
Scheduling Meetings using Distributed Valued
Constraint Satisfaction Algorithm

Takuo Tsuruta and Toramatsu Shintani 1

Abstract. Scheduling meetings is generally difficult in that it at-

tempts to satisfy the preferences of all participants. However, all par-

ticipants can agree to a schedule in which a portion of their pref-

erences are not satisfied, since preferences are regarded in terms

of their relative importance. In this paper, we formalize a meet-

ing scheduling as a Distributed Valued Constraint Satisfaction Prob-

lem (DVCSP) and propose an algorithm for solving over-constrained

problems formalized as a DVCSP by means of constraint relaxation

based on importance. Our algorithm can relax lower priority con-

straints and schedule meetings that satisfy as many of the impor-

tant constraints as possible under over-constrained conditions. We

show a group schedule management system, consisting of multiple

agents, and COLS which can concretely specify users’ preferences as

constraints. Our experiments show that our algorithm can discover a

semi-optimal solution to over-constrained meeting scheduling prob-

lem in practical time. We can conclude that our algorithm is cost

effective in comparison to another method that can find an optimal

solution.

1 INTRODUCTION

Many recent commercial groupwares have functionalities to manage

group schedule via the Internet(e.x. Lotus Notes, Microsoft Out-

look). However, most of these systems merely assist communica-

tion among users. The purpose of our study is to implement a group

schedule management system based on multiple agents which main-

tain their respective users’ calendars and act on behalf of their re-

spective users in meeting scheduling. We define “meeting schedul-

ing” as the process of determining a starting time and an ending time

of an event in which several people will participate. Many require-

ments (constraints) of these participants must be taken into account in

scheduling meetings. Meeting scheduling is often over-constrained

and no solution exists that can satisfy all constraints. Even so, it is

appropriate to reach a consensus regarding meeting scheduling by

relaxing a portion of all constraints. It is thus necessary to develop a

method for scheduling meetings that satisfies as many of the impor-

tant constraints as possible.

To address this requirement, we formalized a meeting schedul-

ing problem as a Distributed Valued Constraint Satisfaction Prob-

lem (DVCSP) [7] , and implemented a meeting scheduling algorithm

based on its formalization. In our system, an agent corresponds to

each group member. This agent maintains its user’s calendar and

preferences for meetings and acts on behalf of its user in meeting

1 Department of Intelligence and Computer Science, Nagoya Insti-
tute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 JAPAN.
ftsuruta,torag@ics.nitech.ac.jp

scheduling ; users are able to keep information regarding their calen-

dars and preferences private.

This paper consists of seven sections. In section 2, we show the

definition of DVCSP and formalize a meeting scheduling problem as

a DVCSP in section 3. In section 4, we propose our meeting schedul-

ing algorithm. In section 5, we provide an outline for our group

schedule management system, and in section 6 we discuss the re-

sults of our current experiments. We discuss related work in section

7, and finally, we make some concluding remarks.

2 DISTRIBUTED VALUED CONSTRAINT
SATISFACTION PROBLEM

A Constraint Satisfaction Problem (CSP) is defined by P =

(X ; D ; C), where X = x1 ; : : : ; xn is a set of variables,

D = d1 ; : : : ; dn(n � 1) is a set of finite domains for the vari-

ables, and C = 1 ; : : : ; k(k � 1) is a set of constraints [8, 10].

Each constraint j is defined over some subset of variables and lim-

its the allowed combinations of variable values in the subset. Solving

a CSP involves finding one set of assignments to variables X that

satisfies all constraints C .

A distributed CSP (DCSP)[7, 12] can be considered a CSP

in which variables and constraints are distributed among multi-

ple agents. Each agent has some variables and tries to instantiate

their values. Constraints may exist between the variables of differ-

ent agents, so the instantiations of the variables must satisfy these

inter-agent constraints. A DCSP is defined by DP = (P ; PI),

where P = P1 ; : : : ; Pm is a set of CSP instances. Each Pi =

(Xi ; Di ; Ci) (i = 1 : : : m) represents a local problem instance

in which Xi are disjoint sets of variables, Di is a set of finite

domains for the variables in Xi , and Ci is a set of constraints

involving Xi . PI = (XI ; DI ; CI) is an inter-agent CSP repre-

senting the connection of the local instances, where CI is a set of

inter-agent constraints, and XI is a set of inter-agent variables on

which inter-agent constraints hold. DI is a set of finite domains for

the variables in XI .

Many problems in AI can be formalized as CSPs [10]. Examples

of real-world problems, however, are over-constrained; no solution

exists [1, 2, 6, 13]. The extension of the CSP model for this case is

the Valued Constraint Satisfaction Problem (VCSP) [8]. This model

gives a weight or a valuation to each constraint, reflecting the im-

portance one gives to its satisfaction. We then search for a solution

minimizing an aggregation of the valuations of the dissatisfied con-

straints.

A VCSP is defined by V P = (X ; D ; C ; S ; '), where

(X ; D ; C) is a classical CSP, S = (E ;
 ; �) is a

valuation structure, and ' : C ! E is a valuation function, giving

the valuation of each constraint. E is the set of possible valuations;

� is a total order on E ; > 2 E is the valuation corresponding to a

maximal dissatisfaction, and ? 2 E is the valuation corresponding

to a maximal satisfaction;
 , the aggregation operator, aggregates

valuations. Let A be an assignment of values to all of the variables,

namely a complete assignment. The valuation of A for the constraint

 is defined as:

'(A ;) =

�
? if is satisfied by A

'() otherwise

and the overall valuation of A by

'(A) =

2C

'(A ;):

The Distributed Valued Constraint Satisfaction Problem (DVCSP)

[7] is an extension of the VCSP framework to the distributed case.

A DVCSP can be considered a VCSP in which variables and con-

straints are distributed among multiple agents. A DVCSP is de-

fined by DV P = (P ; PI), where P = P1 ; : : : ; Pm is

a set of local VCSP instances. Each local VCSP instance Pi =

(Xi ; Di ; Ci ; S ; 'i) is equipped with its own valuation func-

tion 'i . PI = (XI ; DI ; CI ; S ; 'I) is the inter-agent problem

instance, and is equipped with the valuation function 'I .

Let A be a complete assignment, and Ai the projection of

A over the variables in Xi . Ai is the agent i ’s local assign-

ment. In DVCSP, the valuation of A for the constraint is defined

as:

'(A ;) =

�
'i(Ai ;) if 2 Ci
'I(AI ;) if 2 CI :

The valuation of a complete assignment is then

'(A) =

2C

'(A ;)

where C = (

S
m

i=1
Ci) [CI is the set of all constraints.

3 MEETING SCHEDULING PROBLEM

In the meeting scheduling problem, we designed two kinds of agents:

a group agent and a personal agent. A personal agent is associated

with each user and maintains its user’s calendar and acts on behalf of

its user in scheduling meetings. A group agent is the facilitator in a

group and maintains group information.

A schedule element is designated an “event”. The schedule con-

sists of a number of events. Each event has three parameters: starting

time, ending time, and event information. Event set Ei that agent

i maintains is defined as the following:

Ei = f ei1 ; ei2 ; : : : ; eij ; : : : ; ein g (n � 0)

eij = (st ; et ; Nt) (st 2 T ; et 2 T ; st < et)

T = f (date ; min) j a finite set of time and date g;

where eij is one of the events that agent i has to attend, st is

a starting time, et is an ending time, and Nt represents the event

information. The st and et have as its value an element of the

finite set of time and date T . Each element in T consists of time

min and date date . The date represents the specified number of

dates that have passed since January 1, 1970, and min represents

the specified time by the minute (i.e., December 22, 1999, at 3:10

P.M. is (10947; 910)).

Constraint ij is defined as the requirements for scheduling a

meeting and the participants’ preferences. In addition, in our for-

malization, events that have already been registered are regarded as

constraints. That is, the event eij that has already been registered

is converted into the constraint “ Can’t schedule any event between

time stj (start time of eij) and time etj (end time of eij) ”.

The constraint ij and the event eij are assigned a weight,

which is an integer between 1 and 9, by an user. The weight reflects

the importance of the constraint or event, and a constraint (or a event

) with a larger importance value is considered more important.

We formalize a meeting scheduling problem as a DVCSP. A meet-

ing scheduling problem is defined by MP = (P ; PI). P =

P1 ; : : : ; Pm is the set of VCSPs placed on the participants’ per-

sonal agents. The agent i ’s VCSP is Pi = (Xi ; Di ; Ci ; S ; 'i),

where Xi is the set of starting time st and ending time et for each

event eij , Di is the time set T , and Ci is the set of all constraints

relevant to st and et for events to be managed by the agent i .

S is the valuation structure defined by E = [0; 9℄ ; �=> ; ? =

0 ; > = 9 ;
 = + and the valuation function 'i is defined by

the user. The inter-agent VCSP PI = (XI ; DI ; CI ; S ; 'I) is

a VCSP of the group agent, where XI is the set of st and et for

all meetings, DI is T , and CI is the set of all group constraints.

S is same as that of P , and function 'I is the degree of constraint

relaxation when meetings are scheduled.

4 MEETING SCHEDULING ALGORITHM

In the scheduling process, a group agent sends a proposal for a meet-

ing to participants’ personal agents. PRk = (Ts ; Tr ; Nt) is a

proposal, where Ts is the set of windows in which the meeting may

be scheduled, Tr is a threshold for the weights of constraint, Nt is

information about the meeting, and k is the proposal identifiers. A

proposal PRk is defined as the following:

PRk = (Ts ; Tr ; Nt)

Ts = f t1 ; t2 ; : : : ; ti ; : : : ; tk g (k � 1)

ti = [x ; y ℄ (x; y 2 T ; x < y)

Tr 2 [1 ; 9 ℄;

where ti is a window in which the meeting may be scheduled,

representing the interval from time x to time y . The threshold for

weights Tr is assigned an integer between 1 and 9.

In the scheduling process, a personal agent sends a reply to a group

agent. Rk is a reply, where a set of constraints ki exists for

scheduling. Rk is defined as the following:

Rk = f k1 ; k2 ; : : : ; ki ; : : : ; kn g (n � 1):

In the meeting scheduling process, when a new meeting is pro-

posed, new variable st and et are included in the variable set

XI of the group agent’s VCSP PI , and the constraints given by

the proposer are included in the constraint set CI . The meeting

scheduling algorithm is then executed to find an assignment to new

variables.

Our meeting scheduling algorithm is shown in Figure 1 . In the

following, we present a sketch of each step of our algorithm.

when i received (request (SendAgent , Date , ST , ET , Parts))

Ts proposed time slots based on Date , ST , and ET

Tr 1

broadcast “ proposed (i , Ts , Tr , Note) ” to Parts (a)

end

when i received (proposed (SendAgent , Ts , Tr , Note))

Events list events scheduled for Ts

Obj list translates Events list into constraints

Consts constraints related to Ts

Const list pick up (Obj list + Consts , Tr)

send “ replied (i , Const list , Tr) ” to SendAgent (b)

end

when i received (replied (SendAgent , Consts , Tr))

store Consts as constraints

if received all replies then

G Events events scheduled for Ts

Obj list translate G Events into constraints

G Consts constraints related to Ts

Const list pick up (Obj list + G Consts , Tr)

P Consts all constraints in replies of all participants

search for the schedule

such that Const list + P Consts are satisfied (c)

Tr Tr + 1

if the meeting can be scheduled

then broadcast the schedule to all participants

else if Tr = 10

then broadcast the failure to all participants (d)

else

broadcast “ proposed (i , Ts , Tr , Note) ”

to all participants . (e)

end if

end if

end if

end

procedure pick up (Obj list , Tr)

for j 1 to number of Obj list do

if weight of Obj list [j] � Tr

or (Obj list [j] is a meeting negotiated on other groups

and the threshold of Obj list [j] � Tr) (f)

then Const list Const list + Obj list [j]

end for

return Const list

Figure 1. Meeting scheduling algorithm

(Step 1) A group agent generates a Ts based on the constraints for

starting and ending time included in a message sent by a proposer,

and sends a proposal PRk to all participants’ agents (Fig. 1.(a)).

(Step 2) Each personal agent receiving the proposal PRk sends

a reply Rk to the group agent (Fig. 1.(b)). Rk consists of

constraints for Ts and constraints that prohibit times that overlap

already scheduled events. The constraints in Rk , however, have

a weight greater than or equal to Tr , and include constraints for

meetings that have been negotiated with the other groups, which,

as constraints, have a threshold that is greater than or equal to

GGGGrrrroooouuuuppppAAAAggggeeeennnntttt

PPPPeeeerrrrssssoooonnnnaaaallllAAAAggggeeeennnntttt
Personal Agent B

Personal Agent C

Group Agent B

Figure 2. Overview of the group schedule management system

Tr (Fig. 1.(f)).

(Step 3) Once the group agent receives all participants’ replies, it

searches for an assignment to new variables st and et that will

satisfy the constraints of all replies and the constraints CI (Fig.

1.(c)). This search is executed by means of a tree search using a

modified version of forward checking [4].

(Step 4) (i) If an assignment cannot be found, the group agent sends

a new proposal PRk to all participants’ agents (Fig. 1.(e)).

This proposal consists of Ts , the new threshold Tr + 1 (i.e.,

1 is added to the last proposal’s threshold), and Nt . This pro-

cess is repeated from (Step 2). However, if the new threshold

Tr + 1 reaches 10, the group agent broadcasts a failure mes-

sage to all participants (Fig. 1.(d)).

(ii) If an assignment can be found, those values are assigned to

new variables st and et . However, if there are several possi-

ble assignments, the proposer selects which values are assigned

to the new variables. The group agent then broadcasts this meet-

ing’s schedule to all participants’ agents.

We would like to emphasize that in our algorithm the participant’s

agent sends constraints based on the threshold for weight to the group

agent, and the number of constraints in the set Rk , sent in (Step

2), decreases whenever a proposal is revised. It thus can relax lower

priority constraints and find an assignment that satisfies as many of

the important constraints as possible in the over-constrained problem.

5 GROUP SCHEDULE MANAGEMENT
SYSTEM

In this section, we present the outline of our group schedule man-

agement system (implemented by Java), which can support per-

sonal schedule management, group sharing calendars, and meeting

scheduling that function according to our meeting scheduling algo-

rithm. Our system consists of group agents and personal agents cor-

responding to each group member, as shown in Figure 2. In our sys-

tem, one group consists of one group agent and its group members’

personal agents. Our system may have multiple (i.e., overlapping)

groups.

In Figure 2, a personal agent is associated with each user. The

personal agent maintains its user’s calendar and acts on behalf of its

user in sharing calendars and meeting scheduling. A group agent is

the facilitator in a group and maintains group information. Figure 3

is an example of the personal agent’s user interface. The agent has

a calendar window as a graphical user interface. A user manages his

calendar through this interface and schedules meetings through in-

teraction with a personal agent.

Figure 3. The user interface of the personal agent

scheduling(Date,ST,ET,Part,Title,Memo,Author) <-

1999/12/7 < Date < 1999/12/10,

13:00 < ST < 13:30,

13:00 < ST < 15:00,

18:00 < ET < 21:00,

weight([$1,8],[$2,3],[$3,6],[$4,4]),

Part = [tsuruta, hatto, shintani],

Title = a recreation in the seminar,

Memo = tennis,

Author = tsuruta.

Figure 4. An example of description in COLS

We designed COLS (COnstraint script Language for meeting

Scheduling) [11] to describe constraints regarding meeting schedul-

ing, operators, information concerning events and meetings, and

communication messages. Figure 4 represents an example of the de-

scription of a meeting request in COLS. In Figure 4, an operator

“ <- ” in line 1 divides a part of the predicate (the former) and a

part of constraints for arguments against the predicate (the latter).

A predicate “ scheduling ” in line 1 represents meeting requests

and has seven arguments. Its “ Date ” is a variable that refers to

a range of dates within which the meeting can be held. In line 2,

a constraint “ one day between December 7, 1999 and December

10, 1999 ” for “ Date ” is described. In lines 3 and 4, constraints

for the variable “ ST ” indicate the range of the meeting’s poten-

tial starting time. In line 5, constraints for the variable “ ET ” in-

dicate the range of the meeting’s potential ending time. From line

7 to line 10, the variable “ Part ” indicates the participant list;

“ Title ” indicates the topic of the meeting; “ Memo ” indicates

a memo; “ Author ” indicates the member who requested the meet-

ing. Line 6 describes the weight for each constraint; for example,

“ [$1 , 8] ” means that the weight for the first constraint

“ 1999/12/7 < Date < 1999/12/10 ” is 8.

6 EXPERIMENTS AND EVALUATION

This section presents experiments and evaluations of our meeting

scheduling algorithm. In our experiments, we consider the schedul-

ing process in one group that consists of one group agent and five per-

sonal agents, and calendars of seven days with twelve hours per day.

We used meeting scheduling problems which are randomly generated

based on several parameters in order to specify one meeting schedul-

ing problem. Their parameters are (1) number of agents in the group

a , (2) number of meetings m , (3) number of participants per meet-

ing p , (4) number of events per agent e , (5) number of constraints

per agent , (6) number of possible time slots t , (7) maximal dura-

tion of event d (any event has one value between [1 ; d ℄ as dura-

tion), (8) maximal value of weight w (any event and constraint have

one value between [1 ; w ℄ as weight) . In our experiments, we gen-

erated 25 problems using every combination of the sum of number of

events and constraints e+= f4 ; 8 ; 12 ; 16 ; 20g , with the other

parameters set at a = 5 ; m = 3 ; p = 3 ; t = 84 ; d = 5 ; w = 9 .

In our experiments, we applied our meeting scheduling algorithm

to problems that were randomly generated based on the above pa-

rameters, and we measured average computation time (time) until

our algorithm found a solution, and average aggregation of the val-

uations of the dissatisfied constraints (valuation). In addition, we

applied the DOC method [2] to same problems in order to find an op-

timal solution, and we measured time until the DOC method found

a solution, and valuation , and we then compared its results with the

results of our algorithm. This system was implemented by Java and

experiments were executed on a PowerMacintosh G3 (PowerPC G3

400MHz).

Table 1 presents the experimental results. +e in Table 1 indicates

the sum of the numbers of events and constraints per agent, solvabil-

ity in Table 1 indicates the ratio of problems that can be solved as

CSP to all generated problems, and max.valuation indicates the av-

erage maximal valuation of each problem, that is, the average sum

of the weights of all constraints and events of each problem. Table 1

shows that our algorithm performs faster with respect to time than

does the DOC method, while the DOC method finds a better solu-

tion with respect to valuation than does our algorithm. The greater

 + e becomes, the greater these differences become. For instances

of +e = 20 , our algorithm finds a solution in 1:08 seconds, while

the DOC method finds a solution in 44:06 minutes. However, the

average valuations of solutions (valuation) found by our algorithm

is 107:9 , while on the contrary, that found using the DOC method

is 34 . The average of the ratio of valuation over maximal valuation

(relaxation) is 20:73% in our algorithm, but is 6:52% using the

DOC method.

These results indicate that determining an optimal solution for

meeting scheduling problems is very expensive. Our algorithm

can discover a semi-optimal solution to over-constrained meeting

scheduling problem in practical time. We can conclude that our al-

gorithm is cost effective in comparison to the DOC method. Since

optimal solutions are not necessarily desired and high computation

costs are avoided, our algorithm is superior.

7 RELATED WORK

Lemaitre [7] has proposed a formalization of the DVCSP and a

greedy repair distributed algorithm for solving the DVCSP. This al-

gorithm is based on successive greedy repairs computed in turn by

agents. In this algorithm, during an agent’s turn, other agents must

not change their local assignment. In contrast, we apply a distributed

problem class our algorithm DOC method

+ e solvability(%) max.valuation time(msec) valuation relaxation(%) time(msec) valuation relaxation(%)

8 100 231.6 51 0 0 54 0 0

12 52 329.9 627 7.9 2.42 86219 2.1 0.65

16 8 430.8 739 39.7 9.32 1437767 11.3 2.63

20 0 519.7 1082 107.9 20.73 2643352 34 6.52

Table 1. Experimental results

synchronous algorithm to the meeting scheduling problems formal-

ized as DVCSP, and some agents can change their local assignment

simultaneously.

The Distributed Partial Constraint Satisfaction Problem(DPCSP)

[5] resembles the DVCSP framework. DPCSP is one of the abstract

frameworks that formalize distributed over-constrained CSPs, and is

an extension of the Partial CSP (PCSP) [3] framework to the dis-

tributed case. The DVCSP that we appropriate, in contrast, is an ex-

tension of the VCSP framework, which is a subclass of the PCSP, to

the distributed case. That is, DPCSP is a super class of DVCSP.

Research on scheduling based on CSP includes studies by [1, 2, 6,

13] which focus on over-constrained CSPs. In their work, schedul-

ing problems are formalized as centralized CSPs in which all vari-

ables and constraints are centralized in one process. In our work, in

contrast, scheduling problems are formalized as a distributed CSP

in which the variables and constraints are distributed among multi-

ple processes. In the centralized model, it is difficult to keep infor-

mation (e.g. users’ calendars and preferences) private because all

variables and constraints are centered on one process. In the dis-

tributed model, in contrast, because the variables and constraints

are distributed among multiple agents and each agent communicates

only fundamentally necessary information to other agents, informa-

tion can be kept private.

Recent work on distributed meeting scheduling based on multia-

gents includes the Sen’s work [9]. In this work, meetings are sched-

uled based on users’ preferences, thresholds for these preferences,

and weights for the options in each preference. The user’s prefer-

ences are related to time of day, day of week, host, other invitees,

topic of the meeting, etc., and are specified by assigning a value to

each parameter. For example, each user assigns a value between 0

and 1 for every member of the group in order to specify his or her

preferences for host and other invitees. The weights for the options in

each preference reflect the importance of the options themselves. Our

work differs from the Sen’s research in that we formalized a meeting

scheduling problem as a DVCSP , in which the user’s preferences

are described as constraints, and which can concretely specify user’s

preferences in COLS.

8 CONCLUSIONS

In this paper, we formalized a meeting scheduling problem as a

Distributed Valued Constraint Satisfaction Problem. We proposed

an algorithm for solving over-constrained problems formalized as a

DVCSP by means of constraint relaxation based on importance. Our

algorithm can relax lower priority constraints and schedule meetings

that satisfy as many of the important constraints, which concretely

specify user’s preferences in COLS, as possible. We described our

group schedule management system, which consists of group agents

and personal agents corresponding to each group member. Each

agent can maintain its respective user’s calendar and act on behalf

of its user in meeting scheduling. Our experiments show that our

algorithm can discover a semi-optimal solution to over-constrained

meeting scheduling problem in practical time. We can conclude that

our algorithm is cost effective in comparison to another method.

REFERENCES

[1] S. Abdennadher and H. Schlenker, ‘Nurse scheduling using constraint

logic programming’, in Proc. of the 11th Conference on Innovative Ap-

plications of Artificial Intelligence (IAAI-99), pp. 838–843, (1999).
[2] R.R. Bakker, F. Dikker, F. Tempelman, and P.M. Wognum, ‘Diagnosing

and solving over-determined constraint satisfaction problems’, in Proc.

of the 13th International Joint Conference on Artificial Intelligence (

IJCAI93), pp. 276–281, (1993).

[3] E.C. Freuder and R.J. Wallace, ‘Partial constraint satisfaction’, Artifi-

cial Intelligence, 58(1–3), 21–70, (1992).
[4] R.M. Haralick and G.L. Elliott, ‘Increasing tree search efficiency for

constraint satisfaction problems’, Artificial Intelligence, 14, 263–313,
(1980).

[5] K. Hirayama and M. Yokoo, ‘Distributed partial constraint satisfaction
problem’, in Proc. of the Third International Conference on Princi-

ples and Practice of Constraint Programming (CP-97), pp. 222–236,

(1997).
[6] Harald Meyer auf́m Hofe, ‘ConPlan/SIEDAplan: Personnel assignment

as a problem of hierarchical constraint satisfaction’, in In Proc. of the

3rd International Conference on Practical Applications of Constraint

Technologies, pp. 257–272, (1997).
[7] M. Lemaitre and G. Verfaillie, ‘An incomplete method for solving dis-

tributed valued constraint satisfaction problems’, in Proc. of AAAI-97

Workshop on Constraints and Agents, (1997).
[8] T. Schiex, H. Fargier, and G. Verfaillie, ‘Valued constraint satisfaction

problems: Hard and easy problems’, in Proc. of the 14th International

Joint Conference on Artificial Intelligence (IJCAI-95), pp. 631–637,

(1995).
[9] S. Sen, T. Haynes, and N. Arora, ‘Satisfying user preferences while ne-

gotiating meetings’, International Journal of Human-Computer Stud-

ies, 47, 407–427, (1997).
[10] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,

1993.

[11] T. Tsuruta and T. Shintani, ‘Implementation of a group schedule man-
agement agent based on a constraint script language’, in Proc. of the

57th Annual Conference of Information Processing Society of Japan,

pp. 400–401, (1998).
[12] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara, ‘The distributed

constraint satisfaction problem: formalization and algorithms’, IEEE

Trans. on Knowledge and Data Engineering, 10(5), 673–685, (1998).
[13] M. Yoshikawa, K. Kaneko, T. Yamanouchi, and M. Watanabe, ‘A

constraint-based high-school scheduling system’, IEEE Expert, 11(1),
63–72, (1996).

