
Scheduling Multithreaded 
Computations By Work-Stealing 

Robert D. Blumofe 
The University of Texas, Austin 

 
Charles E. Leiserson, 

MIT Laboratory for Computer Science 



Motivation 

•  Strict binding of multi-threaded computations 
on parallel computers. 

•  To find a parallel execution process by creating 
a directed acyclic graph and to traverse the 
instructions accordingly.  



MIMD 

•  To maintain efficiency, enough threads must be 
active. 

•  Number of active threads should be within the 
hardware requirements. 

•  Related threads should be placed in the same 
processor. 



Work Sharing vs Work Stealing 

•  Work Sharing: 
– Scheduler attempts to migrate threads to other 

processors hoping to distribute work to 
underutilized processors. 

•  Work Stealing: 
– Underutilized processors take the initiative by 

‘steal’ing threads form other processors. 



Multithreaded Computation 

Blocks -> Threads 
Circles - > Instructions 
Right arrows -> Continue Threads 
Curved Arrows -> Join Edges 
Vertical/Slant arrows -> Spawn Edges 



Strict vs Fully-Strict computation 

•  In a strict computation, all join edges from a 
thread go to ancestor of the thread in an 
activation tree. 

•  In a fully-strict computation all join edges 
form a thread go to the thread’s parent. 

 



Busy-Leaves 

 From the time thread T, is spawned until 
the time T dies, there is atleast one thread from 
the sub-computation that is ready. 
Disadvantages:  
•  Not efficient in large environment of 

multiprocessors. 
•  Scalability 



Busy-Leaves conditions 

Spawn:  
 if Ta spawns Tb, Ta returns to thread pool. The 

processor starts next step with Tb.  
Stall: 

 if Ta stalls, it is returned to thread pool. Next step 
by the processor is idle.  
Dies: 

 if Ta dies, processor checks if its parent Tb has any 
living children. If no children and no processor is working 
on Tb, it is taken from thread pool, else next step idle. 

  



Busy-Leaves conditions 



Thread Spawn/Death 



Randomized Work-Stealing Algorithm 

•  The centralized pool of Busy-Leaves algorithm is 
distributed across the processors. 

•  Each processor maintains a ready deque.  
 
Cases: 
•  Spawns 
•  Stalls 
•  Dies 
•  Enables 



Randomized Work-Stealing Properties 

•  For a processor ‘p’, if there are ‘k’ threads in 
the deque, and if k>0, the following properties 
are satisfies. 

(1) For i=1,2,3,….,k, thread Ti is parent of Ti-1 

(2) If k>1, for i=1,2,…,k-1, thread Ti has not 
been worked on since it spawned Ti-1 



Work-Stealing 

•  For a fully-strict computation with work ‘T1’ 
and critical path length T1 the expected running 
time with P processors is T1/P + O(T1) 

•  Execution time on P processors is  
    T1/P + O(T1 + lg P + lg(1/²)) 

•  Expected total communication is 
O(PT1(1+nd)Smax 

 



Recycling Game for Atomic Access 

•  (P,M) recycling game: 
P = number of balls = number of bins 
M = total number of ball tosses 
– Adversary chooses some of the balls from 

reservoir selects one of the P bins randomly. 
– Adversary inspects each of the P bins that 

contains atleast 1 ball and removes it from 
the bin.  



Work Stealing 

•  Total delay incurred by M random requests 
made by P processors is O(M+PlgP+Plog(1/²))	
  



Conclusion 

•  The proposed work-stealing scheduling 
algorithm is efficient in terms of time, space 
and communication. 

•  ‘C’ base language called ‘Cilk’ being 
developed for programming multithreaded 
computations based on work-stealing. 

 http://supertech.lcs.mit.edu/cilk 
 


