
Scheduling Measurements and Controls over Networks - Part II:
Rollout Strategies for Simultaneous Protocol and Controller Design

D. J. Antunes, W. P. M. H. Heemels, J. P. Hespanha, and C. J. Silvestre

Abstract—We consider a networked control system where a
plant is connected to a remote controller via a shared network
that allows only one user to transmit at a given time. At each
transmission time, the controller decides between sampling one
of the plant’s sensors or transmitting control data to the plant.
We tackle the problem of simultaneously designing a policy
for scheduling decisions and a policy for control inputs so
as to optimize a quadratic objective. Using the framework of
dynamic programming, we propose a rollout strategy by which
the scheduling and control decisions are determined at each
transmission time as the ones that lead to optimal performance
over a given horizon assuming that from then on controller
and sensors transmit in a periodic order and the control law is
a standard optimal law for periodic systems. We show that
this rollout strategy results in a protocol where scheduling
decisions are based on the state estimate and error covariance
matrix of a Kalman estimator, and must be determined on-line.
We contrast the solution to this problem with the solution to
the seemingly similar sensor scheduling problem where optimal
scheduling decisions can be determined off-line. We highlight
how the protocol obtained from the rollout algorithm can
be implemented in a distributed way in broadcast networks.
Moreover, it follows by construction of rollout algorithms that
our proposed scheduling method can outperform any periodic
scheduling of transmissions.

I. INTRODUCTION
Recent advances in communication and microprocessor

technologies made possible several applications where a
process is connected to a controller via a communication
network through which it receives controls and transmits
measurements. Applications of networked control systems
include, e.g., energy building efficiency systems, remote
surgery, and highway traffic control. In some of these appli-
cations, the communication protocol, e.g., the Ethernet, the
CAN-BUS, or the Wireless 802.11, impose that only one user
can transmit at a given time, which implies that controller
and process must schedule their transmissions.
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In this paper, we consider a networked control system
where a plant is connected to a remote controller via a
shared network that allows only one user to transmit at a
given time. At each transmission time, the controller decides
between sampling one of the plant’s sensors or transmitting
control data to the plant. This problem setup in which the
controller either samples or controls at each time step was
proposed in [1], where the analysis is restricted to scalar
systems. A related line of work is the sensor scheduling
problem [2], [3], [4]. The pioneering work [2] considers a
plant corrupted by Gaussian noise and addresses the problem
of simultaneously choosing the control law and a scheduling
sequence for sampling different sensors, so as to minimize
the expected value of a quadratic function over a finite
horizon. The fundamental difference between the present
paper and [2] is that [2] assumes that the controller can
update the plant’s input at every time step, while in the
present paper the control update may not be available at every
time step due to constraints imposed by the network. In [2] it
is proved that the problem can be decoupled into an optimal
control problem and an optimal sensor scheduling problem,
where the latter problem can be computed off-line and is
combinatorial, which has prompted several researchers to
propose sub-optimal strategies (see, e.g., [5] and references
therein). Another line of related work results from the fact
that the optimal scheduling problem for networked control
systems can be put into the framework of optimal control
for general switching systems. In [6], an optimal LQR-type
control problem is considered for swichted system assuming
that full state feedback is available. A class of suboptimal
strategies are proposed to circumvent the combinatorial
nature of the problem, which can be directly applied to
networked control scheduling problems.
In the present paper, we tackle the problem of simul-

taneously designing a policy for scheduling decisions and
a policy for control inputs so as to optimize a quadratic
objective over a finite horizon. In the companion paper [7],
we consider the case where a control law is given, and only
the scheduling sequence is to be designed. We propose the
use of rollout algorithms to the problem at hand, which, as
explained in [8], consist of suboptimal strategies for dynamic
programming problems in which the search for optimal
decisions occurs only along a lookahead horizon, assuming
that from then on a base policy is used for which the cost
to go is typically simple to determine. In our approach,
we propose the base policy to be a periodic scheduling, in
which nodes transmit following a prescribed order, and a
corresponding standard optimal control law for the periodic



system obtained from using this scheduling.
The proposed rollout algorithm results in a scheduling

protocol in which sensors and controller arbitrate which one
transmits at each step based on the current state estimate and
on the associated error covariance matrix of a Kalman filter,
which is iteratively updated based on the information sent
over the network. The resulting control law is a linear feed-
back of the state estimate. The dependency of the scheduling
decisions not only on the error covariance matrix but also on
the state estimate, leads to the interesting conclusion, that
the scheduling must be performed on-line, i.e., in a closed-
loop fashion. This is true not only for the rollout algorithms,
but also for the optimal solution to the original quadratic
cost problem. Note that this is in striking contrast with the
seemingly similar sensor scheduling problem [2], where the
scheduling can be determined off-line. We show that our
proposed protocol can be implemented in a distributed way
in two cases, which encompass many networked control
scenarios of interest: i) broadcast networked control systems
in which sensors can run an arbitration protocol; (ii) CAN-
BUS wired networks, where by taking advantage of the
arbitration field, we are still able to find a distributed solution
to the problem in cases where there is only one network
node (instead of possibly many sensor nodes) associated
with the plant, which does not necessary possess compu-
tational resources to run a scheduling algorithm, transmits
and receives control data from the remote controller. Another
interesting feature of our rollout algorithm is that scheduling
transmissions using state information according to a rollout
strategy with lookahead horizon one outperforms any peri-
odic assignment as long as this assignment is used as the
base policy.
The remainder of the paper is organized as follows. Sec-

tion II sets up the general networked control scheduling prob-
lem. Section III addresses rollout policies and establishes our
main results. Section IV contains concluding remarks and
directions for future work.
Notation We denote by In and On the n × n identity and
zero matrices, respectively, and by diag(A1, . . . , An]) a block
diagonal matrix with blocks Ai. For a matrix A, Aᵀ denotes
its transpose.

II. PRELIMINARIES AND PROBLEM SETUP

We consider a networked control system in which a plant
communicates with a remote controller via a shared network
that allows only one user to transmit at a given time. The
controller receives measurement data from ny sensor nodes
and sends control values to nu actuator nodes. We define a
vector of controls u, and a vector of measurements y, which
can be partitioned as u = (u1, . . . , unu), y = (y1, . . . , yny ),
where ui ∈ Rsi pertains to an actuator node 1 ≤ i ≤ nu, and
yi−nu ∈ Rsi pertains to a sensor node nu + 1 ≤ i ≤ nu+ny.
Note that, for convenience, we use the same index 1 ≤ i ≤
nu +ny to label both actuator and sensor nodes. With some
abuse of terminology, we say that an actuator or a sensor
node transmits when a transmission occurs either from the
controller to an actuator, or from a sensor to the controller,

(a) Control and sensor scheduling in a broad-
cast network

(b) To sample or to control problem in a
CAN-BUS network

(c) Sensor Scheduling

Fig. 1. Some Networked Control Scenarios modeled in our framework

respectively. Transmission times are denoted by tk, k ∈ N0,
and are assumed to be evenly spaced for simplicity, i.e.,
tk+1−tk = τs, ∀k∈N0 , for some sampling period τs. Figure 1
depicts three scenarios, which have a special interest to the
present paper, and can be described as follows.
a) Control and sensor scheduling in a broadcast network.
In this scenario we make two assumptions: i) the
sensors have enough computational resources to run an
arbitration protocol; and (ii) every node can listen to the
network at every transmission time (although only one
can transmit).

b) To sample or to control in CAN-BUS networks. There
is only one network node (instead of possibly many
sensor nodes) associated with the plant, which does
not necessary possess computational resources to run a
scheduling algorithm. This node transmits and receives
control data from the remote controller, to which is
connect by a CAN-BUS. We shall see in sequel that by
taking advantage of the arbitration field in CAN-BUS
data messages, we can still run an arbitration algorithm
in this setup.

c) Sensor scheduling. The controller is collocated with the
plant and can update the actuator at every transmission
time tk. Only the sensors need to be scheduled over the
network.

A. Problem Formulation

We consider a plant model that directly takes into account
the communication constraints imposed by the network, and



which takes the form
xk+1 = Axk +BΩσkuk + wk, k ∈ N0

yk = ΓσkCxk + vk
(1)

where xk, k ∈ N0 is the state, uk = (u1
k, . . . , u

m
k ) encapsu-

lates the control inputs and yk = (y1k, . . . , y
p
k), encapsulates

the plant’s measurements. The vectors wk and vk are zero
mean independent Gaussian processes characterized by the
covariance matrices E[wkw

ᵀ
k ] = Φx and E[vkv

ᵀ
k ] = Φy .

The initial state x0 is assume to be a Gaussian variable,
with E[x0] = x̄0, and E[(x0 − x̄0)(x0 − x̄0)ᵀ] = Φ0. The
scheduling sequence

σk ∈ M, k ≥ 0,

takes values in a set M := {1, . . . , nD}. The matrices Ωj ,
j ∈ M and Γj , j ∈ M are diagonal matrices with zero
and one entries in the diagonal and therefore σk selects at
each time step k which components of the input vector uk

can influence the plant model, and which components of the
output vector yk are available for feedback. For the scenarios
a), b), and c) depicted in Figure 1 and described above these
matrices are described as follows.
a) We set nD = nu+ny and the following matrices capture
the fact that only one node i ∈ M can transmit at a
given time # (σ" = i)

Ωi =






diag(0∑i−1
j=0 sj

, Isi , 0
∑nu

j=i+1 sj ),

if 1 ≤ i ≤ nu

0, if nu + 1 ≤ i ≤ nu + ny,

(2)

and

Γi =






0, if 1 ≤ i ≤ nu

diag(0∑i−1
j=nu+1 sj

, Isi , 0∑nu+ny
j=i+1 sj

),

if nu + 1 ≤ i ≤ nu + ny.

(3)

b) We can model this scenario with nD = 2 options: 1)
to sample (σk = 2), in which case Γ2 = Inu+ny , and
Ω2 = 0nu+ny ; and 2) to control (σk = 1), in which
case Γ1 = 0nu+ny , and Ω1 = Inu+ny .

c) We set nD = ny and i ∈ M corresponds to a sensor
node 1 ≤ i ≤ ny transmitting. Thus, the matrices Γi,
i ∈ M are given by

Γi = diag(0∑i−1
j=1 sj+nu

, Isi+nu
, 0∑ny

j=i+1 sj+nu
),

for 1 ≤ i ≤ ny . Since control actuation can be provided
to the plant at every time instant we have

Ωj = Im, ∀j ∈ M.

Consider the following cost

J(u,σ) = E[
kF−1∑

k=0

xᵀ
kQσkxk+uᵀ

kRσkuk+xᵀ
kF

Q
kF

xkF ] (4)

for positive definite matrices Qj , j ∈ M, Q
kF
, and Rj ,

j ∈ M, where x0 in the initial condition of (1), and u :=
(u0, . . . , ukF−1) and σ := (σ0, . . . ,σkF−1) are decision

variables. Due to the network constraints, we have that
(σk, uk) ∈ U , k ∈ K, where

U := {(i,Ωiv) | i ∈ M, v ∈ Rm}.

Since we will be interested in networked control problems in
which the controller has access to the information previously
transmitted in the network we define the information vector
Ik available to the controller at time k as

Ik := {Γσ!y", Ωσ!u", σ"|0 ≤ # < k} (5)

A policy

π = {(µσ
0 (I0), µ

u
0 (I0)), (µ

σ
1 (I1), µ

u
1 (I1)), . . . , }

for
(σk, uk) = (µσ

k (Ik), µ
u
k(Ik)), k ∈ K (6)

is called admissible if (µσ
k (Ik), µ

u
k(Ik)) ∈ U for every k ∈ K

and for every Ik, k ∈ K. Let Jπ denote the cost (4) when
the policy (6) is taken. The problem we tackle in this paper
is to find a policy π to minimize Jπ. Since this problem is in
general hard, we shall proposed rollout suboptimal policies
to be addressed in the next section.
To guarantee that (σk, uk) ∈ U for a given σk, k ∈ K, and

for an optimal control policy for uk, k ∈ K we assume the
following.
Assumption 1: The matrices Rj , j ∈ M are assumed to

be diagonal.
In fact, if Assumption (1) holds then the components of

uk, k ∈ K that do not influence (1) are set to zero by an
optimal policy since they are weighted in (4).
Remark 2: The problem set-up considered here has some

differences from the problem formulation in the companion
paper [7], in which we consider the problem of designing
only the scheduling decisions σk, k ∈ K. In fact, in [7], we
consider (i) a model with no disturbances; (ii) at a given
time k ∈ H the components of the control input uk that
are not updated are set to the corresponding components of
the previous control value uk−1 instead of being set to zero;
(iii) infinite horizon problems (kF = ∞). We can model hold
operation of the control input with the following model

[
xk+1

ûk

]
=

[
A B(I − Ωk)
0 (I − Ωk)

] [
xk

ûk−1

]
+

[
BΩk

Ωk

]
uk

for some auxiliary state ûk, k ≥ 0. The same ideas in the
present paper can then be applied to this model. However,
considering analogous versions of the infinite horizon prob-
lem, such as average cost and discounted cost problems
(cf. [8]) warrants further research.

III. MAIN RESULTS
In this section, we start by showing how to compute the

cost (4) for a periodic base policy in subsection III-A, and
then we present the scheduling protocol that a rollout policy
with this periodic base policy leads to in Subsection III-B.
In Subsection III-C, we address the implementation of this
scheduling protocols in the scenario of Fig. 1.



A. Base Policy
To define a periodic protocol, we consider a set of h

consecutive schedules σk denoted by

(v0, . . . , vh−1), (7)

where v" ∈ M, # ∈ H, H := {0, . . . , h − 1}, which are
periodically repeated as explained next. If we let (k)h denote
the remainder after division of k by h, we have

σk = θκk , k ∈ K, (8)

where
θκk := v#k+κ$h , k ≥ 0, (9)

for some κ ∈ H that characterizes the initial condition of
the periodic scheduling θκk .
Once the scheduling decisions σκ,κ ∈ H are fixed, we can

obtain the optimal control input uκ,κ ∈ H that minimizes
problem (1), (4), as summarized in the next proposition
(cf. [9] ). Let

Bj := BjΩj , Cj := ΓjCj

and
Fj(P ) := AᵀPA+Qj

−AᵀPBj(Rj +Bᵀ
jPBj)

−1Bᵀ
jPA

Gj(P ) := −(Rj +Bᵀ
jPBj)

−1Bᵀ
jPA

Hj(N) := ANAᵀ + Φx

−ANCᵀ
j (Φy + CjNCᵀ

j )
−1CjNAᵀ

Mj(N) := −ANCᵀ
j (Φy + CjNCᵀ

j )
−1.

(10)

Proposition 3: The optimal policy for the control input
uk, k ∈ K when the scheduling σk, k ∈ K is described by (8)
is given by

uk = Kkx̂k, k ∈ K (11)

where the state estimates x̂k, k ∈ K, are obtained from
x̂k+1 = (A+BΩθκ

k
Kk + LkΓθκ

k
C)x̂k − Lkyk

uk = Kkx̂k, x̂0 = x̄0, k ≥ 0
(12)

and the gains Kk and Lk, k ∈ K can be determined by

PkF = Q
kF

, Pk = Fθκ
k
(Pk+1),

Kk = Gρk(Pk+1), k ∈ K
(13)

and
N0 = Φ0, Nk+1 = Hθκ

k
(Nk),

Lk = Mθκ
k
(Qk), k ∈ K.

(14)

Moreover, the optimal cost (4) is given by Jbase,κ(x̂0,Φ0),
where

Jbase,κ(x̄0,Φ0) = x̂ᵀP0x̂+ tr(P0Φ0) +
kF−1∑

k=0

tr(Pk+1Φx)+

kF−1∑

k=0

tr(NkA
ᵀPk+1Bθκ

k
(R+Bᵀ

θκ
k
Pk+1Bθκ

k
)−1Bᵀ

θκ
k
Pk+1A).

(15)
and x̄0, Φ0 are the initial state estimate and associated error
covariance matrix of (1).

!
Note that, under Assumption 1, the control policy (11),

where Kk are described by (13), is in fact admissible.

B. Rollout Policy
We propose to choose at each iteration the scheduling de-

cision and the control input as the ones that leads to optimal
performance over a fixed lookahead horizon, assuming that
from then on a periodic base policy is used. In other words,
at each iteration #, k ∈ K, the schedules

σ",σ"+1, . . . ,σ"+H−1

and the controls

u", u"+1, . . . , u"+H−1

are assumed to be free variables, where H denotes the length
of the lookahead horizon, while

σ"+H ,σ"+H+1, . . .

and
u"+H , u"+H+1, . . .

are fixed and follow a periodic policy as in (8), (9),
and (11), (12). The free scheduling variables are denoted
by ν = (ν0, . . . , νH−1), i.e.,

σk = νk−", for k ∈ {#, . . . , #+H − 1} (16)

and the fixed scheduling variables can be written as

σk = θκk−("+H), for k ∈ {#+H, . . . , kF − 1}. (17)

Note that at time # +H the base policy is assumed to start
at an initial schedule vκ, determined by κ. We consider that
κ ∈ H is also a decision variable, and the decision set is
denoted by I := MH × H, i.e., (ν,κ) ∈ I. The length of
the lookahead horizon is a fixed constant, but naturally needs
to be adapted when the iteration step is close to the terminal
step time kF , i.e,

H(#) := min(Hc, kF − 1− #), (18)

where 1 ≤ Hc ≤ kF − 1 is a constant1 The dependency
of H on # is omitted hereafter. The process is restarted at
each step, in a similar fashion as in Model Predictive Control
(MPC) [10].
As we shall see in the sequel this procedure boils down

to the following protocol.
Protocol 1: At each time iteration # take the scheduling

decision σ" as
σ" = w"

0, (19)

where w"
0 is the first entry of the vector w" =

(w"
0, . . . , w

"
H−1) obtained from

(w",κ")=argmin(ν,κ)∈I x̂
ᵀ
"Pν,κ,"x̂"+δ(ν,κ, #)+β(ν,κ, #, N"),

(20)

1In the companion paper [7] we consider the case H = 0 for which
only the variable κ in (17) is a decision variable. For simplicity we do note
consider this case in the present paper.



where
• Pν,κ," = P̃0 is computed at each iteration # from

P̃H = P̄H , P̃j = Fνj (P̃j+1), 0 ≤ j ≤ H − 1,
(21)

where P̄H is obtained from

P̄ kF = Q
kF

, P̄j = Fθκ
j−H

(P̄j+1), H ≤ j ≤ kF−1.
(22)

Moreover, the function δ is given by

δ(ν,κ, #) =
H−1∑

j=1

tr(P̃j)Φx) +
kF∑

j=H

tr(P̄jΦx).

• The N" and x̂" are obtained recursively by at each
iteration 0 ≤ k < # updating the following iterations
based on past scheduling decisions

N0 = Φ0, Nk+1 = Hσk(Nk), 0 ≤ k < #, (23)

and for 0 ≤ k < #,

x̂k+1 = (A+BΩσkKk + LkΛσkC)x̂k − Lkyk,
(24)

where Lk = Iσk (Nk), Kk = Gσk (P̃1), and P̃1 is the
matrix obtained by running (21), (22) at iteration k,
0 ≤ k < #.

• The function β is given by

β(ν,κ, $,N!) = tr(N!P̃0)

+
H−1∑

j=0

tr(Ñj(A
ᵀP̃j+1Bνj

(R+Bᵀ
νj
P̃j+1Bνj

)−1Bᵀ
νj
P̃j+1A)

+
kF−1∑

j=H

tr(N̄j(A
ᵀP̄j+1Bθκj

(R+Bᵀ
θκj−H

P̄j+1Bθκj−H
)−1Bᵀ

θκj−H
P̄j+1A).

where N̄k and Ñk are obtained at iteration # from

Ñj+1 = Hνj (Ñj), 0 ≤ j ≤ H − 1, Ñ0 = N"

N̄j+1 = Hθκ
j−H

(N̄j), H ≤ j ≤ kF − 1, N̄H = ÑH

Moreover, the control law u" is given by

u" = K"x̂", (25)

where K" = Gσ!(P̃1), P̃1 is the matrix obtained by run-
ning (21), (22) at iteration #, and x̂" is obtained from (24).

!
Again, note that, under Assumption 1, the control pol-

icy (25) is in fact admissible.
As stated next, this protocol does in fact correspond to

the rollout algorithm described above. Moreover, for H =
1, we can establish that it outperforms the corresponding
periodic base policy. Let Jrollout(x̄0,Φ0) be the cost (4) when
the scheduling sequence σk and the control law uk for the
system (1) are as described by Protocol 1, which depends on
the initial state estimate x̄0 and associated error covariance
matrix Φ0 for (1).
Theorem 4: The rollout scheduling algorithm with the

base policy described in Subsection III-A is determined by

the Protocol 1. Moreover, in the case where H = 1, the
following holds for every x̄0 ∈ Rn, Φ0 ∈ Rn×n.

Jrollout(x̄0,Φ0) ≤ min
κ∈H

Jbase,κ(x̄0,Φ0) (26)

!
We restrict H = 1 to obtain (26) since for this case

one can apply directly analogous arguments to [8, Prop.
6.3.1, and p.338] to establish (26). Establishing if (26) holds
for H > 1 warrants further research.
We provide next further important comments on Protocol 1

and Theorem 4, concerning: (i) the fact that Protocol 1 is a
closed-loop policy for the scheduling decisions; (ii) real-time
implementation.
1) Closed-loop policy for the scheduling decisions: The

scheduling decision (20) depends in general on the state
estimation x̂" at time #, on the error covariance matrix Φ"

at time #, and on the time #. Since x̂" is updated taking into
account the measurements yj

k (cf. (24)), which in turn are
corrupted by noise, the scheduling sequence of the rollout
algorithm cannot in general to determined a priori, i.e., it
must be determined on-line, or in a closed-loop fashion.
We shall see in the sequel that for the special case of the
sensor scheduling problem, one can determine the scheduling
decisions a priori. The rollout policy for the control law,
given by (25), is a closed-loop policy, since it depends on x̂ ".
Note also that if we make the lookahead horizon sufficiently
large to cover the entire horizon, i.e., making H c > kF
in (18), then the rollout policy degenerates into the search
for an optimal policy. Thus, also the search for an optimal
policy leads to a closed loop policy both for the control law
and for the scheduling decisions.
2) Real-time implementation: The Protocol 1 can be run

in the nodes of the network in a distributed way, as we
shall see in Subsection III-C for the scenarios of Fig. 1.
An important observation, is that every information that the
nodes require to compute (20) is available at time t "−1 and
therefore computations can be done between time t "−1 and
t". In this way, computational delays can be avoided at time
t". The feasibility of this implementation depends on the
computational capacity of the nodes, i.e., whether they can
perform these calculations in a time interval no larger than
one sampling interval h.
Since, for long horizons kF , the computation requirements

can be too demanding, one may need to consider less com-
putationally demanding policies. Note that the scheduling
decision (20) depends in general on the state estimation
x̂" at time #, on the error covariance matrix Φ" at time
#, and on the time #. Removing the dependency from #
may be obtained by considering a infinite horizon discounted
problem formulation [8], since in this case rollout policies
lead to stationary polices, and this is a topic for future work.
Finding heuristic rules for scheduling in the space (x̂", θ")
that approximate the rule (20) is a topic for future research.



C. Implementation of the Protocol 1 in the scenarios of
Fig. 1

1) Distributed implementation in broadcast networks with
smart sensors: The key assumption that every node can listen
to the network at each transmission time, allows every node
to compute x̂", and also Q", at time t". In fact, knowing
the data sent over the network at times 0 ≤ k < #,
nodes can locally iterate (24) and (23). Moreover, since
the knowledge of x̂", and Q", at time # summarizes the
information a node needs to run the Protocol (1), each node
can implement the same rollout algorithm independently and
therefore determine which node is the next to transmit. At
each transmission step, the node that gains arbitration simply
transmits and the other nodes do not. This implementation
does not assume anything from the network, e.g., whether it
is wired or wireless, as opposed to e.g., the solution proposed
in [11] for CAN-BUS networks and in Subsection III-C.2
for the scenario b) in Fig.1, where the assumption that an
arbitration field is available, which is used in the CAN-BUS
messages, plays an essential role.
2) To sample or to control in CAN-BUS networks: Here,

sensors are no longer assumed to be able to run an arbitration
algorithm. Still, in the case where there is only one network
node, corresponding to the plant, that transmits the measure-
ment information to the controller and receives the actuation
data from the controller, and the communication network
is the CAN-BUS, we can still implement the Protocol 1
as follows. At every time tk the plant simply transmits a
message which encapsulates the data from the measurements.
Therefore only the controller runs the arbitration Protocol 1,
and decision are just to sample or to control. To sample the
controller does not transmit. To control the controller can use
the arbitration field in the CAN-BUS message it sends to gain
priority over the sensor, and therefore the plant receives the
control update.
3) Sensor scheduling problem: For this special case the

matrices Pν,κ,", obtained from (21) do not depend on ν and
κ, due to Λj = Im, for every 1 ≤ j ≤ ny , and therefore (20)
does not depend on x̂k , i.e., the optimal schedules at time ell
only depend on the error covariance matrix N ", which can be
computed off-line from the recursion (23). Note also that the
rollout policy (when H is fixed and typically much smaller
than kF ) in this case can be viewed as a suboptimal strategy
to determine sensor schedules, which can be computed off-
line.

IV. CONCLUSIONS

In this paper we explored the use of rollout algorithms
to the problem of simultaneous designing a control law and
a scheduling transmission sequence for networked control
systems. The rollout algorithm that we proposed determines
that at each step, the transmission decision should be taken
as the one that leads to optimal performance over a finite
lookahead horizon assuming that from then on a fixed
periodic base policy is used. We also addressed the relation
of the work with the sensor scheduling problem.

There are several directions for future work, from which
we mention: i) considering an infinite horizon discounted
problem formulation in which case rollout policies are ex-
pected to lead to stationary policies, ii) considering less
computationally demanding policies using heuristic rules
guided by the rule (20), as explained in Subsection III-C.2;
iii) extending Theorem 4 to lookahead horizons larger than
one.
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