration plans generated ran-
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domly, mVM estimated the migration durations with a precision

of 93.9%. This is a 26.2% improvement over those computed by

the model inside CloudSim [6], [13], BtrPlace [12] or Entropy [4]

and an 1.7% improvement over SimGrid [16].

Migration speed: On the same random migration plans, the

migrations scheduled by mVM completed on average 20.4% faster

than Memory Buddies, while completion times were reduced by

28.1%. Contrarily to Memory Buddies, mVM always outperforms

sequential scheduling with an average migration slowdown of

7.35% only, 4.5 times lower than with Memory Buddies.

Energy efficiency: In a server decommissioning operation

involving 96 migrations among 72 servers, the schedule computed

by mVM saves 21.5% Joules with regards to BtrPlace.

Scalability: The computation time of mVM to schedule

thousands of migrations over various fat-tree network topologies

accounts for less than 1% of the completion time.

Extensibility: mVM controls the scheduling at the action level

through independent high-level constraints. The current library

implements 4 constraints and 2 objectives. They address temporal

and energy concerns such as the capability to compute a schedule

fitting a power budget.

The paper is organized as follows. Section 2 describes the

design of mVM. Section 3 details its implementation and Section 4

presents performance optimizations. Section 5 evaluates mVM.

Finally, Section 6 describes related work, and Section 7 presents

our conclusions and future works.

2 MVM OVERVIEW

mVM is a migration scheduler that can be configured with specific

constraints and objectives. It aims at computing the best sequence

of migrations along with any actions needed to perform a data cen-

ter reconfiguration while continuously satisfying the constraints.

It is implemented as a set of extensions for BtrPlace and controls

VMs running on top of the KVM virtual machine monitor [17]. In

this paper, we refer to a customized version of BtrPlace with our

extensions as mVM.

In this section, we first introduce the architecture of mVM

and illustrate how it concretely performs migration scheduling.

We finally describe the integration of our mVM scheduler into

BtrPlace.

2.1 Global design

Figure 1 depicts the architecture of mVM. mVM takes as input

three types of information, the data center configuration, the

VM characteristics and the scheduling constraints. The datacenter

configuration specifies the network including its topology along

with the capacity and the connectivity of the switches. This

information is usually obtained automatically by a monitoring

tool. Despite mVM should be able to comply with any tool,

these informations must be provided using the SimGrid Platform

Description Format.1

The VM characteristics provide the current VM placement

and resource usage but also their real memory usage and their

dirty pages rate. All these informations can also be retrieved

by a monitoring tool. The memory usage and dirty pages rate

are however rarely monitored. We then develop a new Qemu

command to retrieve these informations from the KVM hypervisor

using libvirt.

1. http://simgrid.gforge.inria.fr/simgrid/3.9/doc/platform.html

Fig. 1. mVM architecture.

The constraints indicate the expectations that must be satisfied

by the computed schedule. They must at least state the future

hosting server for each VM. These constraints can be specified

manually or computed with a VM placement algorithm; With

the legacy version of BtrPlace for example. The constraints also

express additional restrictions such as the need to synchronize

some migrations or to cap the datacenter power usage during

a reconfiguration. They can be provided through configuration

scripts or directly through an API.

With these inputs, mVM computes a reconfiguration plan that

is a schedule of actions to execute. For each migration action,

mVM indicates the moment to start the action, its predicted

duration and the amount of bandwidth to allocate.

The Executor module applies the schedule by performing all of

the referred actions. In practice, it is not safe to execute actions by

only focusing on the predicted start times as the effective duration

of an action may differ from its estimated duration. This can lead

to unexpected SLA violations, an extra energy consumption, or

a technical limitation such as the migration of a VM to a server

that is not yet online. To address this issue, the executor inserts

dependencies between actions according to a global virtual clock.

2.2 mVM integration

Figure 2 illustrates the interaction between BtrPlace and mVM.

mVM only focuses on migration scheduling. Thus, It needs to

know the destination server of each migration. We then integrated

the mVM scheduling model by using a two rounds resolution.

First, the original BtrPlace is used to compute a viable placement

for each VM. Then, mVM retrieves the destination chosen for

each migration and rely both on the network model to compute

the bandwidth to allocate for each migration and on the migration

model to estimate the corresponding migration duration.

BtrPlace mVM

Solve VM

placement

Network

model

Compute

schedule

Scheduling

constraints

Initial VM

placement

Final VM

placement

Executor

Placement

constraints

Actions

schedule
Execute

actions

Fig. 2. Integration of mVM within BtrPlace using a two-round resolution.

3 IMPLEMENTATION

In this section, we describe the implementation of mVM. We first

introduce the BtrPlace architecture. We then provide details of

the implementation of the network and the migration models. We

finally present extensions we developed on top of the migration

model to control the scheduling with regards to temporal or

energy-efficiency concerns.
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3.1 BtrPlace architecture

BtrPlace [12] aims at computing the next placement for the VMs,

the next state for the servers, and the action schedule that lead to

this stage.

BtrPlace uses constraint programming (CP) to model a place-

ment for the VMs and the action schedule, it relies on the Java

library Choco [18] to solve the associated problem. CP is an

approach to model and solve combinatorial problems in which

a problem is modeled by logical relations that must be satisfied

by the solution. The CP solving algorithm does not depend on the

constraints composing the problem and the order in which they

are provided. To use CP, a problem is modeled as a Constraint

Satisfaction Problem (CSP), comprising a set of variables, a set

of domains representing the possible values for each variable, and

a set of constraints that represent the required relations between

the values and the variables. A solver computes a solution for a

CSP by assigning to each variable a value that simultaneously

satisfies the constraints. The CSP can be augmented with an

objective represented by a variable that must have its associated

value maximized or minimized. To minimize (resp. maximize) a

variable K, Choco works incrementally: each time a solution with

an associated cost k is computed, Choco automatically adds the

constraint K < k (resp. K > k) and tries to compute a new solution.

This added constraint ensures the next solution will have a better

objective value. This process is repeated until Choco browses the

whole search space or hits a given timeout. It then returns the last

computed solution.

From its inputs, Btrplace first models a core Reconfiguration

Problem (RP), i.e. a minimal placement and scheduling algorithm

that manipulate servers and VMs through actions. Each action is

modeled depending on its nature (booting, migrating or halting

a VM, booting or halting a server). An action a ∈ A embeds at

least a variable st(a) and ed(a) that denote the moments the action

starts and terminates, respectively.

As CP provides composition, it is possible to plug external

models on top of the core RP to support additional datacenter

elements, such as the network, but also additional concerns such

as the power usage that results from the execution of each action.

It is also possible to use an alternative model for each kind of

action. Once the core RP is generated, BtrPlace customizes it with

all the stated constraints and the possible objective. The resulting

specialized RP is then solved to generate the action schedule to

apply.

Inside the core RP, mVM inserts a network model, a new

migration model and a power model to formulate the power

consumption of a migration. On top of the core RP, mVM

also provides additional constraints and objectives to adapt the

schedule with regards to temporal and energy concerns. In total,

these extensions represent 1600 lines of Java code.

3.2 Network model

A migration transfers a VM from a server to another through a

network. For economic and technical reasons, a network is rarely

non-blocking. Indeed, network links and switches might not be

provisioned enough to support all the traffic in the worst case

scenario.

Our network model represents the traffic generated by each

migration over the time and the available bandwidth, through a

set of network elements. All the links are considered full-duplex.

As the next VM placement is known, the model considers that a

VM migrates from its source to its destination server through a

predefined route. The bandwidth allocation for a migration is also

supposed to be constant. Finally, the model ignores the network

latency, which means that it considers a migration occupies simul-

taneously all the networking elements it is going through. This

assumption is coherent as temporal variables in our model are

expressed in terms of seconds while the network latency between

two servers in a datacenter is much less than a second.

The network model considers a set of VM migrations M ⊆A

to perform over a set of network elements N (network inter-

faces, switches, etc.). For any element n ∈ N , capa(n, t) denotes

its capacity in Mbit/s at time t. For any migration m ∈ M ,

path(m) ⊆ N indicates the network elements crossed (source

and destination servers included), bw(m, t) denotes the allocated

bandwidth in Mbit/s at time t, st(m) and ed(m) indicate the

beginning and the end of the operation in seconds, respectively.

The equation (1) models the bandwidth sharing of a network

element among the migrations that pass through it:

∑
m∈M , n∈path(m),

t∈[st(m); ed(m)]

bw(m, t) ≤ capa(n, t) (1)

The bandwidth sharing is modeled with cumulative con-

straints [19]. Each consists in placing a set of tasks on a bounded

resource. A task aggregates three variables: a height, a duration,

and a starting time. The constraint ensures then that at any time,

the cumulative height of the placed tasks does not exceed the

height of the resource. We defined two different elements that

compose the network model. The first one is the network link.

To represent both half- and full-duplex links, we use one or

two cumulative constraints to represents its capacity depending

on its duplex communication system. Indeed, when using half-

duplex link, the communication is one direction at a time and

it thus only requires one cumulative constraint. The full-duplex

link, because of its two-way communication channel, requires two

separate cumulative constraints to represent each direction that

can be used simultaneously by different migrations. The second

network element is the switch, which is used to connect the links

together. In the case of a blocking-switch only, a single cumulative

constraint is necessary to represent its limited capacity.

3.3 Migration model

In this section, we first give some background related to the live-

migration protocol. Then we analyse the memory consumption

induced by a migration on server side. Finally, we discuss the

VM memory activity impact on the migration and describe our

migration model accordingly.

3.3.1 Live-migration algorithm

The migration model mimics the pre-copy algorithm [3] used in

Xen and KVM and assumes a shared storage for the VM disk

images. The pre-copy algorithm is an iterative process. The first

phase consists in sending all the memory used by the VM to the

destination server while the VM is still running. The subsequent

phases consist in sending iteratively the memory pages that were

made dirty during the previous transfer. Thus, the migration

duration depends of the memory dirtying rate and the bandwidth

allocated to the migration. The migration terminates when the

amount of dirty pages is sufficiently low to be sent in a time

interval lesser than the downtime (30 ms by default). Once this

condition is met, the VM is suspended on the hosting server, the
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latest memory pages and its state are transferred, and the VM is

resumed on the destination server. It is worth noting that with this

algorithm, the duration of a live-migration increases exponentially

when the allocated bandwidth decreases linearly (see Figure 3).
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Fig. 3. Duration of a live-migration between 2 KVM hypervisors de-
pending on the allocated bandwidth and the parameters used by the
command stress to generate dirty pages. 1000*10K indicates the VM
runs 1000 concurrent threads that continuously allocate and release
10 KiB of memory each. The VM memory used is set to 4 GiB and
the downtime is limited to 30 ms.

Using the pre-copy algorithm, the migration duration highly

depends on the memory activity of the VMs to migrate. Addi-

tionally, as the memory used by a VM is mapped to the physical

host memory, the behavior of servers’ memory usage during a

migration may impact its duration.

3.3.2 Server memory usage

To analyze the memory consumed by the migration and the mem-

ory transfer behavior between the servers, we migrated 4 VMs

simultaneously from one server to another and monitored their

memory usage. To actually observe the memory consumed by each

migration separately, we started them by 5 seconds interval. The

testbed consists of two identical servers with 16 GiB of memory

and 2 quad-cores CPUs each. Every VM to migrate has a single

vCPU and consumes 2 GiB of memory. To avoid extra migration

duration, each VM has low CPU and memory activity (idle VMs).

Figure 4 depicts the memory usage on the servers.

Figure 4a shows the memory consumption on the source and

the destination servers during the experiment. The migrations are

represented by the vertical dotted lines where S1 to S4 represent

the start times and E1 to E4 the termination of the four migrations.

As we can see, the source server releases the whole memory

used by a VM at once just after the migration completed. This is
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Fig. 4. Overview of the memory consumption on both source and desti-
nation servers during 4 parallel migrations. Figure (b) is a closest view
of the source server consumption when the migrations begin.

explained by the behavior of the pre-copy algorithm implemented

on KVM. On the other side, the destination server receives the VM

memory pages at the network speed of 1 Gbps and immediately

fills them in memory. Its own memory consumption thus increases

linearly during the migration. Consequently, this behavior does not

require any post-migration delay due to guest memory mapping

and is therefore not considered in the mVM migration model.

The memory usage due to the migration itself is too low to

be observed on Figure 4a, we thus represented it more closely in

Figure 4b. We observe that the memory consumption overhead

induced by each migration is about 6 MiB which is negligible

with regards to the memory available in current servers. Although

this overhead may saturate the server, a common practice consists

in reserving a sufficient amount of memory on the host to avoid

such a saturation. Therefore, the additional memory used by the

migration management is low enough to be safely ignored in the

migration model.

3.3.3 VM memory activity

According to the majority of the loads observed on real appli-

cations [20], [21], the evolution of the memory dirtying rate can

be separated in two phases. The first phase corresponds to the

writing of the hot-pages, a set of memory pages that are quickly

dirtied. This phase exhibits a high dirty pages rate but for a short

period of time. The second phase represents the linear writing

of the cold-pages which corresponds to the pages that became

dirty after the generation of the hot-pages until the end of the

migration. These two phases are distinguished by the observation

of the memory dirtying rate variation. The amount of hot-pages

HPs in MiB, and the seconds HPd spent to rewrite them give a

good overview of the minimum bandwidth to allocate to ensure the

termination of a migration. In practice, predicting the termination

of a migration consists in measuring HPs over a period equal to

the downtime period D and ensuring that HPs
D

is less than the

available bandwidth on the migration path. The dirtying rate of

the cold-pages CPr in MiB/s can be measured after t = HPd .

Often very low, this rate is still dependent of the VM’s workload.

As the hot-pages, the cold-pages are rewritten at the beginning

of the migration process. Thereby, the hot-pages dirtying rate

is written: HPr =
HPs
HPd

−CPr. Given a migration m ∈ M , with

mu(m) the amount of memory used by the VM in MiB and

bw(m) its allocated bandwidth, the minimum duration of the

migration dmin is written: dmin(m) = mu(m)
bw(m) . Hence if we assume

that the total amount of cold-pages rewritten during the migration

process CPs is always lower than mu(m), then CPs can be written:

CPs = dmin(m)×CPr. In general, to transfer an amount of memory

X with a bandwidth Y and a memory dirty rate Z, the transfer

duration can be modeled by: X
Y−Z

. Thus the time spent to send the

cold-pages dCP is written:

dCP(m) =
CPs

bw(m)−CPr

(2)

Then the time spent to send the hot-pages dHP equals:

dHP(m) =
HPs

bw(m)
+

HPs −
(

D×bw(m)
)

bw(m)−HPr

(3)

Where HPs

bw(m) corresponds to the first transmission of the hot-pages

and D×bw(m) to the amount of data to send after suspending the

VM on the source node (cf. during the downtime). If this value is

higher than the measured amount of hot-pages (D×bw(m)>HPs),

then it will not be necessary to iteratively send the hot-pages to
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comply with the desired downtime. In this case, the computation

is thus simplified:

dCP(m)+dHP(m) =
CPs −

(

(

D×bw(m)
)

−HPs

)

bw(m)−CPr

+
HPs

bw(m)
(4)

Finally, the duration d of a migration m is:

d(m) = dmin(m)+dCP(m)+dHP(m)+D (5)

The duration of dmin is the dominating factor. It is usually

expressed in the order of seconds or minutes, while dCP(m) and

dHP(m) are usually expressed in seconds. Finally the downtime D

has a very low weight (30 ms by default). It can thus be ignored

when the unit of time is a second.

This migration model establishes the link between the dura-

tion of a migration, represented by the length of the task in a

cumulative constraint, and the bandwidth to allocate, represented

by the height of the task. As a result, mVM knows that a min-

imum bandwidth is required to ensure the migration termination

while allocating a high bandwidth reduces the migration duration

exponentially.

3.4 Extensions

In this section we present the extensions we developed to control

the migrations. All these extensions were implemented using the

original BtrPlace API and rely on the variables provided by the

migration model.

3.4.1 Supporting the post-copy migration algorithm

Production oriented hypervisors implement the pre-copy migra-

tion algorithm. The post-copy algorithm is another approach that

despite its efficiency, is not available in any production-oriented

hypervisors [22]. It is worth noting that the extensibility of Btr-

Place allows to support this migration model in place of the model

discussed in Section 3.3.3. The post-copy algorithm consists in

migrating the VM state and resume the VM at the beginning of the

operation. The memory pages are then sent on-demand through the

network. This tends to reduce the migration duration by removing

the need to re-send dirty memory pages. Using mVM variables,

this algorithm would be implemented by simply stating:

d(m) =
mu(m)

bw(m)
(6)

3.4.2 Temporal control

Sync synchronizes the migrations of the VMs passed as param-

eters. It is a constraint inspired by COMMA [10]. When two

strongly-communicating VMs must be migrated to a distant server,

they can be migrated sequentially. Temporarily, one VM will be

then active on the distant server while the second one stay on the

source server. The two VMs will thus suffer from a performance

loss due to communication through a slow link. It is possible to

migrate a VM using either a pre-copy or a post-copy algorithm.

While in the pre-copy algorithm, the VM state is migrated at

the end of the operation, the post-copy algorithm migrates the

VM state at the beginning of the operation. Sync supports both

pre-copy and post-copy approaches by synchronizing either the

beginning or the end of the migrations. In practice, the constraint

enforces the variables denoting the moment the migrations starts

(post-copy algorithm) or end (pre-copy algorithm) to be equal.

Before establishes a precedence rule between two migrations

or a migration and a deadline. It allows a datacenter operator to

specify priorities in a maintenance operation, or to ensure the

termination of a heavy maintenance operation in time, before

the office hours for example. The constraint that establishes a

precedence rule between two migrations m1 and m2 is expressed

as follows:

ed(m1)≤ st(m2)

Seq ensures that the given migrations will be executed se-

quentially but with no precise order. This allows the operator

to reduce the consequences if a hardware failure occurs during

the execution of a schedule as only one migration will be active.

The constraint does not force any ordering to let the scheduler

decides the most profitable one with respect to the other stated

constraints. seq is implemented by a cumulative constraint with a

resource having a capacity of 1 and each migration a height of 1.

An implementation based on a disjunctive [23] constraint would

be preferable to obtain better performance. It is however not yet

implemented inside Choco.

MinMTTR is an objective that ask for fast schedules. The

intuition is to have fast actions that are executed as soon as

possible. It is implemented as follows:

min

(

∑
a∈A

ed(a)

)

3.4.3 Energy aware scheduling

A schedule is composed of some actions to execute. In a server

maintenance operation for example, there will be VMs to migrate

but also servers to turn on or off. These operations should be

planned with care to consume a few amount of energy or a

consumption that fit a given power budget [11]. BtrPlace already

embeds a power model for the actions that consists in turning on

and off a server or a VM. We describe here the power model for a

migration and two constraints to control the energy usage during

a reconfiguration.

The energy model derives from the model proposed by Liu

et al. [20]. The amount of data transmitted and received by these

servers is the same. With network interfaces that are not energy

adaptive, the authors propose and validate a model where the en-

ergy consumed by a migration increases linearly with the amount

of data to be transferred. Equation (7) formulates with variables

of our migration model, the energy consumption of a migration

when the source and the destination servers are identical. α and β

are parameters that must be computed during a training phase.

∀m ∈ M ,E(m) = α ×bw(m)×d(m)+β (7)

PowerBudget controls the instantaneous power consumed by

the infrastructure during the reconfiguration process. It takes

as parameters a period of time and the power capping. This

constraint is required for example to avoid overheating [11], or

when the datacenter is powered by renewable energies or under

the control of a Smart City authority that restricts its power usage.

Using PowerBudget, mVM can then delay some migrations or

any actions, depending on their power usage. PowerBudget is

implemented using a cumulative constraint. The resource capacity

is the maximum power allowed during the reconfiguration. Each

action is modeled as a task with its height denoting its power

usage. Finally, when the power budget is not a constant for the

whole duration of the reconfiguration process, additional tasks are

inserted to create a power profile aligned with the requirements.
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MinEnergy is an objective that minimizes the overall energy

consumed by the datacenter during the reconfiguration. The cost

variable to minimize is defined as the sum of the energy spend

by each action (a ∈ A ), server (s ∈ S ) and VM (v ∈ V ) at every

second of the reconfiguration. Indeed, the energy E consumed by

an action corresponds to the sum of the instantaneous power P

consumed at every second of its duration:

∀a ∈ A , E(a) = ∑
t∈[st(a),ed(a)]

P(a, t) (8)

The objective is then implemented as follows:

min

(

∑
a∈A

E(a)+ ∑
s∈S

E(s)+ ∑
v∈V

E(v)

)

(9)

The overall implementation is short, each constraint represents

approximately 100 lines of Java code, while each objective re-

quires around 200 lines.

4 OPTIMIZING MVM

Computing the time to start each migration while satisfying

temporal constraints and without exceeding the network elements

capacities refers to the well-known Resource-Constrained Project

Scheduling Problem (RCPSP), where each migration is an activity

and each network element is a resource to share. However in

our problem, each migration duration depends on its allocated

bandwidth. The VM scheduling problem thus refers to a variant of

the RCPSP called the Multi-mode Resource-Constrained Project

Scheduling Problem (MRCPSP) where each activity has a set

of available modes, and each mode corresponds to a couple of

allocated bandwidth and the associated duration. Minimizing the

makespan on both single and multi-mode RCPSP are known to be

NP-hard [24], while MRCPSP is NP-Hard in the strong sense [25].

Therefore, computing a solution is time consuming when the

number of VMs or the number of network elements is large.

mVM uses two strategies to optimize the solving process. Our first

strategy simplifies the problem using a domain specific hypothesis

while the second is a heuristic that guides the CP solver toward

fast migration plans.

The MaxBandwidth optimization precomputes the bandwidth

to allocate to the migrations. As stated in Section 3.2, there

is a limited interest in parallelizing migrations up to the point

of sharing the minimal bandwidth available on the migration

path: this increases the amount of memory pages to re-transfer

and thus the migration duration. Accordingly, this optimization

forces to allocate the maximum bandwidth for each migration.

As a side effect, this simplification precomputes the migration

duration as well. MaxBandwidth reduces then the set of variables

in the problem to the variables denoting the moment to start the

migrations. By precomputing the bandwidth-duration couple for

each migration, we thus reduced the problem complexity to a

single-mode RCPSP.

Our second strategy is a domain-specific heuristic that indi-

cates to the solver the variables it has to instantiate first and the

values to try for these variables. In general, the intuition is to

guide the solver to variable instantiations of interest. The heuristic

initially implemented for [26] appeared to be over specialised

and only effective when addressing decommissioning scenarios.

This prevented mVM to solve scheduling problems when the

migrations where less ordered, subjects to dependencies or when

servers must send and receive VMs. The new heuristic establishes

three ordered groups of start moment variables: the servers boot

actions, the migrations, and the nodes shutdown actions. Then the

heuristic asks the solver to instantiate the start moments group by

group. For the two groups of servers actions, the heuristic asks

to focus on the hardest actions to schedule, i.e. those having

the smallest domain for their start variable. For the group of

migrations actions, the heuristic considers the migrations as a

graph where servers are the vertices and the migrations are the

arcs. It first forces the solver to focus on the migrations where the

destination server is only subject to ongoing migrations. Then, it

selects the migrations where the destination server has the lowest

amount of outgoing migrations. This process is repeated until

all the migrations start moments are ordered. Each time a start

moment is selected by the search heuristic, the solver is forced

to try its smallest possible value to start the actions as soon as

possible.

It is worth noting that the heuristic is only a guide. It does not

change the problem definition and still leads to a viable solution.

Indeed, the solver prevents any instantiation that contradicts a

constraint and the backtracking mechanism to revise a initial

instantiation that turned to be invalid later in the search tree.

5 EVALUATION

mVM aims at improving the live-migration scheduling thanks to

an accurate migration model and appropriate reasoning. In this

section, we first evaluate the practical benefits of mVM in terms of

migration and reconfiguration speedup over a network testbed. We

then evaluate the accuracy of the mVM migration model against

different cloud simulators. Finally, we validate the capability of

mVM to address energy concerns and evaluate its scalability and

robustness by computing random migrations plans. Furthermore,

all the experiments presented in this Section are reproducible 2.

On real experiments, we use the original BtrPlace and a

scheduler derived from Memory Buddies [14] as representative

baselines. We selected BtrPlace, first because its migration model

is the same as other representative solutions [4], [6], [13] so their

decision capabilities should be similar. Secondly, BtrPlace allows

a precise comparison as the only software component that differs

between mVM and BtrPlace is the scheduler, the core contribution

of this paper. Memory Buddies scheduler provides also a relevant

baseline as it allows to control the migration parallelism. Its

approach consists in capping the amount of migrations to perform

in parallel with a constant to be defined from the knowledge of the

network topology.

On simulation experiments, we compare the migration esti-

mation accuracy of mVM against the predictions made by the

cloud simulator SimGrid [15] and two other representative mi-

gration models implemented in common cloud simulators such as

CloudSim [13].

5.1 Testbed setup

All the real experiments were conducted on the Grid’5000 plat-

form [27]. The testbed is composed of racks hosting 24 servers

each. Servers in a same rack are connected to a Top-of-Rack

(ToR) switch through a Gigabit Ethernet interface. All the ToR

switches are then connected together through a 10 Gigabit Ether-

net aggregation switch. Servers are also connected to a 20 Gbit/s

Infiniband network. For a better control of the network traffic, the

2. https://github.com/btrplace
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VM disk images are shared by dedicated NFS servers through

the Infiniband network while all the migrations transit through the

Ethernet network. We consider a dedicated migration network to

avoid any interference with the VM network traffic; a common

practice in production environment [28]. Each server runs a De-

bian Jessie distribution with a GNU/Linux 3.16.0-4-amd64 kernel

and the Qemu (KVM) hypervisor 2.2.50. The VM configuration

and the migrations were performed using libvirt. Each VM runs a

Ubuntu 14.10 desktop distribution with a single virtual CPU, the

maximum migration downtime is 30 ms and the workloads are

generated using stress.

5.2 mVM to speed up migrations

The experiment consists in scheduling and executing the migration

of 10 VMs with different memory usage between 4 servers

connected through an heterogeneous network. Each server has

2 quad-core Intel Xeon L5420, 16 GiB RAM and is connected

to a central switch through a Gigabit Ethernet interface. To

emulate a blocking network, the tc command limits the network

bandwidth of two servers at 500 Mbit/s. The VM memory used is

set to 2 and 3 GiB, equally distributed among the VMs. This

amount represents the real memory allocated to the guest by

Qemu, thus the one transferred during the migration. To ease the

reproducibility of our experiments, the memory workload for each

VM is generated using the tool stess by running 1,000 threads that

continuously write 70 KiB of RAM. This configuration allows

to mimic the workload memory pattern of common applications

types [20], [21]. We selected these specific values to reflect our

measurements of the memory activity generated by two different

HTTP benchmarks tools (httperf and ab). The memory activity

details (including HPs, HPd , and CPr) are defined in mVM

from real measurements realised through our custom KVM patch

developed for the occasion.

In this experiment, we compare the schedules computed by

mVM against a scheduler that reproduces Memory Buddies [14]

decisions. Similarly to mVM, Memory Buddies controls the mi-

gration parallelism, however it limits the parallelism to a constant

to be defined. Memory Buddies migrates the VMs at least two

at a time to fully exploit the two gigabit links when there are

migrations between the servers connected by Gigabit interfaces

and those connected by their emulated 500 Mbit/s interface. In

practice, it is configured with three different parallelism setups

that consist to migrate the VMs two, three, and four at a time. This

parallelism setup is a good tradeoff that allows to exploit the full-

duplex links capacity while limiting the risk of links saturation.

In practice, we compare mVM to three configurations of Memory

Buddies, referred as MB-2 to MB-4, where the parallelism varies

from 2 to 4. To perform a robust experimentation that covers a

wide spectrum of scenarios, we precomputed 50 runs of 10 mi-

grations each where the initial and the destination server for each

VM are computed randomly. This prevent experiments from any

bias due to a particular setup. Each run has been executed 3 times

for each VM scheduler. In this experiment the original BtrPlace

only computes full-parallel migrations plans due to its simplistic

migration model. As this behavior prevents some migrations to

terminate, we discarded the original BtrPlace scheduler for this

experiment.

Table 1 summarizes the average migration duration for each

scheduler. We first observe mVM outperforms every configuration

of Memory Buddies. Indeed, the migrations scheduled by mVM

TABLE 1
Absolute migration durations and relative slowdown compared to a

sequential scheduling

Scheduler mVM MB-2 MB-3 MB-4

Mean migration time (sec.) 45.55 57.22 113.2 168.6
Mean slowdown (%) 7.35% 29.69% 141.3% 259.2%
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Fig. 5. CDF of migrations duration slowdown compared to sequential
predictions. Migrations with a slowdown greater than 150% are not
displayed.

completed 20.4% faster than those computed by MB-2, the best

Memory Buddies configuration. To assess the absolute quality of

these results, we compared the durations to sequential migrations

computed on a flawless virtual environment. This exhibits the

potential migration slowdowns due to parallelism decisions. We

observe an average 7.35% slowdown for mVM while it is at

least 4 times higher for MB-2. Figure 5 depicts the migration

slowdowns as a Cumulative Distribution Function (CDF). We

observe 88.8% of the migrations scheduled by mVM have a

slowdown of 5 seconds at maximum, against 52.8% for MB-2. We

also observe that the slowdown distribution for mVM is gathered

while it is scattered for Memory Buddies and increasing with the

concurrency.

These improvements over Memory Buddies are explained by

better parallelism decisions. Indeed, Memory Buddies parallelizes

the migrations statically without any knowledge about network

topology or VM placement. This can produce an insufficient usage

of the overall network capacity and an undesired concurrency

between migrations on a same network path. This reduces the

migration bandwidth, thus leads to more retransmissions of dirty

memory pages and higher migration durations. On the other side,

mVM infers the optimal number of concurrent migrations over

the time from its knowledge of the network topology. In practice,

we observed the number of concurrent migrations varied from

2 to 5. We also observe mVM took better parallelism decisions

than the most aggressive Memory Buddies configuration while

producing a lower slowdown than the most conservative one.

As a result, mVM migrates each VM at maximum speed and

parallelizes them to maximize the usage of the network capac-

ity. We finally observe three abnormally long migrations with

mVM. A post-mortem analysis revealed these durations were

caused by the technical limitations of our testbed. Indeed, when a

server sends and receives migrations simultaneously at maximum

speed through a 500 Mbit/s limited interface then the traffic

shaping queuing mechanism is not fair and we observe periodic

bandwidths slowdown. We reproduced this disruption using the
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iperf tool and measured a slowdown varying from 100 Mbit/s to

200 Mbit/s. This problem also occurs using Memory Buddies as

the chances to migrate multiple VMs on a same link increased

with the parallelism, but are not displayed due to a lack of space.

TABLE 2
Absolute completion times and relative speedup compared to a

sequential scheduling

Scheduler mVM MB-2 MB-3 MB-4

Mean completion time (sec.) 212.8 295.9 394.6 479.4
Mean speedup (%) 54.18% 36.42% 15.94% -2.64%
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Fig. 6. CDF of completion times speedup compared to sequential exe-
cutions.

Table 2 shows mVM produces shorter completion times than

Memory Buddies. We observe executions completed on average

28.1% faster than with MB-2, the best configuration for Memory

Buddies. mVM completed the executions in average 83.1 seconds

earlier than MB-2. To assess the quality of these results, we

compared completion times to predicted values of a pure sequen-

tial scheduling. We observe an average speedup of 54.18% for

mVM while it is at least 1.49 times lower with MB-2. Figure 6

depicts the completion times speedup as a CDF. It first confirms

mVM exhibits the most important speedup. We also observe

that the speedups for MB-3 and MB-4 are scattered and not

always positives. This confirms that a blind over-parallelization

of the migrations can produce longer completion times than a

pure sequential scheduling. Indeed, as a consequence of the live-

migration iterative behaviour, when the bandwidth on a network

path is shared between too many migrations, the low bandwidth

allocated to each migration leads to an exponential increase of

their durations (see Section 3.3.1).

This overall improvement is due to the parallelism and clus-

tering decisions taken by mVM. As explained before, mVM

optimizes the parallelism according to the migration routes and the

available bandwidth while Memory Buddies decisions are capped

by a constant. Furthermore, contrarily to Memory Buddies, mVM

infers how to group the migrations according to their predicted

duration. This reduces the periods where the network is underused

and consequently the completion time. As a conclusion, this

experiment confirmed that predicting the migration duration to

compute an adaptive level of parallelism and a tight migration

clustering is a key to compute efficient schedules. Indeed, while

mVM computed the shortest plans, no particular configuration of

Memory Buddies outperform the others.

A part of the experimental gain of mVM comes from decisions

based on an analysis of the VM dirty pages rate. Despite such an

approach is a common practice in the state of the art and has

already been tested under production workloads [9], [20], [21],

some VMs might still have a fuzzy dirty pages rate. In this case

the estimated migration duration might be inaccurate and fool

mVM. However, this does not prevent mVM to compute wise

schedules with regards to Memory Buddies. Indeed, despite these

mis-estimations might bias the clustering decisions thus extend

the completion time, they have no impact on mVM parallelism

decisions that solely depends on the network model. Unlike Mem-

ory Buddies there will still be no excessive parallelism decisions,

therefore keeping migrations as short as possible.

5.3 Migration model accuracy

To assess the accuracy of our migration model, we compared the

prediction deviation of common state-of-the-art cloud simulators

against the real execution performed by mVM. Based on the same

experiment setup than Section 5.2, we reproduced the scheduling

decisions computed by mVM in all the selected simulators.

The first chosen migration model is representative of most

common cloud simulators that ignore both the core network

topology and the VMs workload. For instance, the well-used

CloudSim [13] simulator, but also Entropy and BtrPlace do not

considers the whole topology to migrate VMs but the servers

network interfaces only. The VMs memory dirty pages rate is also

ignored. We refer to this family of models as NoShare.

For the second migration model, namely NoDP, we decided to

compute the migration time by only ignoring the workload running

on VMs. The whole network topology is however considered,

therefore this simulation model is only devoted to exhibit the

migration deviation induced by ignoring the memory dirty pages

rate of the VMs.

The third chosen migration model is the one implemented in

the simulator SimGrid. It relies on a very realistic flow-based

network model by using SFQ queuing mechanism, and considers

full-duplex links and cross-traffic effects that impact on migration

speed. The migration model also considers the VM memory dirty

pages generation behavior [16]. It is represented by a dirty pages

intensity modeled as a percentage of the available bandwidth

tempered by the VM CPU usage. By considering a single constant

rate of dirty pages, namely DPr, the migration duration d(m) is

modeled by SimGrid using the following formula:

d(m) =
mu(m)

bw(m)−DPr

(10)

The dirty pages rate intensity DPi is then obtained from the

Equation (11) where cu(m) is the CPU usage of the VM to

migrate, in percentage:

DPi =
DPr

(cu(m)×bw(m))
(11)

The migration duration can thus be written:

d(m) =
mu(m)

bw(m)− (DPi × cu(m)×bw(m))
(12)

To setup SimGrid with representative parameters from our

testbed, the CPU usage cu(m) is set to 100% which corresponds

to our stress workload. To retrieve a dirty pages intensity DPi

that also fits our workload, we first computed the amount of dirty
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Fig. 7. CDF of normalized migration duration estimation error.

pages generated during both the shortest and the longest observed

migrations (resp. 20 to 61 seconds). We then deduced the two

constant dirty pages rates that produce the equivalent amount of

pages and retrieved the corresponding dirty pages intensity DPi

from the equation 11. We obtained a dirty pages intensity varying

from 5% to 7% and selected the average of 6% as the global dirty

pages intensity for each VMs.

The CDFs in Figure 7 show the normalized deviation of

individual migration duration for each simulation environment.

Precise values for all simulators are provided in Table 3.

TABLE 3
Normalised migration deviation compared to real execution

Migration model NoShare NoDP SimGrid mVM

Mean (%) 32.28 19.54 8.31 6.47
Std. dev. (%) 20.17 5.34 7.2 4.41

1st Quartile (%) 16.16 15.79 3.82 2.55
Median (%) 20 17.42 6.12 7.49

3d Quartile (%) 58.17 22.58 10.55 9.09

As expected, we observe that NoShare produces the longest

migration deviations to reach 32.28% in average. The correspond-

ing CDF is divided in two parts. 68% of the migrations are

affected by only disregarding the VMs workload and the 32%

others are mis-estimated due to both the workload and network

sharing issues. In the last and worst case, the deviation ranges from

57% to 72% which obviously leads to strong practical scheduling

issues.

NoDP produces long migration deviation with an average of

19.54%, three times higher than with mVM. Furthermore, its

best prediction still induces a deviation of 10% against the real

migration performed. This exhibits the importance of considering

the memory activity of the VMs to estimate the migration duration.

By comparing SimGrid and mVM, we observe that the de-

viation are similar for 75% of the migrations. However, the

average deviation is slightly slower using mVM where 95% of the

migrations have at most 11% deviation against 77% for SimGrid.

This demonstrates that the migration model of mVM, based on two

distinct dirty pages rates (namely HPr and CPr), is more accurate

than the single constant rate DPr considered in SimGrid.

To analyze the migration deviation at a finer grain, the CDFs

in Figure 8 show the distribution between under and over estima-

tions. We first notice mVM provides stable results, the estimation

deviation is balanced between low under- and over-estimation and

never exceeds 11%.
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Fig. 8. CDF of relative migration duration estimation error.

Regarding SimGrid, we observe that the overall trend is to

slightly underestimate the migration duration. This reflects its

migration model, based on a single dirty pages rate, that tends

to misestimate the actual overhead induced by the VMs memory

activity. Indeed, by degrading our current model to a single rate,

we undeniably lose accuracy by approximating a common value

that will best suit all the migrations.

Additionally, despite a robust networking model, SimGrid

tends to highly overestimate 20% of the migration durations to

reach a 55% deviation in the worst case. This happens with

migrations scenarios involving full-duplex network links usage in

both uplink and downlink. We estimate that this overhead is due

to an exaggeration of the cross traffic effects on the transfer speed.

The 5% negative outliers on all simulations are due to the

traffic shaping setup in our testbed. Indeed in some particular

cases, especially when the 500 Mbit/s links are used in full duplex,

the migrations speed may decrease to 30% of its theoretical

transfer speed induced by the traffic shaping. These outliers can

be therefore ignored for the strict comparison of migration models

accuracy.

5.4 mVM to address energy efficiency

This experiment evaluates the practical benefits of mVM when ad-

dressing energy concerns during migrations. It consists in execut-

ing a decommissioning scenario over multiple servers and observe

the capabilities of mVM to compute schedules that consume less

energy or to restrict the overall power consumption. Contrarily

to BtrPlace, Memory Buddies cannot schedule the actions that

consists in turning on or off servers. Accordingly, we use the

original BtrPlace as a representative baseline for this experiment.

The testbed is composed of 3 racks. Each rack consists of 24

servers with one Intel Xeon X3440 2.53 GHz CPU and 16 GiB

RAM each. ToR switches connect the servers through a Gigabit

Ethernet while the ToR switches are connected by a 10 GBit/s

aggregation switch. The decommissioning scenario consists in

migrating the VMs from two racks to the third one. To save

power, the destination servers are initially turned off and the

servers to decommission have to be turned off once their VMs

are migrated. Each source server hosts 2 VMs. This amounts

to 96 VMs to migrate from 48 to 24 servers. Every VM uses 1

virtual CPU and the allocated memory is set to 2 GiB and 4 GiB

RAM equally distributed among the VMs. As BtrPlace tends to

over-parallelize the migrations, all the VMs are set idle to prevent

endless migration.
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Fig. 9. Power consumption of migration plans.

To calibrate the energy models with realistic values, we reused

the experimental values from [20] for the migration energy model

while the idle energy consumption of the servers were measured

directly from the testbed (see Table 4).

TABLE 4
Energy model calibration

Model element Energy model

Server consumption (idle) 110 W× running duration
Server boot overhead 20 W× boot duration
VM hosting 16%× idle × hosting duration
Migration 0.512× transferred data +20.165

5.4.1 Energy saving capabilities

Figure 9 compares the power usage of the same decommissioning

scenario scheduled by either BtrPlace or mVM. As the testbed is

not instrumented enough to measure the power consumption of

each server, the values were computed from the energy model.

We observe that mVM saved a total of 1.128 megajoules com-

pared to BtrPlace, a 21.55% reduction. This is explained by the

schedule computed by mVM that allowed to turn off the source

servers sooner thanks to faster migrations. At the beginning of the

experiment, the instantaneous power consumption grows up from

7 kW to 10 kW with both schedulers. This increase is explained

by the simultaneous boot of the 24 destination servers during 2

minutes. Once available, BtrPlace launches all the migrations in

parallel. This results in very long migration durations. As all the

migrations terminate almost simultaneously at minute 7, it is then

impossible to turn off any source server before that time. With

mVM, migrations complete faster and some source servers are

being turned off from minute 2. This behavior can be seen by the

regular going down steps on Figure 9.

We observe mVM schedules the migrations 10 by 10. These

groups were defined to maximize the bandwidth usage and mini-

mize the migration duration. As stated in Section 4, the MaxBand-

width optimization forces a 1 Gbit/s bandwidth per migration, so

the 10 by 10 parallelization fully uses the 10 Gbit/s link that

is connected to the destination switch. Also, in order to obtain

a 10 Gbit/s data flow, the migration groups where all chosen

from 10 different source and destination servers at a time and

grouped by their predicted duration. With mVM, we also observe

small peaks in the energy consumption. They correspond to the

termination of a migration group and the beginning of a new one.

In theory, these sequences follow on from each other. However the
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Fig. 10. Impact of a power capping on the power usage.

small predictions errors (around 7%) imply to synchronize these

transitions to maintain the original schedule and avoid overlapping

actions. At the end, the completion time exceeded the prediction

by only 5 seconds.

5.4.2 Power capping capabilities

The PowerBudget constraint restricts the instantaneous power

consumed by the infrastructure during the reconfiguration process.

As it restricts the consumption over the time, this constraint can

delay some migrations or any actions, depending on their power

usage. To verify the effectiveness of the power budget constraint

on the scheduling decisions, we executed the decommissioning

scenario under a restrictive power budget of 9 kW.

Figure 10 shows the power consumption of the predicted and

the observed scheduling. We first observe mVM reduced the peak

power consumption to stay under the threshold. In practice, the

PowerBudget constraint forced to spread the boot actions during

the first 5 minutes of the execution. A first set of actions was

executed at the beginning of the experiment to finish at minute

2. Then, the remaining actions where scheduled later, in smaller

groups that partially overlap. From minute 2 to 5, we observe

that the power consumption is very close to the 9 kW budget.

Indeed, mVM executed a few migrations in parallel to fill the

gap and to try to terminate the operation as soon as possible. It

was however not possible to migrate the VMs 10 by 10 contrary

to the previous experiment. As a result, the operation required

1.5 additional minutes to complete with regards to an execution

without PowerBudget (see Figure 9).

Despite we measured a prediction accuracy of 93% for the

migration durations, we observe that the practical completion time

exceeds the prediction by 32 seconds. This is mainly explained by

the larger number of synchronization points inserted by the Ex-

ecutor to maintain the computed sequence of migrations and thus

comply with the capping constraint. There is also an inevitable

latency that is due to the time to contact the hypervisors, initiate

the migrations and wait for KVM to reach the expected transfer

rate.

5.5 Scalability

Computing the moment to start each migration with regards to

bandwidth requirements is NP-Hard. In practice, the time required

by mVM to compute a schedule depends on the amount of VMs

to migrate, the number of network elements, and their bandwidth

capacity. We successively evaluate the solving duration speedup of



11

the MaxBandwidth optimization and the computational overhead

of mVM against the original BtrPlace.

5.5.1 Experiment setup

To evaluate the scalability of the mVM scheduler, we used the

same experiment setup as described in Section 5.4, and we scaled

it up to 18 times using two different scaling factors.

The first scaling factor increases the infrastructure size. It is

applied on the aggregation switch capacity and the number of

racks to increase the number of network elements. At the largest

scale (x10), each instance consists in scheduling the migration

of 960 VMs running inside 20 racks of 24 servers each, to

10 new racks. While all the servers are still connected to their

ToR switch through a Gigabit Ethernet link, the aggregation

switch provides a 100 Gbit/s bandwidth which we consider as

an exceptional bandwidth for a datacenter. Regarding the mVM

internals, this experiment evaluates the consequences of adding

cumulative constraints and migration tasks.

The second scaling factor increases the amount of VMs in

the infrastructure and the node hosting capabilities (memory and

CPU resources). At the largest scale (x18), each instance requires

to migrate 1728 VMs hosted on 2 racks of 24 servers each

to a single rack. The consolidation ratio reaches 72 VMs per

destination server and is also considered as exceptional for current

datacenters. As an example, if each VM requires 4 virtual cores,

this placement can even saturate the latest generation server of

Bull, the bullion S, equipped with 288 cores on 16 Intel Xeon

processor E7 v3. Regarding the mVM internals, this experiment

evaluates the consequences of adding migration tasks.

To provide representative computation times, we generated

100 random instances for each scale and resolved each of them

10 times using both mVM and BtrPlace.

5.5.2 MaxBandwidth optimization

The MaxBandwidth optimization consists in only retaining the

maximal bandwidth available on each migration path and its

associated duration. Contextually, this optimization brings down

the problem to a single-mode RCPSP which results in a significant

reduction of the variables domain size and thus reduces the overall

solving duration of mVM.

For these experiments, each node hosts up to 4 VMs and is

connected to the network with a 1 Gbit/s link capacity. Therefore,

the maximal amount of ongoing or outgoing migrations per node

is 4. Hence, to allow a maximal parallelization of the migrations,

we configured mVM to allow 4 different bandwidth allocations

per migration, with steps of 250 Mbit/s when the MaxBandwidth

optimization is disabled.

The random instances are generated by computing both ran-

dom initial and final VMs placements among the predefined

groups of source and destination nodes. Thus, despite the random

placements, the scenario remains the same as the decommission-

ing experiment performed in Section 5.4.

We compare the computation time of mVM with the optimiza-

tion enabled or disabled. Figure 11 shows the average computation

time along with the 95% confidence intervals for each migration

model and scaling factor. To ease data representation, we discarded

the instances that required a computation time longer than a

minute. The percentages of solved instances are however available

in Table 5.

The results show that enabling the MaxBandwidth optimiza-

tion reduces the computation time by up to 74% at the initial
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Fig. 11. Comparison of the mVM solving duration depending on the
MaxBandwidth optimization and the scaling factor. When the MaxBand-
width optimization is disabled, each migration has 4 different bandwidth
allocations allowed by steps of 250 Mbit/s.

TABLE 5
Instances solved in a minute depending on the MaxBandwidth

optimization and the scaling factor

MaxBandwidth option

Scale disabled enabled

x1 65% 100%
x2 22% 100%
x4 83% 100%
x10 62% 100%

(a) Infrastructure size

MaxBandwidth option

Scale disabled enabled

x1 66% 100%
x2 57% 100%
x4 47% 100%
x8 0% 100%
x18 0% 100%

(b) Amount of VMs

scale and increases the number of solved instances. When the

infrastructure size increases (Figure 11a), the computation time

for the two models increases exponentially but without deviat-

ing significantly. At the largest scale, enabling the optimization

reduces the computation time by 3.2 seconds, a 51% speedup.

Where the number of VMs increases (Figure 11b), only a few

instances from scale x1 to x4 are solved in a minute when the

option is disabled. This explains the larger confidence interval

and the exponential increase of the solving duration. Enabling the

optimization allowed to solve every instance in a minute with 43

times lower durations in average at scale x4.

Table 6b shows the amount of solved instances does not

necessarily decrease when the size of the infrastructure increase.

Indeed, at scale x2 and with the optimization disabled, mVM

solved only 22% of the instances and 83% at scale x4. This

variability is explained by the random placements that lead to
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numerous cumulative constraints. In such conditions, a variable

height and duration for the tasks may easily lead the solver to

take wrong decisions on variable instantiations thereby drastically

increasing the computation time.

To conclude, this experiment shows that forcing the bandwidth

to allocate to the migrations and pre-computing their duration

improve the performances with no counterparts.

5.5.3 mVM against Btrplace

In this experiment, we compare the time that is required to

compute the schedule using mVM or BtrPlace with instances

generated randomly. A preliminary scalability experiment was

conducted in [26], however the solved instances only represented

symmetric server decommissioning scenarios. We observed the

initial heuristic was over specific and prevented mVM to solve

randomly generated instances in a minute. The optimizations

discussed in Section 4 fixed that robustness issue. Now every

randomly generated instances are solved by mVM. Furthermore,

to provide a more robust analysis of our migration model, in this

experiment we computed random VMs placements among the

entire set of nodes and thus without relying on a decommissioning

scenario. Figure 12 shows the results.
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Fig. 12. Computation time of mVM and BtrPlace depending on the
scaling factor

At the lowest scale, mVM takes 9.4 ms more than BtrPlace

to compute a solution, that is a 48% increase. When the size of

the infrastructure increases, the overhead increases up to 82%. At

this scale, mVM requires 2.6 seconds to schedule 960 migrations

between 720 servers. When the number of VMs increases, the

overhead increases up to 231.8%. mVM requires then 7.3 seconds

to schedule 1728 migrations between 72 servers. This overhead

is explained by the additional computations made by mVM to

provide reliable, fast, and energy efficient schedules in practice.

Even if the relative overhead is significant, the time required to

compute a schedule stays negligible with regards to the time that

is required to execute it. Indeed, at the highest scales, the schedules

computed by mVM are predicted to take from 152 to 224 sec. by

increasing the number of VMs, and from 22 to 26 minutes by

increasing the infrastructure size. Therefore, in the worst case the

computation phase only represents 1.7% and 0.6% of the execution

phase when the number of VMs and the infrastructure size are

respectively scaled up.

We finally observe that at equivalent scaling factors, the

overhead of mVM is bigger when the number of VMs increases.

For example, at scale x4 the computation time of mVM is 36.5%

higher by scaling up the number of VMs rather than the infras-

tructure. This difference is explained by the network model. A

cumulative constraint has a O(n2) time-complexity where n is the

number of tasks to schedule. This indicates that adding more tasks

on the same cumulative constraints, i.e. adding more VMs per

network element, is more computationally intensive than adding

more cumulative constraints with the same amount of tasks.

We also globally observe slower computation times for mVM

than with the decommissioning scenario in Figure 11. This is

mainly explained by the network links usage. Indeed, while the

number of migrations remains exactly the same, dissolving the

static groups of source and destination nodes leads to a global

lower consolidation. Therefore, the nodes links are used less

intensively and the amount of tasks per cumulative constraints

is reduced consequently. Additionally, unlike in the decommis-

sioning scenario, each network link may also be used in full-

duplex. This results in more cumulative constraints (i.e. one per

link direction) with fewer migration tasks placed on them thereby

reducing the overall computation time.

At a very large scale, the solving duration for mVM might

become significant with regards to the completion time. A solution

to overcome this limitation would be to split the operation in

multiple steps. At the moment the bandwidth used to migrate VMs

exceeds the aggregation switch capacity, mVM migrates the VMs

by group. Accordingly, with a 100 Gbit/s interconnect, asking

mVM once to migrate 960 VMs or asking mVM twice to migrate

480 VMs at each step would lead to the same observable result

while being less stressful for the datacenter operator.

6 RELATED WORKS

6.1 Migration scheduling in VM managers

Many works such as [4], [6], [12], [13] estimate the migration

duration to be equal to the VM memory usage divided by the net-

work bandwidth. The experiments discussed in Section 5 proved

that this assumption is not realistic. This ignores the principles

of the pre-copy algorithm or assumes that the VMs do not write

into their memory. It also assumes a non-blocking network where

none of the VMs to migrate are co-located. Memory buddies [14]

addresses the impact of concurrent live-migrations by capping

the concurrency with a number to be defined. The experiments

discussed in Section 5 also proved that this assumption is not

optimal. Indeed, the concurrency cannot be constant as it depends

on the current network load and the migration path. COMMA [10]

considers the network bandwidth and the dirty pages rate to syn-

chronize in real time the termination of strongly communicating

VM migrations. It however assumes a single network path for all

the VMs. mVM implements the concept of COMMA with the

Sync constraint but with the knowledge of the whole topology.
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[29] and [9] study the factors that must be considered to

schedule live-migrations efficiently. While Ye et al. [29] focus on

resource reservation techniques on the source and the destination

servers, [9] focus on the network topology and the dirty pages

rate. These two works discuss about different scheduling policies

that should be considered for the development of a migration

scheduler. However, none of them proposes that scheduler.

Sarker et al. [30] propose an adhoc heuristic to schedule

migrations. The heuristic reduces the completion time according to

the network topology and a fixed dirty pages rate. The heuristic is

only compared to a custom algorithm that schedules the migrations

randomly with regards to their theoretical completion time. The

accuracy of the migration model is not validated on a real testbed.

We propose with mVM a migration model based on a two-stage

process deduced from the practical observations of the workload.

Our scheduler can be enhanced to support additional constraints

and we evaluated its prediction and benefits on a real testbed.

Bari et al. [31] restrict parallelism to migrations with disjoint

paths only. With regards to the topology of our experiments in

Section 5.2, this lead to migrate up to 2 VMs in parallel while

mVM migrate up to 5 VMs in parallel at full speed with a

negligible overhead. Yao et al. [32] restrict parallelism within the

same rack while guaranteeing at least 70 percent of maximum

migration speed. Such a simplification would lead to purely se-

quential migrations in our experiments. Wang et al. [33] consider

a non-blocking network and the multi-path routing feature made

available by SDN controllers to increase the migration bandwidth.

mVM supports blocking networks and does not rely on any SDN

features. Overall, these algorithms are only evaluated through

simulations with no guarantee over the simulator accuracy while

we provide extensive experimentations on a real network testbed.

6.2 Predicting live-migration duration for simulation

The simulation community studies carefully live-migration per-

formances to provide accurate cloud simulators. The migration

models of [21], [30] assume an average memory dirty pages rate

that is refined during the simulation by the analysis of the predic-

tion errors. Our approach predicts the migration duration statically

by a preliminary analysis of the VMs load. We model the memory

dirty pages generation in a two-stage process based on the analysis

of common workloads observation. Haikun et al. [20] propose a

migration performance model based on the memory dirty pages

transfer algorithm implemented in Xen. They consider both static

and refined dirty pages rate build on historical observations and

assume that the Writable Working Set size should be transferred in

one round thereby determining the VM downtime. In contrast, we

model the dirty pages rate using a two-stage approach based on

KVM behavior and we consider a preset maximum downtime for

each VM migration. They also do not tackle migration scheduling

and network topology that are the main contributions of this paper.

The CloudSim simulator [13] provides a model to estimate

the migration duration but the model relies on the assumptions of

Beloglasov et al. [6] discussed previously. Takahiro et al. [16]

implemented the pre-copy migration algorithm in the Simgrid

simulator. They reproduce the memory dirty pages generation

behavior by using a single rate but with unusual linear correlation

on the CPU usage. In contrast, we define the dirty pages generation

rate as a two-stage process, according to live VM memory obser-

vations and independently of the CPU usage. Sherif et al. [21]

proposes a simulator to reproduce the Xen migration algorithm

with two different models. The first one is based on a constant

average memory dirty pages rate. The second model is a dynamic

algorithm that learns from previous observations.

The aforementioned algorithms predict live-migration dura-

tions under different assumptions. To the best of our understand-

ing, our model embraces the particularities of these algorithms but

not their limitations. None of these models are however devoted

to be used to compute migration schedules. [21], [30] reduce

prediction errors with a feedback loop. Such an approach is not

compatible with the need to compute a migration plan.

7 CONCLUSION

Live-migrations are used on a daily basis by consolidation algo-

rithms and datacenter operators to manage the VMs on production

servers. Current VM managers compute a placement of quality

but usually neglect the main factors that impact the migration

duration. This leads to unnecessarily long and costly migrations,

and consumes an excessive amount of energy. We propose mVM,

a migration scheduler that infers the best moment to start the

actions and the amount of bandwidth to allocate to them with

regards to the VM workload, the network topology and user-

specific constraints. mVM is implemented as a set of extensions

for the VM manager BtrPlace in place of the old scheduler.

The accuracy of the migration model has been validated

through random migrations plans simulation against the execution

on a real testbed. We compared mVM predictions to the cloud

simulator SimGrid [15] and two representative migrations models

such as the one implemented in CloudSim [13] and the original

BtrPlace [12]. Results show that mVM migration model is most

accurate than any other with an average accuracy of 93.9%.

The scheduling decisions of mVM have been validated through

experiments on a real network testbed compared to the original

scheduler of BtrPlace and a scheduler that mimics Memory

Buddies [14] decisions. Micro-experiments have shown that mVM

outperforms both schedulers. On migration plans generated ran-

domly, migrations scheduled by mVM completed 20.4% faster

than Memory Buddies, with completion times reduced by 28.1%.

Contrarily to Memory Buddies, mVM always outperforms se-

quential scheduling with a completion time speedup of 54.18%.

Migration durations are close to the optimal with a slowdown of

7.35% only, 4.5 times lower than with Memory Buddies.

Macro-experiments validated the use of mVM to address en-

ergy concerns. On a server decommissioning scenario involving 96

migrations among 72 servers having their ToR switches connected

by a 10 Gbit/s aggregation switch, mVM reduced the energy

consumption of the operation by 21.5% compared to BtrPlace.

We also validated the control capacity of mVM by capping the

power consumption of a schedule. Depending on the budget, mVM

delayed migrations and server state switches to guarantee the

power consumption remains below the given threshold. Finally, a

scalability evaluation has shown that mVM is suitable to schedule

thousands of migrations. By varying the consolidation ratio or the

infrastructure size, we observed the computation time of mVM

amounts for less than 1% of the completion time.

As a future work we want to merge the scheduler with the

placement model of BtrPlace. Indeed, some schedules might

be considered sub-optimal with respect to placement algorithm

expectations in terms of reactivity. With a tight coupling between

the two models, the placement algorithm will be able to revise its

placement with respect to the scheduling decisions.
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AVAILABILITY

mVM is available as a part of the BtrPlace scheduler under the

terms of the LGPL license. It can be downloaded, along with

all the material related to the reproduction of the experiments at

http://www.btrplace.org.
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