
1 

 

Accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems, 2001 

Scheduling of Microfluidic Operations for Reconfigurable Two-
Dimensional Electrowetting Arrays1 

 
Jie Ding, Krishnendu Chakrabarty and Richard B. Fair 
Department of Electrical and Computer Engineering 

Duke University 
130 Hudson Hall, Box 90291 

Durham, NC 27708 
 
 

Submitted: December 2000, Revised: August 2001 
 

                                                           
1 This research was supported in part by DARPA under contract no. F30602-98-2-0140. 
 

 

 

ABSTRACT 

We present an architectural design and optimization methodology for performing biochemical 
reactions using two-dimensional electrowetting arrays. We define a set of basic microfluidic 
operations and leverage electronic design automation principles for system partitioning, 
resource allocation, and operation scheduling. Fluidic operations are carried out through the 
electrostatic configuration of a set of grid points. While concurrency is desirable to minimize 
processing time, the size of the two-dimensional array limits the number of concurrent 
operations of any type. Furthermore, functional dependencies between the operations also limit 
concurrency. We use integer linear programming to minimize the processing time by 
automatically extracting parallelism from a biochemical assay. As a case study, we apply our 
optimization method to the polymerase chain reaction, which is an important step in many lab-
on-a-chip biochemical applications. 
 

 
 
Keywords: Architectural optimization, integer linear programming, microelectrofluidics, 
partition map, reconfigurable architecture, scheduling. 
 
 
 

 
 



2 

1 INTRODUCTION 

Composite microsystems that incorporate microelectromechanical (MEMS) and 

microelectrofluidic systems (MEFS) are emerging as the next generation of system-on-a-chip 

(SOC) designs. These systems combine microstructures with solid-state electronics to integrate 

multiple energy domains, such as electrical, mechanical, and fluidic. The combination of 

microelectronics and microstructures is enabling a new class of integrated systems targeted at  

environmental sensing, actuation and control, biomedical analyses, agent  detection, and 

precision fluid dispensing. 

Microfluidics not only offers size reduction, e.g. in small medical implants and minimal-

invasive surgery, but it also reduces power dissipation and increases system reliability. 

Microfluidics allows us to control small amounts of fluids for precision dispensing (micro-

dosing) and reduce reagent consumption for on-line chemical analysis and real-time process 

monitoring. However, current-generation of MEFS are application-specific and they are 

incapable of performing a collection of differing analyses or procedures.  We now need design 

methodologies and tools  that allow microfluidic devices to be assembled into an SOC that can 

perform a variety of tasks supporting a diverse set of applications. This SOC can then be readily 

reconfigured and reused for chemical detection, analysis, diagnostics, and dispensing. While a 

number of CAD tools for MEMS are now commercially available, these tools are inadequate for 

current and next-generation MEFS. 

Electrowetting-based actuation for microelectrofluidics (MEFS) has recently been 

proposed for optical switching [1], chemical analysis [2], and rotating yaw rate sensing [3]. 

Pollack et al recently demonstrated that by varying the electrical potential along a linear array of 

electrodes, electrowetting techniques can be used to move liquid droplets along this line of 

electrodes [2]. By carefully controlling the electrical potential applied to the electrodes, fluid 

droplets can be moved as fast as 3 cm/sec (Figure 2, and movies at 

http://www.ee.duke.edu/research/MONARCH/movies.html).  

Electrowetting can also be used to move droplets in a two-dimensional electrode array. 

By controlling the voltage on the electrodes, fluid droplets can be moved freely to any location 



3 

on a two dimensional plane [2]. Fluid droplets can also be confined to a fixed location and 

isolated from other droplets moving around it. 

 

 

 

 

 

 

 

 

Figure 1: Actuation mechanism for droplet movement [3]. 

Using two-dimensional electrowetting arrays, many useful microfluidic operations can be 

performed, such as storing, mixing and droplet splitting. The store operation is performed by 

applying an insulating voltage around the droplet. This is analogous to a well. The insulating 

voltage prevents this droplet from mixing with other droplets around it. The mix operation is 

performed by routing two droplets to the same location, where they are merged into one droplet. 

Since the size of a droplet is kept small, effective mixing can be achieved by fluid diffusion after 

merging. Finally, the split operation is performed by creating opposite surface tension at the two 

ends of a fluid droplet and tearing it into two smaller droplets. 

While two-dimensional electrowetting arrays are especially useful for biochemical 

analysis, system level design methodologies are required to harness this exciting new 

technology. In this paper, we leverage electronic design automations techniques to develop the 

first system-level design methodology for reconfigurable MEFS-based lab-on-a-chip. 

Reconfigurable computing systems based on field-programmable gate-arrays (FPGAs) 

are now commonplace [4]. However, the “programmability” of FPGAs is limited by the well-

defined roles of interconnect and logic blocks. Interconnect cannot be used for storing 

information, and logic blocks cannot be used for routing. In contrast, the MEFS architecture that 

we are developing offers significantly more programmability. The grid points between electrodes 

can be used for storage, functional operations, as well as for transporting fluid droplets. 



4 

Therefore, partitioning, resource allocation, and scheduling have emerged as major challenges 

for system-level MEFS design targeted at a set of biochemical applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Droplet motion in an electrowetting array [2]. 

We have developed the syntax and semantics of microfluidic operations such as MOVE, 

MIX, and SPLIT that can be used to describe biochemical processes such as Polymerase Chain 

Reaction (PCR) [8]. The various fluid samples represent the operands. Such a microfluidic 

program must then be mapped to the two-dimensional array that represents the datapath of a 

microfluidic computer. (A separate electronic control unit drives the electrodes.) The execution 

 



5 

of microfluidic operations requires the availability of datapath resources (set of grid points) that 

can be appropriately configured. For example, the MIX operation requires that a set of grid points 

be properly configured to act as a mixer. The size of the two-dimensional array limits the number 

of concurrent operations of any type that can be carried out. Furthermore, functional 

dependencies between the operations in a microfluidic program also limit concurrency. 

The organization of the paper is as follows. In Section 2, we describe the two-

dimensional electrowetting  array and introduce the concepts of virtual microfluidic components 

and partition maps. Section 3 presents the scheduling problem for biochemical analysis and 

describes an integer linear programming approach for scheduling under resource constraints in 

two-dimensional electrowetting arrays. Finally, in Section 4 investigate the PCR reaction as a 

case study. The PCR reaction is an important step in LOC biochemical processing. Processing 

time must be minimized for a number of critical LOC applications such as the detection and 

identification of biochemical agents and health monitoring during surgery. Efficient scheduling 

techniques not only reduce processing time, but they also offer better resource utilization in two-

dimensional electrowetting arrays. 
 

2 TWO-DIMENSIONAL ELECTROWETTING ARRAYS 

A two-dimensional electrowetting array consists of a grid of electrodes on a two-dimensional 
plane (Figure 1). Fluid droplets are introduced to the device from the I/O ports on the boundary 
of the array. Droplets in the array have identical volumes. Hence, this type of device is also 
called a unit-flow device. It is desirable to maintain the unit-flow constraint since the rate of 
chemical and biomedical reactions grows exponentially with the growth of droplet volume [2]. 

Operations such as STORE, MOVE, MIX, and SPLIT are performed by controlling the 
electrical potential applied to the electrodes. It is easy to see that some of these operations violate 
the unit-flow assumption. For example, the fluid droplet size is likely to double as a result of a 
mixing operation. Therefore, we always perform a split operation after mixing to maintain the 
droplet volume.  

In a continuous-flow MEFS system, mixing is performed using a micromixer. This is a 
specific device located at a fixed place in the microfluidic system. In unit-flow systems however, 
mixing operations can happen anywhere on the array, not necessarily at a specific location. If we 



6 

define a mixer as the location where fluids mix, then a unit-flow mixer can be located at any 
arbitrary cell in the electrode grid. This property is referred to as reconfigurability, and it is in 
many ways similar to the reconfigurability provided by FPGAs. However, as discussed in section 
1, unit-flow devices allow a higher degree of reconfigurability than FPGAs. Storage cells, mixers 
and splitters can be created, removed, and relocated at runtime. This allows us to create 
extremely flexible and efficient biochemical analysis systems. 

An abstract model of the unit flow system with a two-dimensional grid of electrodes is 
shown in Figure 1. A ground plane is positioned above the electrode array at a spacing that is 
less than the diameter of the droplets.  I/O ports are placed at the boundary of the system.  

2.1 Virtual devices and partition maps 

In the unit-flow environment, the routes that droplets travel and the rendezvous points of 

fluid droplets are programmed into a micro-controller that controls the voltages of electrodes. 

The storage and interconnect on the datapath are viewed as virtual devices by the controller.  

A virtual device is defined to have three regions. The first is the functional region, where a 

particular function is performed. The second type of region is called the segregation region, 

which wraps around the functional region. This insulates the functional region from its 

environment. The outer-most region of the device is the inherited communication path. This 

provides a one-cell wide communication path for fluid droplet movement. Figure 3 shows a unit-

flow storage cell. One droplet of a fluid sample is stored in each functional cell.  

A partition map shows the time-varying positions of all the virtual devices inside the defined 

area. It is generated by the designer, and pre-loaded into the microcontroller, which then controls 

the electrode voltages according to partition map. 

A partition map is similar to a virtual device, in that it is also a virtual map, and it only exists 

in the microcontroller specification. It is also dynamic in nature since it may change with time. 

Reconfiguration occurs when a new partition map is loaded into the controller. Figure 4 shows a 

partition map containing two storage cells, one input cell, and one mixer. (The labels A, B,…, J, 

K will be explained later.) The inherited communication paths of adjacent devices are combined 

to form a single channel in the electrode array. This channel is used for fluid droplet transfer, and 

is called a communication path. It forms the main network for fluid movement. Researchers have 

recently shown that it is possible to move the fluid droplets at a speed of 20 grids/second along 



7 

this communication path [2]. The actual route along which a droplet moves is pre-determined 

and loaded into controller. If the routes of several consecutive droplets do not overlap, they are 

called compatible routes. Movements along compatible routes can be performed in parallel. If 

the routes are not compatible, the corresponding droplet movements must be performed 

sequentially. 

 

 

 

 

 

 

 

Figure 3: A unit-flow storage device. 

We define the following operations that can be performed by virtual devices on a partition map. 
• MIX mixer_name, where mixer_name is a reference to a particular mixer in the partition map. 
• SPLIT mix_name, where mixer_name is a reference to a particular mixer in the partition map. 
• INPUT port_name, fluid name, where port_name is a reference to a port in the partition map. 
• MOVE source_name, destine_name, route_name, where route_name is a reference to a pre-

defined path. 
• PATH route_name, P1-P2-…-Pn, defines a path for droplet movement 

We next present a scheduling method for minimizing the processing time for fluid samples. 

We determine an optimal sequence of fluidic operations to minimize completion time under 

resource constraints (availability of virtual devices) and dependencies between operations.  

In contrast to droplet movement, fluidic operations such as MIX and SPLIT are slow 

processes. The mixing by diffusion at the nanometer level takes about 1 minute for completion. 

During the same time period, a droplet can move along 1800 grid points. Therefore, we ignore 

droplet movement time for operation scheduling.  

In order to schedule microfluidic operations such as MIX and SPLIT, we divide the time span 

between two consecutive reconfigurations into equal length time slots. The length of a time slot 

equals the greatest common divisor of all the operations. For example, if a MIX operation takes 3 



8 

minutes and a SPLIT operation takes 2 minutes, then the time slot is set to 1 minute. In this case, 

the MIX operation will take 3 slots, and the SPLIT operation will take 2 slots. In this way, we 

digitize the continuous fluid operation and the controller starts or completes an operation at the 

end of each time slot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Partition map with two storage units, one input cell, and one mixer. 

3 SCHEDULE OPTIMIZATION 

The order of execution of microfluidic operations must be determined after carefully 

considering the dependencies between the operations and the availability of resources. While 

dependencies are imposed by the biochemical application, the resource constraints are imposed 

by the size of the two-dimensional electrowetting array and the availability of virtual devices. In 

this section, we use the dataflow graph model of high-level synthesis [6] to represent the 

scheduling problem and solve it using integer linear programming (ILP). The motivation for 

using ILP lies in the fact that it is a well-understood optimization method and we can leverage a 

number of public domain solvers [7]. 



9 

First, each step of a biochemical process is represented using either a single microfluidic 

operation or a series of basic microfluidic operations. Each such instance of an operation forms a 

node in the dataflow graph. A directed edge from node u to node v indicates a dependency 

between the operations corresponding to u and v, i.e. the operation corresponding to u must be 

carried out before the operation corresponding to v. The goal of the scheduling problem is to 

determine the start times (time slots) of each operation so that the total completion time is 

minimized. 

Let jix , be a binary variable defined as follows: 
 
 
 
 

where Ni ≤≤1 , the number of operations (nodes in the dataflow graph), and Mj ≤≤1 , the 

maximum possible index for a time slot. Note that M can be trivially obtained by adding up the 

number of time slots required for all the operations. Note also that since each operation is 

scheduled exactly once, ∑
=

=
M

j
jix

1
, 1, Ni ≤≤1 . 

The starting time iS for operation i can now be expressed in terms of the set of 

variables },...,,{ 21 imii xxx . Assuming that each time slot is of length 1 unit, we get ∑
=

=
M

j
iji jxS

1

. 

Each operation i has an associated execution time id . If there exists a dependency edge 

between operation i and operation j , then iij dSS +≥ . Such dependencies generally arise from 

the fluid samples that are used in each step of the biochemical reaction. These fluid samples are 

similar to variables in traditional architectural synthesis. 

Finally, we add resource constraints to the ILP model. Let ka be an upper bound on the 

number of operations of type k . We now have the following set of constraints for each k : 

∑ ∑
Τ∈ +−=

≤
)( 1ki

l

dlj
kij

i

ax , Ml ≤≤1  

 





=
otherwise,0

jslot  at time starts i operation if,1
, jix



10 

The objective of this optimization problem is to minimize the completion time of the last 

operation, i.e. minimize }{max
1

∑
=

+
M

j
iiji

djx . This can be linearized as: minimize C subject to 

i

M

j
ij djxC +≥ ∑

=1
)( , Ni ≤≤1 . 

 

The ILP model can be easily solved using public-domain solvers. In our work, we used the lpsolve 

package from Eindhoven University of Technology in Netherlands [7]. 

4 PCR EXAMPLE 

In this section, we present a case study for operation scheduling using the PCR reaction. The PCR 

reaction includes three basic steps. The first is the input section. In this part, a number of fluid samples 

are input into the system. Next, these samples are combined using a pre-determined set of MIX 
operations. Note that these are implemented by interleaving MOV, MIX, and SPLIT operations. Finally, 

the sample mixture is sent off-chip for a series of heating steps. 

The input samples for PCR include Tris-HCl (pH 8.3), KCl, gelatin, bovine serum albumin, 

beosynucleotide triphosphate, a primer, AmpliTaq DNA polymerase, and  λDNA. The PCR procedure 

consists of the following series of steps: 
1. Introduce Tris-HCl (pH 8.3) to storage. 
2. Introdce KCl.  
3. Wait until KCL mixes with Tris-HCl. 
4. Introduce gelatin. 
5. Wait until it mixes. 
6. Introduce bovine serum albumin. 
7. Wait until it mixes. 
8. Introduce beosynucleotide triphosphate. 
9. Wait until it mixes. 
10. Introduce primer to the storage. 
11. Wait until it is well mixed with the mixture. 
12. Introduce AmpliTaq DNA polymerase. 
13. Wait until it is well mixed with the mixture. 
14. Introduce λDNA to the storage. 
15. Wait until it is well mixed with the mixture. 

4.1 System configuration 



11 

The first example system we use is shown in Figure 4. The system can perform moving, mixing and 

splitting for the PCR reaction. It consists of 9-by-9 array of grid cells. A dedicated I/O port is located at 

the edge of the system. We assume that the mixing of two fluid droplets takes 2 minutes, while the input 

operation takes 0.4 minutes. Since the mix operation is always followed by a split operation, the latter is 

not explicitly considered here. Instead, we assume that the time for a split is included in the time for a mix 

operation. The speed of fluid movement is assumed to be 20 grid cells per minute.  

The partition map for this example is given by Figure 4. In addition to the partition map, the droplet 

route plan and schedule of operations (to be determined next) must be loaded into the controller. 

4.2 Optimal Scheduling 

We now describe how an optimal schedule can be derived to minimize the processing time. First, we 

represent the PCR reaction as a series of basic steps. This corresponds to a specification outlined by a lab 

technician, and serves as a user program. The user program can either be a sequential enumeration of 

steps, or it can contain a limited amount of hand-extracted concurrency. We then generate the dataflow 

graph based on the functional dependencies between the operations (Figure 5). An optimized PCR 

reaction for the datapath of Figure 1 and the dataflow graph of Figure 5 is given below: 
 

Time 
(minutes) 

Operations Representation 

 Definition section 
Path path1, C-E-F-G-D 
Path path2, C-E-F-H-D' 
Path path3, C-E-I-A 
Path path4, C-E-J-B 
Path path5, D'-F-H-K 
Path path6, A-G-F-D' 
Path path7, B-H-F-D' 

Definition 

0  Load partition map  
INPUT Tris-HCl 

 
I1 

0.4      MOVE C, D, path1 
INPUT  KCl  

 
I2 

0.8 MOVE  C, D', path2 
INPUT  gelatin 
MIX  D and D' 

 
I3 

M1 
1.2 move C, A, path3 

INPUT bovine serum albumin 
 

I4 
1.6  MOVE  C, B, path4  
2.8 MOVE D', K , path5 

MOVE A, D', path6 
INPUT beosynucleotide triphosphate 

 
 

I5 



12 

MIX D and D'  M2 
3.2 MOVE C, A, path3  
4.8 MOVE move D', K, path5 

MOVE  A, D', path6 
INPUT  primer 
MIX  D and D'  

 
 

I6 
M3 

5.2 MOVE C, A, path3  
6.8 MOVE D', K, path5 

MOVE A, D', path6 
INPUT AmpliTaq DNA polymerase  
MIX  D and D' 

 
 

I7 
M4 

7.2 MOVE C, A, path3  
8.8 MOVE  D', K, path5 

MOVE A, D', path6 
INPUT λDNA  
MIX D and D'  

 
 

I8 
M5 

9.2 MOVE Move C, A, path3  
10.8 MOVE D', K, path5 

MOVE A, D', path6 
MIX D and D'  

 
 

M6 
12.8 MOVE D', K, path5 

MOVE B, D', path7 
MIX  D and D'  

 
 

M7 
14.8 MOVE D', K, path5  

Table 1: Optimized PCR reaction based on the datapath of Figure 1 and the dataflow graph of 
Figure 5. 

 

The optimized PCR program of Table 1 was easy to derive since there is only one mixer in the 

system. The total processing time using this schedule is 14.8 minutes. We next show how the processing 

time can be decreased further and an optimal schedule derived using ILP.  
 

Consider the partition map shown in Figure 6 with two mixers.  This allows greater parallelism 

and demonstrates the advantage is using ILP to minimize the processing time. The following discussion 

presents the ILP model for this example in more detail. 
 

The PCR program contains a total of 15 INPUT and MIX operations. From Table 1, we note that 

an upper bound on the processing time is 15 minutes. Each time slot is of length 0.4 minutes (the assumed 

time for an INPUT operation); hence an upper bound on the number of time slots is 37. There are 37 lots 



13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Dataflow graph with input and mix operations. 
needed for the schedule. To build the ILP model for this partition map, we define a set of decision 

variables as discussed in Section 3. Thus our ILP model uses jx ,1 … jx ,15  as the decision variables, where 

37,...,2,1=j . The start time of each operation can be expressed as follows:  

 
 
 
 
 
 
The dependency between instructions can be denoted using the following set of inequalities: 

 
 
 
 
 
 
 
 

Finally, the resource constraints can be represented as: 

 

 
 
 

N

+

++++

I III

+

+

M1 M2 M3 M4

M5 M6
M7

I1 I2 I3 I4

I

+

: Input operation

: Mixing operationN : Definition operation

I III
I5 I6 I7 I8

141315

6511

4310

219

,
...

,
,

,

SSS

SSS
SSS

SSS

>

>
>
>

37,153,152,1515

37,23,22,22

37,13,12,11

29...2
...

29...2
29...2

xxxS

xxxS
xxxS

+++=

+++=
+++=

2...
...

2...
2...

15,3715,3715,37

2,152,22,2

1,151,21,1

<+++

<+++
<+++

xxx

xxx
xxx



14 

 
 
 
 
 
 
 
 
 
 

 

Figure 6: Partition map with two mixers for PCR reaction. 

We solved this ILP model using lpsolve. It took 10 minutes of CPU time on a Sun Ultra Sparc with a 

333 MHz processor and 128 MB of RAM. The optimum processing time is 9.6 minutes, 50% faster than 

the PCR program of Table 1. The optimized schedule is given below: 
 

Time 
(minutes) 

Operations Representation 

 Path path1, C-E-J-H-G-D 
Path path2, C-E-J-H-F-D' 
Path path3, C-E-I-A 
Path path4, C-E-A' 
Path path5, D'-F-H-K 
Path path6, A'-F-H-K 
Path path7, A-G-F-D' 

Definition 

0  Load partition map  
INPUT Tris-HCl 

 
I1 

0.4 MOVE C, D, path1 
INPUT KCl  

 
I2 

0.8 MOVE C, D', path2 
INPUT gelatin 
MIX D and D' 

 
I3 

M1 
1.2 MOVE C, A, path3 

INPUT bovine serum albumin 
 

I4 
1.6 MOVE C, A', path4  

INPUT beosynucleotide triphosphate 
MIX A and A' 

I5 
M2 

2.8 MOVE D', K, path5 
MOVE A, D', path1 
MIX D and D' 
 INPUT primer 

 
 

M3 
I6 

3.6 MOVE A', K, path6 
MOVE C, A', path4 

 
 

I

E

J

A

A’

M

G

F

H

D

D’

N L

K

C

Input cell

Mixer CellCommunication path



15 

MIX A and A' 
INPUT AmpliTaq DNA polymerase 

M4 
I7 

4.8 MOVE D', K, path5 
MOVE C, D', path1 
MIX D and D'  
INPUT λDNA  

 
 

M5 
I8 

5.6 MOVE D', K, path5 
MOVE C, D', path1 
MIX D and D' 

 
 

M6 

6.8 MOVE A', K, path6  
7.6 MOVE D', K, path5 

MOVE A, D', path7 
MIX D and D'  

 
 

M7 
9.6 MOVE D', K, path5  

 
This can be represented using the annotated dataflow graph shown in Figure 7. 
Consider next the partition map shown in Figure 3 with four mixers.  This allows even greater 

parallelism and decreases processing time further.  In the ILP model, we reformulated the resource 

constraints as follows: 

4...
...

4...

15,3715,3715,37

1,151,21,1

<+++

<+++

xxx

xxx
    

 
The partition map for this implementation is shown in Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Dataflow graph showing an optimized schedule for 2-mixer partition map. 

N

+

+

+

+

+

I

I

I

I

+

+

M1

M2

M4

M7

M3

M6

M5

I1 I2 I3
I4

I

+

: Input operation

: Mixing operation

N : Definition operation

I

I

I
I

I5

I6 I7
I8

0

0.8

1.6

2.8

3.6

4.8

5.6

7.6



16 

 
Figure 8: Partition map with four mixers for PCR reaction. 

We solved this ILP and obtained the optimum processing time of 9.2 minutes, roughly 5.2% faster than 
2-mixer version. Since the speed-up from two mixers to four mixers is insignificant, we conclude the 
maximum amount of parallelism in the PCR reaction has already been achieved. 

 

5 CONCLUSIONS 

We have presented a novel architectural design and optimization methodology for performing 

biochemical reactions using two-dimensional electrowetting arrays. We have defined a set of basic 

microfluidic operations and leveraged electronic design automation principles for system partitioning, 

resource allocation, and operation scheduling. While concurrency is desirable to minimize processing 

time, it is limited by the size of the two-dimensional array and functional dependencies between 

operations. We have used integer linear programming to minimize the processing time by automatically 

extracting parallelism from a biochemical assay. As a case study, we have applied our optimization 

method to the polymerase chain reaction. The proposed technique leverages known scheduling algorithms 

from electronic design automation for lab-on-a-chip (LOC) design, and it is expected to aid several LOC 

applications such as the rapid detection of biochemical agents, and reliable health monitoring during 

surgery. 

REFERENCES 

[1] J. L. Jackel, S. Hackwood, J. J. Veslka, and G. Beni. “Electrowetting Switch for Multimode Optical 
Fibers”, Applied Optics,  vol. 22, no.11, pp. 1765-1770, 1999 
[2] M. Pollack, R. B. Fair and A. Shenderov, “Electrowetting-based actuation of liquid droplets for 
microfluidic applications”,  Applied Physics Letters, vol. 77, no. 11, pp. 1725-1726, July 2000. 



17 

[3] R.Yates, C. Williams,  C. Shearwood and P.Mellor, “A Micromachined Rotating Yaw Rate Sensor”, 
Proc. Micromachined Devices and Components II, SPIE Meeting, pp. 161-168, 1996. 
[4] S. M. Trimberger, ed., Field-Programmable Gate Array Technology, Kluwer Academic Publishers, 
Norwell, MA, 1994. 
[5] J. R. Welty, C. E. Wicks and R. E. Wilson, “Fundamentals of Momentum, Heat, and Mass Transfer”, 
John Wiley & Sons, Inc, New York 1983. 
[6] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, Inc., New York, NY, 
1994. 
[7] M. Berkelaar, lpsolve 3.0, Eindhoven University of Technology, Eindhoven, The Netherlands, 
ftp://ftp.ics.ele.tue.nl/pub/lp_solve. 
[8] L. C. Waters et al., “Multiple Sample PCR Amplification and Electrophoretic Analysis on a 
Microchip”, Analytical Chemistry, vol. 70, no. 24, December 1998. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


