
Noname manuscript No.
(will be inserted by the editor)

Scheduling of inventory releasing jobs to minimize a regular objective
function of delivery times

Márton Drótos · Tamás Kis

Received: date / Accepted: date

Abstract In this note we provide new complexity and al-

gorithmic results for scheduling inventory releasing jobs, a

new class of single machine scheduling problems proposed

recently by Boysen et al. We focus on tardiness related crite-

ria, while known results are concerned with inventory levels

between fixed delivery points. Our interest is motivated by

the fact that deciding whether a feasible schedule exists is

NP-hard in the strong sense, provided that all delivery dead-

lines are fixed, and there are no restrictions on the amount

of products released by the jobs, nor on the job process-

ing times. We will establish NP-hardness results, or provide

polynomial or pseudo-polynomial time algorithms for vari-

ous special cases, and describe a fully polynomial approx-

imation scheme for one of the variants with the maximum

tardiness criterion.

Keywords Machine scheduling · Inventory · Job tardiness ·

Computational complexity · Approximation scheme

1 Introduction

In this paper we study new variants of the problem of

scheduling inventory releasing jobs, recently proposed by

Boysen et al. [1]. The problem has been motivated by Just-

In-Time manufacturing, where a set of inventory releasing

jobs have to be sequenced on a single machine (or server) in

order to meet a set of delivery requests. However, as Boy-

sen et al. observed, with fixed deadlines it is NP-hard in

the strong sense to decide whether a feasible solution exists

even if there is only one product type, but the job sizes and

the quantities of products released are arbitrary. Therefore,

M. Drótos · T. Kis

Computer and Automation Research Institute, Hungarian Academy of

Sciences, H1111 Budapest, Kende str. 13–17, Hungary

Tel.: +36 1 2796156; Fax: +36 1 4667503

E-mail: marton.drotos@sztaki.hu, tamas.kis@sztaki.hu

Boysen et al. consider special cases where the existence of

feasible schedules can be decided in polynomial time, and

they aim at minimizing stock level related criteria.

In this paper we focus on the problem of meeting the

due-dates of deliveries, i.e., late delivery is permitted, and

we seek a schedule which minimizes a regular function of

the delivery completion times. An optimal or suboptimal so-

lution can be used to set hard deadlines, and then in a second

round one can apply the methods of Boysen et al. to min-

imize the stock levels. In a combined approach, one may

consider the two types of criteria together in a multi-criteria

optimization framework, but this is out of the scope of the

present paper.

As a concrete application, consider a manufacturing

workshop assembling and welding metal pieces together to

satisfy customer orders. Each product consists of several

pieces cut out from steel slabs. After some pieces are cut

out from a steel slab, the remaining part becomes waste.

This preparatory work transforms raw material into an in-

ventory of various components. Cutting operations are in-

ventory releasing jobs that may produce metal pieces (inter-

mediate products) of several forms and sizes from the same

metal sheet to economize on steel slabs. The due dates and

inventory levels are dictated by an MRP system that com-

putes the material requirements of the customer orders for

the final assemblies over time. The scheduling models stud-

ied in this paper can handle a single cutting machine. Since

pieces of various types may be cut out from the same steel

slab, a cutting operation cannot be replaced by several cut-

ting operations, and since the various components cannot re-

place one-another, this problem does not fit the framework

of Boysen et al. [1], where a job always produces only one

product type.

2 Márton Drótos, Tamás Kis

Related work

The problem of minimizing the inventory levels while sat-

isfying all the external demands on time is studied in [1].

In that paper, the delivery requests have strict deadlines, and

special cases where the existence of a feasible schedule is

decidable in polynomial time are considered with the objec-

tive of minimizing some stock level related criteria. Poly-

nomial algorithms or NP-hardness proofs are provided for

several special cases.

The opposite problem, in which jobs consume non-

renewable resources has been studied e.g. in [5,6,8]. In these

models a job may be started only if the requirements of the

job do not exceed the available quantities from each non-

renewable resource. If a job is started, the available quanti-

ties of the non-renewable resources are instantly decreased

by the requirements of the job. Moreover, non-renewable re-

sources are supplied over time at given time points. For the

special case when there are only non-renewable resource-

and precedence constraints, Carlier and Rinnooy Kan [5]

gave polynomial solution methods. If, in addition, the jobs

have to be sequenced on a machine, the problem has been

shown to be NP-hard [6]. In [8], the complexity of various

sequencing problems on a single machine is studied sub-

ject to non-renewable resource constraints. The authors pro-

vide NP-hardness proofs, and approximation algorithms for

the hard problems, or polynomial time algorithms for the

tractable ones.

In a more general setting jobs may produce and consume

a common set of materials, and a basic question is whether a

feasible sequence of producers and consumers exists. This

problem has been shown NP-hard in the strong sense by

Kellerer et al. [9]. In the same paper, the authors consider

the minimization of maximum stock level and propose three

different approximation algorithms with relative error 2, 8/5,

3/2, respectively. Some numerical results complement the

theoretical findings. This line of work has been taken up by

Briskorn et al. [2], where several variants are studied, and

either an NP-hardness proof is presented, or a polynomial

time algorithm is devised. In [3], an exact branch-and-bound

based method is developed and numerical results are pro-

vided for the general problem with 5 to 20 jobs.

Finally, Neumann and Schwindt [10] study project

scheduling problems with inventory constraints. They ana-

lyze the feasible region of job starting times, and propose to

add temporary constraints between pairs of jobs to resolve

resource conflicts in a branch-and-bound algorithm.

2 Formal problem statement

There is a set of jobs J and a set of different product types

S with |J| = nJ , and |S| = nS. Each job j ∈ J has a process-

ing time p j > 0, and produces an amount of c̃s
j ≥ 0 from

product s ∈ S. It is permitted that the same job produces a

positive amount from several distinct product types. The in-

ventory level of each product is 0 initially. The inventory of

products is consumed by a set of deliveries R with |R|= nR.

Each delivery Rr has a due-date dr, and specifies a quantity

of ẽs
r for each product type s ∈ S to be withdrawn from the

corresponding inventory. Like in the case of jobs, a deliv-

ery may specify positive requests for several product types

simultaneously. It is assumed that d1 ≤ d2 ≤ ·· · ≤ dnR . A

delivery can be served only if the inventory level of each

product type is not below the requested quantity. Hence, a

delivery can be tardy. The delivery requests must be served

in increasing due-date order, and in case of ties, their order is

fixed in advance. The indexing of delivery requests indicates

the order in which they have to be served.

Let π be a sequence of the nJ jobs, i.e., π(u) ∈ J is the

job in position u (1 ≤ u ≤ nJ), and π(u) 6= π(v) for u 6= v.

The jobs in π are executed without idle times. The total

amount of product type s ∈ S after completing the first h

jobs in π is ∑
h
u=1 c̃s

π(u), whereas the total requested quan-

tity over the first r delivery requests is es
r = ∑

r
k=1 ẽs

k. Let

hπ
r be the minimum number of jobs needed to reach the re-

quired inventory level by delivery r in job sequence π , i.e.,

hπ
r := min

{

h | ∑
h
u=1 c̃s

π(u) ≥ es
r, for all s ∈ S

}

. The comple-

tion time of delivery r is Cπ
r := ∑

hπ
r

u=1 pπ(u) (there are no idle

time between the jobs). If Cπ
r ≤ dr, then the delivery is on

time, otherwise it is tardy. The lateness and tardiness of de-

livery r are defined as Lπ
r =Cπ

r −dr and T π
r := max(0,Lπ

r),
respectively. The completion time of job π(h) in a sequence

π is C̃π
h =∑

h
k=1 pπ(k). The total amount of product type s pro-

duced up to time t in schedule π is As
π(t) =∑h|C̃π

h
≤t c̃s

π(h). We

will consider regular (non-decreasing) objective functions

γ in the delivery completion times, e.g., maxr Tr, maxr Lr,

∑r wrTr, or ∑r wrLr. Let γ(π) denote the objective function

value of a schedule π . Since π and the number of delivery

requests are finite, γ is well defined.

Without loss of generality, we may assume that the due-

date of the last delivery satisfies dnR ≥∑ j p j, and es
nR =∑ j c̃s

j

for all s∈ S. Namely, if dnR <∑ j p j, we can add a new deliv-

ery request to R, and set its due-date to ∑ j p j. On the other

hand, by that time, all the products are delivered, hence we

lose no solution by assuming es
nR = ∑ j∈J c̃s

j for s ∈ S.

An illustrative example is given in Fig. 1.

Our results

Our model extends that of Boysen et al. by permitting that a

delivery request concerns the joint delivery of several prod-

ucts, and that a single job may release products of several

types to the respective product inventories at the same time.

We will study various special cases of the problem with reg-

ular objective function of the delivery dates. For two deliv-

eries, nR = 2, and for arbitrary different product types (nS

Scheduling of inventory releasing jobs to minimize a regular objective function of delivery times 3

nS = 1 nS ≥ 2, const. nS = ∗
c̃s

j = c̃s c̃s
j = ∗ c̃s

j = c̃s c̃s
j = ∗ c̃s

j = c̃s c̃s
j = ∗

p j = 1 P (2) P (1) P (2) o.NP (3, 8) P (2) s.NP (5)

nR ≥ 2, const. p j = p P (2) P (1) P (2) o.NP (3, 8) P (2) s.NP (5)

p j = ∗ P (2) o.NP (7, 8) P (2) o.NP (3, 8) P (2) s.NP (5)

p j = 1 P (2) P (1) P (2) s.NP (6) P (2) s.NP (5)

nR = ∗ p j = p P (2) P (1) P (2) s.NP (6) P (2) s.NP (5)

p j = ∗ P (2) s.NP (4) P (2) s.NP (6) P (2) s.NP (5)

Table 1 Overview of the complexity results for 1||{γ,γT }. Each cell of the table corresponds to a variant of the problem with additional restrictions;

a star (∗) indicates that the problem parameter can be arbitrary positive integer value. The complexity can be polynomial (P), NP-hard in the

ordinary sense (o.NP), or NP-hard in the strong sense (s.NP). The objective function is any regular function γ in the delivery completion times for

those problems of polynomial time complexity, and it is any regular function γT in the delivery tardiness times for all NP-hard problems in the

table. Numbers after the complexity class (in parenthesis) refer to the corresponding theorem(s).

Parameters:

Param. Value

nJ 3

nS 1

nR 2

Job p j c̃ j

J1 3 3

J2 3 4

J3 8 8

Delivery dr er

R1 7 6

R2 14 15

Schedule π(J3,J1,J2):

8 11 14

R1 R2
c̃ j

time

J1
J2

J3

Total production of π(J3,J1,J2):

8
11
15

8 11 14

Aπ (t)

time

Fig. 1 Example of the scheduling problem. The boxes in the schedule

represent the jobs; the length and height of job j is proportional to p j

and c̃ j , respectively. The depicted schedule has a maximal tardiness of

1 time unit.

arbitrary), we show that it is NP-hard in the strong sense to

decide whether a solution with maximum tardiness of 0 ex-

ists. Notice that when nS = 1, and nR is part of the input,

then the same decision problem is known to be NP-hard in

the strong sense, see Proposition 7 in [1]. We will also con-

sider the special cases with p j = 1 (unit processing times), or

p j = p (equal processing times), and c̃s
j = c̃s (equal produc-

tion quantities per product type). On the other hand, if nS ≥ 1

and nR ≥ 2 are fixed constant, we show that the problem is

solvable in pseudo-polynomial time. The dynamic program

also yields an FPTAS for the nS = 1, nR = 2 special case by

using standard techniques along with some additional tricks.

Our complexity results are summarized in Table 1.

We conclude this section with a summary of notation

used throughout the paper.

Notation and Terminology

J = set of jobs

S = set of product types

R = set of delivery requests

nJ = number of jobs

nS = number of products; products are indexed by

s

nR = number of delivery requests; deliveries are in-

dexed by r

J j = job j

p j = processing time of job j

c̃s
j = amount of product s released by job j

es
r = total amount of product s to be delivered up

to delivery r

dr = due date of delivery r, d0 = 0

π = sequence of jobs

Cπ
r = completion time of delivery r in schedule π

T π
r = tardiness of delivery r

Lπ
r = lateness of delivery r

C̃π
h = completion time of job π(h) in schedule π

As
π(t) = total amount of product type s produced up to

time t in schedule π

Index s may be omitted if nS = 1.

We will use the term slot r to refer to the time interval

[Cr−1, . . . ,Cr] (even when the completion time of the deliv-

eries may not be fixed yet). Note that although this problem

is defined as a sequencing problem, the sequence of the jobs

between two consecutive deliveries does not affect the ob-

jective function value. This means that it is enough to give

an assignment of the jobs to the slots defined by the deliver-

ies, then those jobs that share the same slot can be sequenced

arbitrarily.

4 Márton Drótos, Tamás Kis

3 Complexity results

In the following results γ is any regular function of the de-

livery completion times. Recall that the restriction p j = p

means that all jobs have a common processing time, and

c̃s
j = c̃s indicates that all jobs produce a quantity of c̃s from

each product type s ∈ S.

Theorem 1 The problem 1|p j = p,nS = 1|γ can be solved

in O(nJ lognJ) time.

Proof We show that ordering the jobs in non-increasing or-

der of the c̃ j values gives an optimal schedule. Suppose

that there is an optimal schedule π , where for two adjacent

jobs π(l) and π(l +1), c̃π(l) < c̃π(l+1). Let π ′ be the sched-

ule obtained by swapping the jobs π(l) and π(l + 1). Since

c̃π(l) < c̃π(l+1), swapping the two jobs ensures that for any

time t, Aπ ′(t) ≥ Aπ(t). Hence, for every r ∈ R, the comple-

tion time of delivery r in the two schedules satisfy Cπ ′

r ≤Cπ
r .

Hence, γ(π ′)≤ γ(π). ⊓⊔

Theorem 2 The problem 1|c̃s
j = c̃s|γ can be solved in

O(nJ lognJ) time.

Proof An exchange argument similar to that in the proof of

Theorem 1 shows that ordering the jobs in non-decreasing

processing time order (SPT rule) gives an optimal schedule.

⊓⊔

Let γT be any regular function of the tardiness of deliv-

eries, such that γT (π) = 0 if and only if T π
r = 0 for all r ∈ R.

In order to prove the NP-hardness of 1|p j = 1,nS =

2,nR = 2|γT , we will need the NP-hard E-kKP problem [4],

which is defined next:

Definition 1 The Exact k-item Knapsack Problem (E-kKP)

is the following: given a finite set U , for each u∈U two sizes

v1(u),v2(u)∈Z
+, and positive integers B1, B2 and k, is there

a subset V ⊆U such that ∑u∈V v1(u)≥ B1, ∑u∈V v2(u)≤ B2

and |V |= k?

For our purposes we define the minimization variant as

follows:

Definition 2 The Exact k-item Minimum Knapsack Prob-

lem (E-kMKP) is the following: given a finite set U , for each

u ∈U two sizes v1(u),v2(u) ∈ Z
+, and positive integers B1,

B2 and k, is there a subset V ⊆U such that ∑u∈V v1(u)≤ B1,

∑u∈V v2(u)≤ B2 and |V |= k?

The E-kKP and E-kMKP are equivalent problems, which

can be seen as follows1. Suppose we are given an instance

of E-kKP, the corresponding instance of E-kMKP contains

the same data, except the v1(u), u ∈ U , and B1, which are

1 To use E-kKP for proving the NP-hardness of E-kMKP was sug-

gested by a reviewer.

redefined for E-kMKP from the data of E-kKP as follows:

vmin
1 (u) = M − v1(u), u ∈ U , and Bmin

1 = kM − B1, where

M = maxu∈U v1(u). Observe that ∑u∈V v1(u)≥ B1 for some

V ⊂U with |V |= k if and only if ∑u∈V vmin
1 (u)≤ Bmin

1 .

Theorem 3 The problem 1|p j = 1,nS = 2,nR = 2|γT is NP-

hard in the ordinary sense.

Proof Consider an instance I of E-kMKP. From this in-

stance, we construct an instance of the scheduling problem

as follows:

Param. Value

nJ |U |

nS 2

nR 2

p j 1

c̃1
j v1(u)

c̃2
j v2(u)

Param. Value

e1
1 ∑u∈U v1(u)−B1

e2
1 ∑u∈U v2(u)−B2

es
2 ∑ j c̃s

j

d1 |U |−m

d2 |U |

and the question is if there exists a schedule π with γT (π) =

0.

The idea of the reduction is that by limiting the amount

of the products released after the first delivery, we ensure the

release of enough products before it, while the tardiness is

controlled by fixing the number of jobs in each of the two

slots.

First suppose that I admits a feasible solution V . Then

the schedule

π({Ju | u ∈U \V},{Ju | u ∈V})

satisfies γT (π) = 0, because C1 ≤ d1, since

A1
π(d1) = A1

π(|U |−m) = ∑
u∈U\V

v1(u)

= ∑
u∈U

v1(u)− ∑
u∈V

v1(u)≥ ∑
u∈U

v1(u)−B1,

and similarly A2
π(d1)≥ ∑u∈U v2(u)−B2.

In the opposite direction, if there is a solution of the

scheduling problem with no tardiness, then at least m jobs

are performed after the first delivery with a total release of

at most B1 and B2 products, respectively. Hence, any subset

of size m of these jobs define an appropriate set V in I . ⊓⊔

Theorem 4 The problem 1|nS = 1|γT is NP-hard in the

strong sense.

The proof of this result is identical to that of Proposition

7 in [1].

Theorem 5 The problem 1|nR = 2, p j = 1|γT is NP-hard in

the strong sense.

Scheduling of inventory releasing jobs to minimize a regular objective function of delivery times 5

Proof Consider an instance I of X3C: given set X with

|X | = 3q and a collection C of 3-element subsets of X , find

a subcollection C′ ⊆ C such that every element of X occurs

in exactly one member of C′.

From the above instance, we construct an instance of the

scheduling problem as follows:

Param. Value

nJ |C|

nS 3q

nR 2

p j 1

c̃s
j

{

1 if s ∈ X j

0 otherwise

Param. Value

es
1 1

es
2 ∑ j c̃s

j

d1 q

d2 |C|

and the question is if there exists a schedule π with γT (π) =
0.

If there exists an exact cover C′ = {Xi : i = 1 . . .q}, then

π(J1, . . . ,Jq,Jq+1, . . . ,JnJ)

is clearly feasible, and has an objective function value of

γT (π) = 0, since no delivery is tardy, i.e., T π
r = 0 for all

r ∈ R.

If there exists a schedule π with no tardiness, then

Cπ
1 = d1 = q, since it is impossible to produce an amount

of ∑s∈S es
1 = 3q products in less than q time. Furthermore,

∑s∈S As
π(q) is exactly 3q, and all these products are differ-

ent because of the definition of the first delivery. This means

that the subsets Xπ(1), . . . ,Xπ(q) ∈ C form an exact cover of

X . ⊓⊔

Theorem 6 The problem 1|nS = 2, p j = 1|γT is NP-hard in

the strong sense.

Proof 2 Consider an instance I of 3-PARTITION: given

integers a1,a2, . . . ,a3m,B such that B/4 < a j < B/2 and

∑
3m
j=1 a j = mB, find partition A = (A1 : A2 : · · · : Am) such

that

– ∑ j∈Ar
a j = B,r = 1,2, . . . ,m and

– A1 ∪A2 ∪ ·· · ∪Am = {a1,a2, . . . ,a3m} and Ar1
∩Ar2

= /0

for r1 6= r2

From the above instance, we construct an instance of the

scheduling problem as follows:

Param. Value

nJ 3m

nS 2

nR m

p j 1

Param. Value

c̃1
j mB−a j

c̃2
j a j

e1
r r(3mB−B)

e2
r rB

dr 3r

2 The proof presented here is a simplified version of our original

proof and was suggested by a reviewer.

and the question is if there exists a schedule π with γT (π) =

0.

If there exists a partition A = (A1 : A2 : · · · : Am) for

I , then after re-indexing the elements such that Ar =

{a3r−2,a3r−1,a3r}, the schedule

π(J1,J2,J3, . . . ,J3r−2,J3r−1,J3r, . . . ,J3m−2,J3m−1,J3m)

satisfies Cπ
r ≤ dr for all r ∈ R. Hence, γT (π) = 0.

Conversely, suppose there exists a schedule π with Cπ
r ≤

dr for all r ∈ R, meaning that A1
π(dr)≥ r(3mB−B) = e1

r and

A2
π(dr) ≥ rB = e2

r . We prove by induction on r that π has

such a structure that by the first delivery request, and be-

tween any two consecutive delivery requests, there are ex-

actly three jobs that release a total of 3mB−B from product

1, and B from product 2, which implies that a feasible sched-

ule yields a feasible solution for the 3-PARTITION problem.

The base case r = 1. Since d1 = 3, and each job has

processing time 1, there are at most three jobs scheduled

before the first delivery request. Since the schedule is fea-

sible by assumption, we have A2
π(d1) ≥ B. This implies

that there are exactly three, since c̃2
j = a j and B/4 < a j <

B/2. Let A1 be the set of these three jobs. In addition,

A1
π(d1)≥ 3mB−B also holds. Since c̃1

j = mB−a j, we have

3mB−B≤A1
π(d1) =∑ j∈A1

c̃1
j =∑ j∈A1

(mB−a j), which im-

plies ∑ j∈A1
a j ≤ B. Consequently, ∑ j∈A1

a j = B.

The inductive step. Suppose our claim is true for the first

r < m delivery requests. This implies A1
π(dr) = r(3mB −

B) = e1
r and A2

π(dr) = rB= e2
r . Therefore, since the schedule

is feasible, in slot r + 1 the jobs have to produce a quan-

tity of at least e1
r+1 − e1

r = 3mB − B from product 1 and

e2
r+1 − e2

r = B from product 2. We can use exactly the same

argument as in the base case to show that there are precisely

three jobs scheduled in slot r+1 that produce a quantity of

3mB−B from product 1 and B from product 2. This proves

our claim. ⊓⊔

Theorem 7 The problem 1|nS = 1,nR = 2|γT is NP-hard in

the ordinary sense.

Proof Consider an instance I of PARTITION: given a fi-

nite set A and a size s(a) ∈ Z
+ for each a ∈ A, find a subset

A′ ⊆ A such that ∑a∈A′ s(a) = ∑a∈A−A′ s(A).

From the above instance, we construct an instance of the

delivery problem as follows:

Param. Value

nJ |A|

nS 1

nR 2

Param. Value

p j s(a j)

c̃ j s(a j)

er r ∑a∈A s(a)
2

dr r ∑a∈A s(a)
2

and the question is if there exists a schedule π with γT (π) =

0.

6 Márton Drótos, Tamás Kis

Suppose (A′ : A−A′) is a solution of I . Then by re-

indexing the items we may assume that A′ = {1, . . . ,k}, and

A−A′ = {k+1, . . . ,nJ}. The schedule

π(J1, . . . ,Jk,Jk+1, . . . ,JnJ)

is clearly feasible, and for all r = 1,2: er = dr, hence

γT (π) = 0.

Conversely, if there exists a schedule π with no tardi-

ness, clearly all deliveries are performed exactly at their due

dates (for any time t, Aπ(t)≤ t because p j = c̃ j). This means

that for r = 1,2 : Cr = r · ∑a∈A s(a)
2

, hence the jobs completing

before and after d1, respectively, define a feasible partition

(A′ : A−A′) in I . ⊓⊔

Theorem 8 The problem 1|nS = const.,nR = const.|γ can be

solved in pseudo-polynomial time.

Proof The main idea of the following algorithm is that we

enumerate all different assignments of jobs to (delivery)

slots. Two assignments are different, if there exists a slot

r such that the total processing time or the total production

of some product of those jobs assigned to slot r differ in

the two assignments. From an assignment a schedule can be

easily built by sequencing those jobs assigned to the same

slot arbitrarily and then by joining the pieces together. We

call an assignment feasible only if the set of jobs assigned

to the first r slots satisfies the demand es
r for each product

s ∈ S, and delivery request r ∈ R.

We construct a directed graph as follows. Let a node

N(j,P1, . . . ,PnR ,∆ 1
1 , . . . ,∆

nS

nR) represent a partial (not neces-

sarily feasible) solution where jobs 1, . . . , j are already as-

signed to slots, slot r has Pr total processing time, and the

amount of product s produced in it is ∆ s
r . Let N(0, . . . ,0)

be the start node. From each node N(j, . . .),(j 6= nJ) ex-

actly nR edges are directed outwards, and these edges

are labeled with the numbers 1, . . . ,nR. An edge with la-

bel r from node N(j,P1, . . . ,Pr, . . . ,PnR ,∆ 1
1 , . . . ,∆

s
r , . . . ,∆

nS

nR)

is directed to the following node: N(j + 1,P1, . . . ,Pr +

p j+1, . . . ,PnR ,∆ 1
1 , . . . ,∆

s
r + c̃s

j+1, . . . ,∆
nS

nR), and represents the

choice of assigning job j+1 to slot r, given the previous jobs

are already assigned.

Nodes N(nJ , . . .) represent all the different assignments

of the jobs to slots, and are called terminal nodes. Notice that

the same terminal node may represent several job sequences.

On the one hand, there can be several directed paths in the

graph from the start node to the same terminal node, and

each path gives rise to a distinct assignment of jobs to slots.

On the other hand, even a single path may yield several job

sequences, as we can order the jobs in a slot arbitrarily. We

call the set of job sequences that can be obtained in this way

the realizations of the terminal node. A terminal node is fea-

sible if ∀s ∈ S,r ∈ R : ∑
r
r′=1 ∆ s

r′
≥ es

r (all demands of deliv-

ery r are satisfied). In the sequel we consider only feasi-

ble terminal nodes. We define the delivery completion times

of a feasible terminal node N(nJ ,P1, . . . ,Pr,∆
1
1 , . . . ,∆

nS

nR) as

C
N(nJ ,...)
r = ∑

r
r′=1 Pr′ for r ∈ R. Now let the job sequence

π be a realization of this terminal node. Then we have

Cπ
r ≤C

N(nJ ,...)
r for all r ∈ R, and we may have strict inequal-

ity for some r (when more jobs are assigned to slot r than it

is necessary to meet the demands es
r for s ∈ S).

Clearly, any optimal job sequence π∗ is represented by

a feasible terminal node (just assign those jobs finishing by

Cπ∗

1 to the first slot, and those jobs finishing later than Cπ∗

r−1,

but not later than Cπ∗

r to slot r: the corresponding terminal

node is clearly feasible and is reachable from the start node).

For such a terminal node N(nJ ,P1, . . . ,Pr,∆
1
1 , . . . ,∆

nS

nR), we

always have Cπ∗

r = C
N(nJ ,...)
r for each r ∈ R, so any optimal

solution is represented by a terminal node of minimum ob-

jective function value γ(C1, . . . ,CnR), where Cr = C
N(nJ ,...)
r .

Therefore, to solve the problem it is enough to identify those

feasible terminal nodes reachable from the start node, and

the optimal solution will be represented by one with the low-

est objective function value. Finally, an optimal solution can

be recovered by following any path backward from an opti-

mal terminal node to the unique start node.

Complexity of the algorithm:

– Nodes of the graph:

|V | ≤ nJ
∣

∣∑ p j

∣

∣

nR
∣

∣

∣∑ c̃1
j

∣

∣

∣

nR

. . .
∣

∣

∣∑ c̃nS

j

∣

∣

∣

nR

+1.

– Edges of the graph: |E| ≤ nR|V |.

– Checking the feasibility of all solutions takes

O(nRnS|V |) = O(|V |) time.

– Calculating the objective function for all feasible solu-

tions takes O(nR|V |) = O(|V |) time.

– Building the graph takes O(|V |+ |E|) time, since for

each node we can maintain two lists of edges: one

for the inbound edges, and another for the outbound

edges, and a node N(j,P1, . . . ,PnR ,∆ 1
1 , . . . ,∆

s
r , . . . ,∆

nS

nR)
is uniquely identified by the parameters j, P1, . . . ,PnR ,

∆ 1
1 , . . . ,∆

s
r , . . . ,∆

nS

nR .

– Recovering an optimal solution takes O(nJ) time by fol-

lowing any path backward from an optimal terminal

node.

The construction of the graph and the solution of the

problem are polynomial if the input is given in unary en-

coding, so this is indeed a pseudo-polynomial algorithm for

the problem. ⊓⊔

4 An FPTAS for 1|nS = 1, nR = 2|Tmax

In this section we describe a Fully Polynomial Time Ap-

proximation Scheme (for basic definitions on approximation

schemes, see e.g. [11]) for 1|nS = 1, nR = 2|Tmax, which is

NP-hard in the ordinary sense by Theorem 7.

Scheduling of inventory releasing jobs to minimize a regular objective function of delivery times 7

The idea of the FPTAS is that the feasible domain Λ

of the problem is partitioned into some subdomains, and

each subdomain λ is represented by a feasible solution. This

approximation method is called as „structuring the output”

in [11].

As the maximal tardiness can be zero, and deciding

whether a schedule with no tardiness exists is NP-complete,

it would be impossible to give an FPTAS to the problem un-

less P=NP. Hence the objective function is modified in the

well-known manner: we will consider the shifted maximal

tardiness of schedule T s
max = maxr(max(Cr −dr,0)+ psum).

This means that after each delivery a "lag time" is required.

As a result, we always have psum ≤ T s
max ≤ 2psum.

We will round up the processing times and the amount

of produced products to the nearest integer divisible by a

constant K and L, respectively. The resulting values will

be p̄ j = K
⌈ p j

K

⌉

and c̄ j = L
⌈

c̃ j

L

⌉

. We will use the directed

acyclic graph described in the proof of Theorem 8 with ad-

ditional weights on the edges. A node in this formulation

will have the following structure: N̄(j, P̄1, P̄2, ∆̄1, ∆̄2), and

the edge representing the assignment of job j to the first

slot will have a weight ∆̄ j −∆ j. The weight of other edges

is zero. The subdomain λN̄(nJ ,P̄1,P̄2,∆̄1,∆̄2)
contains all sched-

ules that have P̄1 total rounded processing time in slot 1, ∆̄1

total rounded produced amount in slot 1, etc. These sched-

ules correspond to all paths leading from the start node to

N̄(nJ , P̄1, P̄2, ∆̄1, ∆̄2).

A reachable terminal node of the rounded problem is

transformed into a solution of the scheduling problem by

replacing the rounded jobs with the original ones. As a so-

lution σ of the scheduling problem is determined by a path

from the start node to a terminal node, a terminal node in

the rounded problem may represent multiple different so-

lutions in the original problem (see Figure 2). The weight

of σ , denoted by w(σ), is the sum of edge weights of the

path. Notice that if a path ends at N̄(nJ , P̄1, P̄2, ∆̄1, ∆̄2), then

∆̄1 −w(σ) is the total production of the product in the first

slot in the corresponding non-rounded solution. Among the

paths to a terminal node we select one of lowest weight.

This will be called as the representative solution of the given

node.

Definition 3 A terminal node in the rounded problem is

called feasible if its representative non-rounded solution is

feasible. Its objective function value is the objective function

value of the non-rounded representative solution.

The algorithm searches all feasible terminal nodes in the

rounded problem, and chooses the solution with the lowest

maximal shifted tardiness. We will need some definitions for

the different objective function values for a given subdomain

λ .

Definition 4 For a subdomain λ ,

(0,0,0,0,0)

(1,4,0,6,0)

(1,0,4,0,6)

(2,8,0,12,0)

(2,0,8,0,12)

· · · (3,8,8,12,12)

· · ·

· · ·

3(1)

0(2)

3(1)

0(2)

0(2)

3(1)

0(2)

4(1)

4(1)

0(2)

σrep(λ)

8
11
15

8 11 14

Aσrep (t)

time

σ∗(λ)

3
7

15

3 6 14

Aσ∗ (t)

time

Fig. 2 Example of choosing the representative solution for a given

rounded terminal node. The input parameters are the same as in Figure

1, and K = 2, L = 6. The label w(r) on an edge has the meaning that

this edge assigns the corresponding job to slot r, and this assignment

has weight w. For ease of understanding, only the relevant part of the

graph is displayed, and the nodes are organized into layers representing

the assignments of the first, second. . . jobs.

– T s
max(λ) is the objective function value of the representa-

tive solution σrep(λ), considering non-rounded process-

ing times

– T̄ s
max(λ) is the objective function value of the represen-

tative solution σrep(λ), considering rounded processing

times

– T s
max

∗(λ) is the objective function value of the best

schedule σ∗(λ) in λ

We have to show that the algorithm described here is cor-

rect, i.e. all feasible solutions correspond to a feasible termi-

nal node reachable from the source node on a path, and that

the objective function value of a representative solution is

close to the objective function value of any feasible solution

that it represents.

Property 1 If a rounded terminal node is not feasible, then

it does not represent any feasible solutions.

Proof Suppose we have an infeasible rounded terminal node

N̄(nJ , P̄1, P̄2, ∆̄1, ∆̄2) with schedule σrep(λ) and there exists a

feasible solution σ(λ) in subdomain λ . Then w(σ(λ)) can-

not be smaller than w(σrep(λ)), hence ∆̄1 −w(σrep(λ)) ≥

∆̄1 −w(σ(λ)). Therefore, since σ(λ) is feasible, a contra-

diction. ⊓⊔

8 Márton Drótos, Tamás Kis

Property 2 Any feasible solution of the original problem is

represented by exactly one feasible representative solution.

Proof It is trivial that no solution can be represented by

more than one representative solution. Furthermore, ev-

ery possible assignment to the first and second slot of the

rounded jobs is investigated in the rounded problem, so any

feasible solution will be represented. According to Property

1, the corresponding representative solution will be feasible.

⊓⊔

Property 3 By setting K = ε pmax

nJ , it holds that T̄ s
max(λ) ≤

(1+ ε)T s
max

∗(λ) for any λ ∈ Λ .

Proof First we observe that

T̄ s
max(λ)≤ T s

max
∗(λ)+nJK,

because if we replace each p j in the optimal solution of λ

with p̄ j, the processing time of any job may increase by at

most K time units, so any delivery may be delayed by at

most nJK time units. Hence the difference of the objective

function value of σrep(λ) and σ∗(λ) is

T s
max(λ)−T s

max
∗(λ)≤ T̄ s

max(λ)−T s
max

∗(λ)

≤ T s
max

∗(λ)+nJK −T s
max

∗(λ)

= nJK = nJ ε pmax

nJ
≤ ε psum

≤ εT s
max

∗(λ)

⊓⊔

Theorem 9 There exists an FPTAS for the problem 1|nS =

1,nR = 2|T s
max.

Proof As the optimal solution has a feasible representative

solution that is at most (1+ ε) times worse, and all feasible

representative solutions are investigated, it is clear that the

algorithm is (1+ ε)-optimal. It has to be shown that it is

polynomial in the input size and in 1
ε .

If we set K = ε pmax

nJ and L = εcmax, then there are at most
⌈

nJ

ε

⌉

and
⌈

1
ε

⌉

different types of processing times and pro-

duced amounts of the product, respectively. This means P̄r

and ∆̄r can take at most nJ
⌈

nJ

ε

⌉

and nJ
⌈

1
ε

⌉

distinct values.

The complexity can be upper bounded as follows:

– nodes of the graph: |V̄ | ≤ nJ
(

nJ
⌈

nJ

ε

⌉)2
(

nJ
⌈

1
ε

⌉)2
+1 =

O
(

(

1
ε

)4
(nJ)7

)

– edges of the graph: |Ē| ≤ 2|V̄ |

– finding the representative solutions takes O(|V̄ |+ |Ē|)

time

– checking the feasibility and the objective value of the

representative solutions takes O(|V̄ |) time

This means that the complete procedure takes at most

O(|V̄ |) = O
(

(

1
ε

)4
(nJ)7

)

time. ⊓⊔

A natural question is whether the FPTAS could be gen-

eralized for other nS and nR values? The correctness of the

algorithm relies on Property 1, so any similar algorithm for

the more general case should select representative solutions

with the same property. As it is demonstrated in Table 2 by

a counter-example, the idea to select a path that has the low-

est rounding error in lexicographic comparison cannot work,

even for the nS = 1, nR = 3 case.

Parameters:

Param. Value

nJ 6

nS 1

nR 3

ε 2
15

L 2

p j p

Job c̃ j c̄ j

J1 3 4

J2 5 6

J3 8 8

J4 12 12

J5 1 2

J6 15 16

Delivery er

R1 8

R2 28

R3 44

Solutions represented by N̄(6,10,20,18, . . .) terminal node:

r 1 2 3

∆̄r (∑
r
r′=1 ∆̄r′) 10 (10) 20 (30) 18 (48)

σ∗(λ) J1,J2 J3,J4 J5,J6

∆r (∑
r
r′=1 ∆r′) 8 (8) 20 (28) 16 (44) feasible

∆̄r −∆r 2 0 2

σrep(λ) J3,J5 J1,J6 J2,J4

∆r (∑
r
r′=1 ∆r′) 9 (9) 18 (27) 17 (44) infeasible

∆̄r −∆r 1 2 1

Table 2 Counter-example for the nS = 1, nR = 3 case. While σrep(λ)
is infeasible, it has lexicographically less rounding error than σ∗(λ),
which is feasible.

In a general setting (nS and nR are arbitrary constants),

selecting a representative solution for a given rounded termi-

nal node with Property 1 is equivalent to the following prob-

lem: given a DAG with a designated source and target node,

find a path between them which obeys the following resource

constraints: there are nS(nR − 1) resources with given lim-

its, each edge consumes a vector {0 . . .L}nS(nR−1) of these

resources, and the total consumption of the path cannot be

higher than the limit for any resource. The limit on a re-

source (s,r) is the total allowable rounding error of product

s during the first r periods. Furthermore, the consumption

vectors on the edges have a special structure: for a product

s, the first r− 1 coordinates are zero, and the other coordi-

nates have the value c̄s
j − c̃s

j.

This is a special case of the Constrained (Shortest) Path

problem, which is known to be NP-hard in the ordinary

sense (problem [ND30] in [7]; for more details, see [12]).

However, to our knowledge, there is no result for the com-

Scheduling of inventory releasing jobs to minimize a regular objective function of delivery times 9

plexity of this special case. If it is polynomially solvable,

then our approach gives an FPTAS for arbitrary fixed nS and

nR values, but if it is NP-hard, then this dynamic program-

ming formulation with this type of rounding reaches its lim-

its at the nS = 1, nR = 2 case.

5 Final remarks

In this paper we have presented some complexity and algo-

rithmic results for scheduling inventory releasing jobs with

tardiness related criteria. Our results complement those of

Briskorn et al. [2] and Boysen et al. [1].

There are a number of open questions, especially on

the algorithmic side. We have an FPTAS for one ordinary

NP-hard variant with a single product type and 2 deliveries.

However, there are a number of other NP-hard variants, for

which approximation algorithms or approximation schemes

may be designed.

Acknowledgements The authors are indebted to the two anonymous

referees for helpful suggestions for improving the paper. This work has

been supported by the research grant ”Digital, real-time enterprises and

networks”, OMFB-01638/2009. The research of Tamás Kis has been

supported by the János Bólyai research grant BO/00412/12/3 of the

Hungarian Academy of Sciences.

References

1. Boysen, N., Bock, S., Fliedner. M.: Scheduling of inventory re-

leasing jobs to satisfy time-varying demand: an analysis of com-

plexity. Journal of Scheduling, to appear, doi:10.1007/s10951-

012-0266-0
2. Briskorn, D., Choi, B-C., Lee, K., Leung, J., Pinedo, M.: Com-

plexity of single machine scheduling subject to nonnegative in-

ventory constraints. European Journal of Operational Research,

207, 605–619, doi:10.1016/j.ejor.2010.05.036 (2010)
3. Briskorn, D., Jaehn, F., Pesch, E.: Exact algorithms for inventory

constrained scheduling on a single machine. Journal of schedul-

ing, to appear, doi:10.1007/s10951-011-0261-x
4. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D., Approxi-

mation algorithms for knapsack problems with cardinality con-

straints. European Journal of Operational Research, 123, 333–345

(2000)
5. Carlier, J., Rinnooy Kan, A. H. G.: Scheduling subject to non-

renewable resource constraints. Operations Research Letters, 1,

52–55 (1982)
6. Carlier, J.: Scheduling under financial constraints, in R. Slowiński,

J. Weglarz (eds), Advances in Project Scheduling, Elsevier, Ams-

terdam, pp. 187–224 (1989)
7. Garey, M. R., & Johnson, D. S.: Computers and Intractability: A

Guide to the Theory of NP-Completeness. Freeman, San Francisco

(1979)
8. Grigoriev, A., Holthuijsen, M., van de Klundert, J.: Basic Schedul-

ing Problems with Raw Material Constraints. Naval Research Lo-

gistics, 52, 527–535, doi:10.1002/nav.20095 (2005)
9. Kellerer, H., Kotov, V., Rendl, F., Woeginger, G. J.: The Stock Size

Problem. Operations Research, 46, S1–S12 (1998)
10. Neumann, K., & Schwindt, C.: Project scheduling with inventory

constraints. Mathematical Methods of Operations Research, 56,

513–533 (2002)

11. Schuurman, P., & Woeginger, G. J.: Approximation Schemes – A

Tutorial. In: Moehring, R., Potts, C., Schulz, A., Woeginger, G.,

Wolsey, L. (eds.), Lectures on Scheduling (to appear)

12. Ziegelmann, M., Constrained Shortest Paths and Related Prob-

lems. PhD thesis, Universität des Saarlandes (2001)

