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�is paper presents a cost optimizationmodel for scheduling scienti�cwork	ows on IaaS clouds such asAmazonEC2orRackSpace.
We assume multiple IaaS clouds with heterogeneous virtual machine instances, with limited number of instances per cloud and
hourly billing. Input and output data are stored on a cloud object store such as Amazon S3. Applications are scienti�c work	ows
modeled as DAGs as in the Pegasus Work	ow Management System. We assume that tasks in the work	ows are grouped into
levels of identical tasks. Our model is speci�ed using mathematical programming languages (AMPL and CMPL) and allows us
to minimize the cost of work	ow execution under deadline constraints. We present results obtained using our model and the
benchmark work	ows representing real scienti�c applications in a variety of domains. �e data used for evaluation come from the
synthetic work	ows and from general purpose cloud benchmarks, as well as from the data measured in our own experiments with
Montage, an astronomical application, executed on Amazon EC2 cloud. We indicate how this model can be used for scenarios that
require resource planning for scienti�c work	ows and their ensembles.

1. Introduction

Today, science requires processing of large amounts of data
and use of hosted services for compute-intensive tasks [1].
Cloud services are used not only to provide resources, but also
for hosting scienti�c datasets, as in the case of AWS public
datasets [2]. Scienti�c applications that run on these clouds
o�en have the structure of work	ows or work	ow ensembles
that are groups of interrelated work	ows [3]. Infrastructure
as a service (IaaS) cloud providers o�er services where
virtualmachine instances di�er in performance and price [4].
Planning computational experiments requires optimization
decisions that take into account both execution time and
resource cost.

Research presented in this paper can be seen as a step
towards developing a “cloud resource calculator” for scienti�c
applications in the hosted science model [1]. Speci�cally, we
address the cost optimization problemof large-scale scienti�c

work	ows running on multiple heterogeneous clouds, using
mathematical modeling with AMPL [5] and CMPL [6], and
mixed integer programming. �is approach allows us to
describe the model mathematically and use a set of available
optimization solvers. On the other hand, an attempt to apply
this method to the general problem of scheduling large-
scale work	ows on heterogeneous cloud resources would be
impractical due to the problem complexity and therefore
simpli�ed models need to be analyzed. In our previous work
[7], we used a similar technique to solve the problem where
the application consists of tasks that either are identical or
vary in size within a small range. As observed in [8, 9], large-
scale scienti�c work	ows o�en consist of multiple parallel
stages or levels, each of which has a structure of set of tasks;
that is, the tasks in each level are similar and independent of
each other. In the case of large work	ows, when the number
of tasks in the level is high, it becomes more practical to
optimize the execution of the whole level instead of looking
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at each task individually, as many scheduling algorithms do
[10]. �erefore, in this paper, we extend our model to deal
with applications that are work	ows represented as DAGs
consisting of levels of uniform tasks.

�e main contributions of this paper are summarized as
follows.

(i) We de�ne the problem of work	ow scheduling on
clouds as a cost optimization problem of assigning
levels of tasks to virtual machine instances, under a
deadline constraint.

(ii) We specify the application model, infrastructure
model, and the scheduling model as mixed inte-
ger programming (MIP) problems using AMPL and
CMPL modeling languages.

(iii) We discuss the alternative scheduling models for
coarse-grained and �ne-grained tasks.

(iv) We evaluate the models using infrastructure per-
formance data: one obtained from CloudHarmony
benchmarks, and the one based on our own exper-
iments with Montage work	ows on Amazon EC2
cloud.

�is paper is an extension of our earlier conference publica-
tion [11]. �e most important extension is a new scheduling
model dedicated to �ne-grained work	ows with short dead-
lines. Moreover, for evaluation, we use more detailed cloud
benchmark dataset, based on our recent experiments with
Montage work	ow on Amazon EC2.

A�er outlining the related work in Section 2, we intro-
duce our methodology in Section 3. We describe the appli-
cation and infrastructure model in Section 4. In Section 5,
we provide the mathematical formulation of the problem,
including the application model, the infrastructure model,
and the scheduling models for coarse-grained and �ne-
grained work	ows. Section 6 describes the datasets used for
evaluation of our models. Finally, Section 7 describes the
evaluation of our models on a set of benchmark work	ows,
while Section 8 gives conclusions and future work.

2. Related Work in
Cloud Workflow Scheduling

Our work is related to heuristic algorithms for work	ow
scheduling on IaaS clouds. In [12], the model assumes that
infrastructure is provided by only one provider. �e cloud-
targeted autoscaling solution [10] considers dynamic and
unpredictable workloads containing work	ows. In [13], a
multiobjective list-based method for work	ow scheduling
(MOHEFT) is proposed and evaluated. �e solution pre-
sented in [14] focuses on cloud bursting scenario, where a
private cloud is combined with a public one, and the goal
is to minimize the cost while maintaining the work	ow
deadline. Our work is di�erent from these approaches in two
aspects. First, in our infrastructuremodel we assumemultiple
heterogeneous clouds with object storage attached to them,
instead of individual machines with peer-to-peer data trans-
fers between them. Moreover, rather than scheduling each

task individually, our method proposes a global optimization
of placement of work	ow tasks and data.

�e deadline-constrained cost optimization of scienti�c
workloads on heterogeneous IaaS described in [15] addresses
multiple providers and data transfers between them, where
the application is a set of tasks. �e global cost minimization
problem on clouds addressed in [16] focuses on data transfer
costs and does not address work	ows. Other approaches pre-
sented in [17, 18] consider unpredictable dynamic workloads
on IaaS clouds and optimize the objectives, such as cost,
runtime, or utility function, by autoscaling the resource pool
at runtime.

Pipelined work	ows consisting of stages are addressed
in [19]. �e processing model is a data 	ow and multiple
instances of the same work	ow are executed on the same set
of cloud resources, whereas in our approach we focus on cost
optimization instead of meeting the QoS constraints.

Integer linear programming (ILP) method is applied to
scheduling work	ows on hybrid clouds in [20].�e objective
is to minimize monetary cost under a deadline constraint.
�e scheduler uses varying discretization of the schedule
timeline to reduce the complexity of the problem so that the
employed CPLEX solver can �nd acceptable solutions within
a 10-minute limit. �e evaluation, however, is performed on
theMontage and random fork-joinwork	ows of 30 taskswith
randomly chosen runtimes, while we focus on larger scale
work	ows and we address the complexity by grouping tasks
into levels.

3. Methodology Based on
Mathematical Optimization

�e core of our methodology (see Figure 1) is to use math-
ematical modeling languages that can be coupled with a set
of solvers dedicated to linear, nonlinear, or mixed integer
programming problems. As modeling languages we use
AMPL [5], as it is one of the most advanced modeling lan-
guages, and CMPL [6], as its open source alternative. �ese
languages provide interfaces to a wide set of solvers, both
commercial, such as CPLEX [21], and open source, such as
CBC [22].

�e mathematical programming approach enables us
to formally de�ne optimization problem. AMPL (a mathe-
matical programming language) and CMPL (COIN mathe-
matical programming language) are algebraic mathematical
modeling languages that resemble traditional mathematical
notation to describe variables, objectives, and constraints.
Algebraic modeling languages allow expressing a wide range
of optimization problems: linear, nonlinear, and integer. �e
advantage of AMPL is that it is one of the most advanced
mathematical programming languages, while CMPL is easier
to use in open source projects. AMPL or CMPL enables us to
separate model de�nition and instance speci�c data, usually
into three �les: model, data, and calling script. �e model
�le de�nes abstract optimizationmodel: sets and parameters,
objective and constraints. �e data �le populates the sets
and parameters with the numbers for the particular instance
of the problem. Both model and data �les are loaded from
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Figure 1: An overview of our approach to work	ow scheduling.
Mathematical models are input to the solver: application, infrastruc-
ture, and scheduling models, together with corresponding datasets.

calling script that may do some pre- or postprocessing. In
addition, it is possible to import and export data and results
into some external format such as YAML for analysis or
integration with external programs.

�e input to the solver has to be prepared in the form
of a problem description. We separate the problem into an
application model (in this case the leveled work	ows) and
infrastructure model (cloud consisting of compute sites run-
ning virtualmachines and object storage such as Amazon S3).
In addition, a scheduling model has to be de�ned, specifying
how to calculate the objective and constraints using the
application and infrastructure models. �e challenge in the
scheduling model is that it has to be developed to allow the
solver to �nd a solution in a reasonable amount of time, so it
must incorporate appropriate assumptions, constraints, and
approximations. We discuss these assumptions in detail in
Section 5.

�e scheduling problems that we deal with in this paper
are formulated as mixed integer programming (MIP) prob-
lems.�is class of optimization problems has linear objective
and constraints, while some or all of variables are integer-
valued. Such problems are solved by using branch-and-bound
approach that uses a linear solver to solve subproblems.
Moreover, the solvers can relax the integrality of the variables
in order to estimate the solution, since no integer solution can
be better than the solution of the same problem in continuous
domain. �e di�erence between the best integer solution
found and the noninteger bound can be used to estimate
the accuracy of solution and to reduce the search time (see
Section 7.1).

In this paper, we describe two alternative scheduling
models: for work	ows with �ne-grained and coarse-grained
tasks. �is is motivated by the observation [11] that the
granularity of the tasks in the work	ows has signi�cant
in	uence on the results of the optimization. �e best results
can be obtained when the average runtime of the tasks is
similar to the billing cycle of the cloud provider, such as 1
hour on Amazon EC2. To address this issue, we developed

another scheduling model for �ne-grained tasks and dead-
lines shorter than one hour, which corresponds to the real
characteristics of the Montage work	ow.

�e scheduling models have to be provided with the
actual values of parameters, consisting of the application data
and infrastructure data. To evaluate our models, we use two
sources of application data: synthetic work	ows obtained
from the work	ow generator gallery [23] and real data
obtained fromour recent benchmarks performed onAmazon
EC2. As infrastructure parameters, we use two sources:
CloudHarmony benchmarks [24] that publish CPU perfor-
mance of selected cloud providers and our own application-
speci�c benchmark results. For research presented in this
paper, we selected the Montage work	ow and EC2 cloud as
an example of a real work	ow and infrastructure.

In the following sections, we describe the models and
datasets used in more detail.

4. Application and Infrastructure Models

In this paper we focus on large-scale scienti�c work	ows
[23]. Examples of such work	ows come from a wide variety
of domains including bioinformatics (Epigenomics [25],
SIPHT [26]), astronomy (Montage [27]), earthquake science
(CyberShake [28]), and physics (LIGO [29]). Such work	ows
typically consist of a large number of computationally inten-
sive tasks, processing large amounts of data.

We assume that each work	ow may be represented with
a directed acyclic graph (DAG) where nodes in the graph
represent computational tasks, and the edges represent data-
or control-	ow dependencies between the tasks. Each task
has a set of input and output �les. We assume that the task
and �le sizes are known in advance.

Based on the characteristics of large-scale work	ows, we
assume that a work	ow is divided into several levels that can
be executed sequentially and tasks within one level not do
depend on each other (see Figure 2). Each level represents
a set of tasks that can be partitioned in several groups
(A, B, etc.) that share computational cost and input/output
size. We assume that only one task group is executed on a
speci�c cloud instance.�is forbids instance sharing between
multiple levels, which means that each application may need
its own speci�c VM template.

Similar to what is in [7], we assume multiple hetero-
geneous cloud IaaS infrastructures such as Amazon EC2,
RackSpace, or ElasticHosts. Clouds have heterogeneous vir-
tual machine instance types, with limits on the number of
instances per cloud, for example, 20 for EC2 and 15 for
RackSpace. Input and output data are stored on a cloud object
store such as Amazon S3 or RackSpace CloudFiles. In our
model, all virtual machine instances are billed per hour of
usage, and there are fees associated with data transfer in/out
of the cloud. In the application model, we also assume that
there is a small constant cost of execution of a single task,
which can correspond, for example, to the cost of a request to
the queuing system such as Amazon SQS. �e model allows
us to include a private cloud where costs are set to 0.

For evaluation, we use synthetic work	ows that were
generated using historical data from real applications [23], as
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Figure 2: Example application structure.

well as the data from our own measurements. �e synthetic
work	ows were generated using code developed in [30], with
task runtimes based on distributions gathered from running
real work	ows. �e experimental data come from execution
of Montage work	ow on Amazon EC2 using the HyperFlow
work	ow management system [31].

5. Formulation of the Scheduling Problem

In this section we give the mathematical formulation of
the models, beginning with application and infrastructure
models, and then describe the scheduling models for coarse-
grained and �ne-grained work	ows. We have intentionally
decided to present the problem in a form which is di�erent
from the routine statement of mathematical progrramming
way. �e main reason was to make it easily understood for
reasearchers engaged in work	ow execution optimization.

To perform optimization of the total cost of the work	ow
execution, mixed integer problem (MIP) is formulated and
implemented using a mathematical programming language.
First, we have implemented the optimization model using
AMPL [5] and solved it with CPLEX solver, then we ported
it to open source CMPL [6] and solved it with CBC solver.
Both systems require to specify input datasets and variables to
de�ne the search space, as well as constraints and an objective
function to be optimized.

5.1. Application and Infrastructure Model

Input Data.�e formulation requires a number of input sets
to represent the infrastructure model. �is is a similar way to
an approach presented in [7]. �e infrasructure is described
with the following sets:

(i) � = {�3, cloud�les}: set of available cloud storage sites,
(ii) � = {amazon, rackspace, . . .}: set of possible comput-

ing cloud providers,

(iii) � = {�1.small, . . . , ��.1��, . . .}: set of instance types,
(iv) ��� ⊂ �: set of instances that belong to provider
 ∈ �,
(v) ��� ⊂ �: set of compute cloud providers that are local

to the storage platform � ∈ �,
(vi) �max

� : upper limit of number of instances allowed by

a cloud provider 
 ∈ �.

Introducing ��� and ��� enables one to describe the locality
between compute and storage resources.�is is an important
aspect, since the cloud providers typically charge for the cost
of data transfer out of a cloud site, while the transfers within
the site are free.

Each instance type � ∈ � is described with the following
parameters:

(i) 
�� : a fee (in US dollars) for running the instance of
type � for one hour,

(ii) ccu�� : performance of instance of type � in CloudHar-
mony Compute Units (CCU),

(iii) cpu�� : number of virtual CPU cores assigned to an
instance of type �,

(iv) 
�out� ,
�in� : price for nonlocal data transfer to and from
an instance of type � in US dollars per MiB (1 MiB =
1024 ⋅ 1024 bytes),

(v) �max

� : upper limit of the number of instances of type

�, equal to �max

� , where 
 is the provider of instance
type �.

�is instancemodel assumes the hourly billing cycle, which is
the case for most of the cloud providers, notably for Amazon
EC2.

Storage site � ∈ � is characterized by

(i) 
�out� and 
�in� : price in dollars per MiB for nonlocal
data transfers.

Additionally, we need to provide data transfer rates ��,�
between a given storage site � and instance � in MiB per
second.

Our application model is di�erent from that in [7]
because it is designed forwork	ow schedulingwhere tasks are
grouped into levels. �is fact is described with the following
characteristics:

(i) �: a set of levels the work	ow is divided into,

(ii) �: a set of task groups (A, B, etc., in Figure 2); tasks
in groups have the same computational cost and
input/output size,

(iii) �� ⊂ �: a set of task groups belonging to a level � ∈ �,
(iv) �tot

	 : number of tasks in a group � ∈ �,
(v) �
	: execution time in hours of a single task in a group

� on a machine with the processor performance of 1
CloudHarmony Compute Unit (CCU) [32],

(vi) �in	 , �out	 : data size for input and output of a task in
group � in MiB,
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(vii) 
�: price per task for a queuing service, such as
Amazon SQS,

(viii) ��: total time allowed for completingwork	ow (dead-
line).

�e application model assumes that the estimated execution
time �
	 is known in advance; that is, it is obtained using

benchmarks or other estimation methods [33], such as
regression or performance modelling. When using general
purpose cloud benchmarks, such as CloudHarmony [24],
which provide processor performance measured in CCU,
the �
	 depends only on a task in group � since we assume

that the actual task execution time on a speci�c instance is
inversely proportional to the processing speed of the instance
expressed in the number of CCU. As it is not always the case,
since di�erent tasks may have di�erent processing speeds on
di�erent instances, it is also possible to provide execution
time predictions at instance level: �
	,�. �e scheduling model

can use such data if it is available. In Section 6.2 we provide
an example of such a dataset for the Montage work	ow on
Amazon EC2.

5.2. Scheduling Model for Coarse-Grained Work�ows. In this
model, we schedule groups of tasks of the same type divided
into levels. We do not schedule individual tasks as in [34]
to keep MIP problem small, as one of the requirements is
that optimization time is shorter than thework	ow execution
time. �e coarse-grained work	ows are such work	ows
where task execution times are in the order of one hour. �is
is important, as we assume the hourly billing cycle of the
cloud, so the model has to optimize the task assignment in
such a way that the hourly slots of allocated resources (VM
instances) are as fully utilized as possible.

To keep this model in the MIP class, we had to take
a di�erent approach than in [7] and schedule each virtual
machine instance separately. A drawback of this approach is
that we need to increase the number of decision variables.
We have also divided the search space by storage providers,
solving the problem separately for each storage and selecting
the best result. Additionally, the deadline becomes a variable
with an upper bound, as itmay happen that a shorter deadline
may actually give a cheaper solution (see Figure 5 and its
discussion).

Auxiliary Parameters. Based on the input parameters, in the
scheduling model we derive a set of precomputed parameters
that are used for expressing objectives and constraints. �e
transfer time is computed based on the input and output data
size and the transfer rate between an instance and the storage.
�e time for processing a task is a sum of computing and

data transfer time.�e cost of data transfer is a sum of cost of
input and output data, both including the transfer fees at the
source and destination cloud site.�e indexing of instances is
introduced; for example, all m1.small instances are numbered
0, 1, 2, . . ., to distinguish between individual instances of a
given type:

(i) � ∈ �: a selected storage site,

(ii) �net	,�,� = (�in	 + �out	 )/(��,� ⋅ 3600): transfer time in hours,

that is, time for data transfer between instances of type
� and storage site � for a task in task group �,

(iii) �	,�,� = �
	/ccu�� + �net	,�,�: time in hours for processing a

task in group � on instance of type � using storage site
�,

(iv) ��	,�,� = (�out	 ⋅ (
�out� + 
�in� ) + �in	 ⋅ (
�out� + 
�in� )): a cost
of data transfer between an instance of type � and a
storage site � when processing task in group �,

(v) ���
� : a set of possible indices for instances of type �
(from 0 to �max

� − 1).

Variables. Variables of the optimization problem are

(i) �	,�,�: 1 i� (if and only if) instance of type � with
index � ∈ ���
� is launched to process task group �,
otherwise, 0 (binary);

(ii) �	,�,�: for how many hours the instance of index � is
launched (integer);

(iii) �	,�,�: how many tasks of � are processed on that
instance (integer);

(iv) ��� : actual computation time for level � (real);
(v) ��: maximal number of hours (deadline) that

instances are allowed to run at level � (integer).

�e variables de�ned in this way allow the solver to search
over the space of possible assignments of instances to task
groups (�	,�,�) with a varying number �	,�,� of hours each
instance is launched and number �	,�,� of tasks processed on
these instances.�e deadline is divided into subdeadlines for
each work	ow level �, while the actual computation time ���
can be shorter than the deadline��.

Objective. �e scheduling problem is represented as a cost
minimization problem. �e cost of running a single task is
de�ned as follows:

(�net	 + �

	) ⋅ 

�
� + (1)

�in	 ⋅ (

�out
� + 
�in� ) + (2)

�out	 ⋅ (

�out
� + 
�in� ) + (3)


�, (4)

and it includes the cost of the computing time of instance (1),
the cost of transfer of input data (2), that of output data (3),
and request price (4).

�e objective function�tot represents the total cost which
is a sumof task costs computed over all the task groups, all the
instance types, and the individual instances. It is de�ned as

�tot = ∑
	∈�,�∈�,�∈�����

(
�� ⋅ �	,�,� + 

� + ��	,�,�) ⋅ �	,�,�. (5)
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To properly implement the assumptions we impose on
the application, infrastructure, and scheduling models, the
following constraints have to be introduced.

(1) ∑�∈��� ≤ �� ensures that the sum of subdeadlines
of all levels is not greater than the work	ow deadline,
that is, that the work	ow �nishes in the given dead-
line.

(2) To �x that the actual execution time of a level,
rounded up to a full hour, gives us the level sub-
deadline (�� = ⌈���⌉), we require that ∀�∈���� ≤ �� ≤
��� + 1.

(3) ∀	∈�,�∈�,
∈����� �	,�,� ≤ �	,�,� ≤ �	,�,� ⋅ ⌈�
�⌉ ensures that

the number of computing hours of an instance �	,�,�
may be nonzero only if instance is active (�	,�,� is 1),
and it cannot exceed the deadline.

(4) ∀	∈�,�∈�,�∈����� �	,�,� ≤ �	,�,� ⋅�	,�,� ⋅�
tot
	 ensures that the

computing tasks �	,�,� may be allocated to an instance
only if the instance is active and that their number
does not exceed the total number of tasks in group
�.

(5) ∀�∈�,	∈��,�∈�,�∈����� �	,�,� ≤ �� enforces the level deadline
on the actual runtimes of each instance.

(6) ∀�∈�,	∈��,�∈�,�∈����� �	,�,� ⋅ �

	,�,� ≤ ��� enforces that all the

tasks allocated to the instance complete their work
within the computing time of their level��� .

(7) To make sure that all the instances run for enough
time to process all tasks allocated to them we adjust
�	,�,�, respectively, to �	,�,�: ∀	∈�,�∈�,�∈����� �	,�,� ⋅ �


	,�,� ≤

�	,�,� ⋅ �	,�,� ⋅ �	,�,� + 1.
(8) ∀	∈�∑�∈�,�∈����� �	,�,� = �

tot
	 ensures that all the tasks

are processed.

(9) To reject symmetric solutions and thus to reduce the
search space, we add three constraints:

(a) ∀	∈�,�∈�,�∈{1⋅⋅⋅(��max

� −1)}�	,�,� ≤ �	,�,�−1,
(b) ∀	∈�,�∈�,�∈{1⋅⋅⋅(��max

� −1)}�	,�,� ≤ �	,�,�−1,
(c) ∀	∈�,�∈�,�∈{1⋅⋅⋅(��max

� −1)}�	,�,� ≤ �	,�,�−1.

(10) Finally, the constraint∀�∈�,�∈�∑�∈���,	∈��,�∈����� �	,�,� ≤
�max

� enforces instance limits per cloud.

�e schedulingmodel presented above shows its advantages if
the work	ow tasks are about one hour long or larger, and the
deadline exceeds one hour. For �ne-grained work	ows, such
as Montage where most task execution times are in order of
seconds and the whole work	ow may be �nished within an
hour, a model can be simpli�ed.

5.3. Scheduling Model for Fine-Grained Work�ows. When
scheduling work	ows with many short tasks and with dead-
lines shorter than the cloud billing cycle (one hour), we donot
need to use the�	,�,� variable that counts the number of hours
the instance is running. �us we can assume that each level

completes its work in one hour. �is assumption reduces the
number of decision variables making the MIP problem faster
to solve. We also add an assumption that only one instance
type may be used for each task type, which also reduces the
search space.

In addition to these assumptions, we changed the way
how the data transfer time is computed. Since for short tasks
the data access latency is important, in addition to transfer

rate ��,� we also provide the latency parameter �lat�,� . �e actual
values come from linear regression of experimental data,
where we run Montage work	ow on Amazon S3. In the
�ne-grained scheduling model, we also use execution time
predictions at instance level: �
	,�. �e � is normalized by

the number of CPU cores present on the VM if there are
enough tasks to be processed in parallel. �e modi�cations
mentioned in this paragraph may also be applied to the
coarse-grained model if needed.

Based on these modi�cations, the auxiliary parameters
transfer time �net	,�,� and unit time �	,�,� are computed as follows:

(i) �net	,�,� = (�in	 + �out	 )/(��,� ⋅ 3600) + �lat�,� ;
(ii) �	,�,� = (�
	,� + �net�,� )/min(cpu�� , �tot

	 ).

�e remaining part of the model has the following form.

Variables. Variables are similar to the ones in the coarse-
grained model, but the problem has less dimensions, since
there is no need to use �	,�,� and to distinguish instances by
index %:

(i) �	,� tells if instances of type � are used to process task
group � (binary);

(ii) �	,� tells howmany instances of type � are launched to
process task group � (integer);

(iii) �	,� tells how many tasks in group � are processed on
instances of type � (integer);

(iv) ��� tells actual computation time for level � (real).

Objective.�e cost function�tot is computed in a similar way,
by summing the costs of all the task groups over all of the
instances, taking into account the task assignment �	,�:

�tot = ∑
	∈�,�∈�

(
�� ⋅ �	,� + 

� + ��	,�,�) ⋅ �	,�. (6)

Constraints.�e constraints are as following:

(1) ∑�∈��� ≤ �� ensures thatwork	ow�nishes before the
given deadline;

(2) ∀	∈�,�∈��	,� ≤ �	,� ≤ �	,� ⋅ �max

� ensures that the
number of active instances�	,� is consistent with the
binary variable �	,� and does not exceed the instance
limit;

(3) ∀	∈�,�∈��	,� ≤ �	,� ≤ �	,� ⋅ �tot
	 ensures that there are

no empty instances and that the number of assigned
tasks does not exceed the total number of tasks;
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(4) ∀�∈�,	∈��,�∈��	,� ⋅ �

	,�,� ≤ ��� ⋅ �	,� enforces that a level

�nishes work in��� ;
(5) ∀	∈�∑�∈� �	,� = �tot

	 ensures that all tasks are

processed;

(6) ∀	∈�∑�∈��	,� = 1 ensures that only one instance type
is used for a given task;

(7) ∀	∈�,�∈�∑�∈���,	∈�� �	,� ≤ �max

� enforces instance

limits per cloud, for each task group and instance
type.

�is scheduling model yields reasonable results only for the
cases when it is actually possible to complete all the work	ow
tasks before the deadline. If not, the solver will not �nd any
solution.

�e optimization models introduced in this section were
implemented using CMPL andAMPL e�ectively being work-
	ow schedulers. �e source code of the schedulers is avail-
able as an online supplement (https://github.com/k�giela/
optimization-models/tree/ppam-extended/work	ows). �e
public repository on GitHub includes the model �les, the
data, and the scripts we used to run the solvers.

6. Application and Infrastructure
Data Used for Evaluation

To perform optimization we need to provide optimization
models de�ned in the previous section with data describing
an application and an infrastructure. First, we used the
generic infrastructure benchmarks obtained fromCloudHar-
mony and the application data from the work	ow generator
gallery. Next, we performed our own experiments using
the Montage work	ows on Amazon EC2, which provided
the application-speci�c performance benchmark of cloud
resources together to obtain the real application data. �e
data gathered during experiments are inputs for the sched-
uler.

6.1. Data for Coarse-Grained Scheduler. To evaluate the
coarse-grained scheduler on realistic data, we used Cloud-
Harmony [24] benchmarks to parameterize the infrastruc-
ture model, and we used the work	ow generator gallery
work	ows [23] as test applications. In the infrastructure
model we assumed that we had 4 public cloud providers
(Amazon EC2, RackSpace, GoGrid, and ElasticHosts) and a
private cloud with 0 costs.�e infrastructure had two storage
sites: S3which is local to EC2, andCloudFiles which is local to
RackSpace, so data transfers between local virtual machines
and storage sites are free.

We used the �rst generation of CloudHarmony CPU
benchmarks described in [24]. CloudHarmony CPU bench-
marks use CloudHarmony Compute Unit (CCU) as a
unit for measuring CPU performance. It is calculated
based on a set of general-purpose CPU benchmarks [32].
First generation benchmarks were calibrated relative to
Amazon’s m1.small instance and are now deprecated in
favor of new benchmarks that are calibrated to nonvir-
tualized hardware. �e new benchmark is compared to
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Figure 3: Amazon instance benchmarks for di�erent tasks com-
pared to the generic CloudHarmony benchmark and Amazon ECU.
Data was normalized to m1.small instance type having relative
performance of 1.0.

our benchmark data in Figure 3. Actual datasets are pro-
vided as an online supplement (https://github.com/k�giela/
optimization-models/tree/ppam-extended/work	ows).

We tested the coarse-grained scheduler with all of the
applications from the gallery: Montage, CyberShake, Epige-
nomics, LIGO, and SIPHT for all available work	ow sizes
(from 50 to 1000 tasks per work	ow up to 5000 tasks in the
case of SIPHT work	ow). We varied the deadline from 1 to
30 hours with 1-hour increments. We solved the problem for
two cases, depending on whether the data are stored on S3 or
on CloudFiles.

6.2. Data for Fine-Grained Scheduler. Cloud benchmarks,
such as CloudHarmony [24], are based on set of general-
purpose benchmarks that do not necessarily represent sci-
enti�c applications that are to be scheduled. In order to �nd
out how it may di�er, we run Montage work	ow on several
Amazon EC2 instance types. �e work	ow of 12700 tasks
processing 8.5GiB of photos rendered a mosaic of an 8 × 8
degree region at Orion Nebula from 2MASS survey.

Usually, benchmarks take into account the fact that
instances provide multiple virtual cores that speed up mul-
tithreaded applications, but it has no impact on single
threaded ones. Montage work	ow tasks are single threaded
and therefore in our experiment the number of execution
threads running in parallel was equal to the number of virtual
cores. We used the HyperFlow work	ow engine [31] to drive
work	ow execution. In the experiment, we used EBS (elastic
block storage) volume for data storage instead of S3 (simple
storage service); however we measured the transfer times to
and from S3 separately. EBS is di�erent from S3 as it provides
block level access (i.e., �lesystem) to the data volume, while
S3 is object store available as a service by REST API.

�e data we gathered in experiments may be used
to calculate application-speci�c performance metric of the
instance (ECU-like). In Figure 3 we compare our results
with CloudHarmony benchmarks. It shows that, for the
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Figure 4: Result of coarse-grained scheduling for the Epigenomics application.

tasks forming the parallel levels of Montage work	ow (such
as mProjectPP [27]), the performance of the instances is
proportional to the generic CPU benchmark. On the other
hand, for the levels that are not parallel (e.g., mBgModel),
there is no di�erence between cheaper m3.large and more
expensive instance types (e.g., c3.8xlarge). �ose instance
types are deployed on the same generation of hardware, so
their performance for single threaded applications is very
similar. Additionally, as a reference we show the instance
performance provided by Amazon in ECU (EC2 Compute
Units).

�e observation from this evaluation is that the bench-
marks from CloudHarmony give better approximation to the
task performance than the generic ECU value. Moreover, it
is important to distinguish between parallel and sequential
work	ow levels when selecting the virtual machine instance
type. �e dataset obtained in this experiment was used for
evaluation of �ne-grained scheduling model in Section 7.2.

7. Evaluation of Optimization Models

In this section, we present the results of optimization,
obtained by applying our schedulers to the application and
infrastructure data. First, we show the results of using the
coarse-grained scheduler applied to the generic CloudHar-
mony datasets. Next, we present the results of the �ne-grained
scheduler applied to the dataset obtained from our experi-
ments with the Montage work	ow on EC2.

7.1. Results for Coarse-Grained Scheduling. Figure 4 shows
the cost of execution of the Epigenomics application with
two work	ows of sizes 400 and 500 tasks as a function of
deadline. For longer deadlines (over 6 hours), the private
cloud instances and the cheapest RackSpace instances are
used so the cost is low when using CloudFiles. For shorter
deadlines, the cost grows rapidly, since we reach the limit
of instances per cloud and additional instances must be
spawned on a di�erent provider, thus making the transfer

costs higher. �is e�ect is ampli�ed in Figure 4(a), which
di�ers from Figure 4(b) not only by the number of tasks, but
also by the data size of the most data-intensive level. �is
means that the transfer costs are growing more rapidly, so
it becomes more economical to store the data on Amazon
EC2 that providesmore powerful instances required for short
deadlines.

One interesting feature of our scheduler is that for longer
deadlines it enables �nding the cost-optimal solutions that
have shorter work	ow completion time than the requested
deadline.�is e�ect can be observed in Figure 5 and is caused
by the fact that for long deadlines the simple solution is to run
the application on a set of the least expensive machines.

Figures 6(a) to 7(b) show results obtained for Cybershake,
LIGO, Montage, and SIPHT work	ows. �ese work	ows
have relatively small execution time, so even for short dead-
lines the scheduler is able to schedule tasks on the cheapest
instances on a single cloud, thus resulting in 	at characteris-
tics.

To investigate how the scheduler behaves for work	ows
with the same structure, but with much longer runtimes of
tasks, we run the optimization for Montage work	ow with
tasks 1000x longer. �is corresponds to the scenario where
tasks are in the order of hours instead of seconds. �e results
in Figure 8 show how the cost increases very steeply with
shorter deadlines, illustrating the trade-o� between time and
cost.�e di�erence between Figures 7(a) and 8 illustrates that
the scheduler is more useful for work	ows when tasks are of
granularity that is similar to the granularity of the (hourly)
billing cycle of cloud providers. Additionally, Figure 8 shows
how the optimal cost depends on available clouds.

�e runtime of the optimization algorithm for work	ows
with up to 1000 tasks ranges from a few seconds up to 4
minutes using the CPLEX [21] solver running on a server
with 4 16-core 2.3 GHz AMD Opteron processors (model
6276), with CPLEX limited arti�cially to use only 32 cores.
Figure 9(a) shows that the time becomes much higher for
shorter deadlines and increases slowly for very long dead-
lines. �is is correlated with the size of search space: the
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Figure 9: Optimization time of the solver.

longer the deadline, the larger the search space, while for
shorter deadlines the problem has a very small set of accept-
able solutions. �e problem becomes more severe for bigger
and more complex work	ows like SIPHT as optimization
time becomes very high (Figure 9(b)).

Figure 10 illustrates how the optimization time depends
on MIP gap solver setting. �e relative MIP gap is a relative
diference between the best integer solution found by the
solver and the possible optimal noninteger solution. �e
MIP gap value indicates to solver to stop when an integer
feasible solution has been proved to be within a given percent
of optimality [21]. Applying a relative MIP gap of 1% or
5% instead of default 0.01% shortens optimization time in
orders of magnitude. Increasing the MIP gap to 5% did not
decrease the quality of the result noticeably: the minimum
cost obtained for the gap of 5% was higher only by 3.63% in
the worst case.

7.2. Results for Fine-Grained Work�ows and Short Deadlines.
We performed optimization for deadlines ranging from 13 to
60 minutes, using the Amazon EC2 cloud, with S3 or local
storage. When assuming that the storage is local, we set the
�net	,�,� �xed to 0, which may represent, for example, a very fast

NFS storage when transfer times are negligible.
�e results shown in Figure 11 have similar character to

those we got in [7] and to the ones obtained using the coarse-
grained scheduler and task runtimes arti�cially expanded
(Figure 8). �is observation leads to the conclusion that the
granularity of the work	ow tasks versus the granularity of
the billing cycle of the cloud provider plays an important
role in scheduling. In our case, we had to de�ne two separate
schedulers to address this issue. �e problem, however, may
be more complex when we assume more cloud providers
with di�erent billing cycles, such as hourly, 5-minute, or per-
minute billing. �is may be an interesting subject for further
research.
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8. Conclusions and Future Work

In this paper, we presented the schedulers using cost opti-
mization for scienti�c work	ows executing on multiple
heterogeneous clouds.�emodels, formulated in AMPL and
CMPL, allow us to �nd the optimal assignment of work	ow
tasks, grouped into levels, to cloud instances. We validated
our models with a set of synthetic benchmark work	ows
as well as with the data of real astronomy work	ow, and
we observed that they gave useful solutions in a reasonable
amount of computing time.

Based on our experiments with execution of Montage
work	ow on Amazon EC2 cloud and its characteristics, we
developed separate scheduling models dedicated to coarse-
grained work	ows and to �ne-grained work	ows with short
deadlines. We also compared the general-purpose cloud
benchmarks, such as CloudHarmony, with our ownmeasure-
ments. �e results underline the importance of application-
speci�c cloud benchmarking, since the general purpose
benchmarks can serve only as the rough approximation of

the actual application performance. �e observed relations
between the granularity of the tasks and the performance of
optimization models shows the in	uence of the cloud billing

cycle on the cost optimizing work	ow scheduling.
By solving the models for multiple deadlines, we can

produce trade-o� plots, showing how the cost depends on
the deadline. We believe that such plots are a step towards
a scienti�c cloud work	ow calculator, supporting resource
management decisions for both end-users and work	ow-as-
a-service providers.

In the future, we plan to apply this model to the problem
of provisioning cloud resources for work	ow ensembles
[3], where the optimization of cost can drive the work	ow
admission decisions. We also plan to re�ne the models
to better support smaller work	ows by reusing instances
between levels, to �ne-tune the model, and to test di�erent
solver con�gurations to reduce the computing time, as well
as to apply the optimization models to the problem of
dynamic work	ow scheduling in order to better handle the
uncertainties in the infrastructure and the application.
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