Scheduling of Project Networks by Job Assignment — Source link $\quad \boxed{Z}$

Andreas Drexl
Institutions: University of Kiel
Published on: 01 Dec 1991 - Management Science (INFORMS)
Topics: Resource allocation, Generalized assignment problem, Project management, Scheduling (computing) and Scheduling (production processes)

Related papers:

- Resource-constrained project scheduling: Notation, classification, models, and methods
- Characterization and generation of a general class of resource-constrained project scheduling problems
- A branch-and-bound procedure for the multiple resource-constrained project scheduling problem
- Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case
- Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach

Working Paper - Digitized Version
 Scheduling of project networks by job assignment

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 247

Provided in Cooperation with:

Christian-Albrechts-University of Kiel, Institute of Business Administration

[^0]This Version is available at:
http://hdl.handle.net/10419/161993

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

[^1]$$
=
$$
yo problem in profet mangrement iervatres the alloction of scarce the jodinidual jobs composingo the propect Lo many sivuations such Vige, the resources cosrespond to indiniduals lobilled labour). to as assgoment spe provect sabedwige problear, ie \& sed by asygruig ore of several indinduals /resources/ to consider the sompreemptive rasiant of \& sesourcemeat probleas, ntere ób durations ar mell as surce Bigrarding precedence reletions as mell question arices to which pobs resources
wee overall coste for solvigg this rent a brbisid branch and bound, er efficient Noste Carlo spel us relaratios procedures for meated des nell.

TRADNTS: AODIT
BRANCH AND
STICI

A securs resources to as sudit scticdu This nsturalf lesas project bar to be proces cact job. Do this peper ne constrained propect ob obargian costo depend upan the assigned ree ar release dater and deadliners the stould be assigned in order to mint time-resource-cost-tradeat probless we prea sfoanic programoug algorithor nith \& frath beusistic upper bounding tectinigue as nrell as vasion determiung lonrer bounds Camputstional neswlis are pr (PROIECT MANAGEMENT - RESOURCE CONSY SCHEDULING: GENERALIZED ASSTGNAENT PROBLENS: BOUND; DXNAMC PROGRAMMINE: NONTE CAREO BEUR

Z. Introduction

The scheduting problems considered here deal with determining when jobs should be processed, given limuiced availabilitios of resources as well as a bimited number of time
periods. The words job and project will be used throughout the paper to denote two levels of aggregation. A project consists of a set of jobs, tie we onlp consider the job level od the project level.
 ricted to the case in which each job may be performed in onlf one predebned scently efforts have been made to Sormulate and solve the more general ct scheduling problem where iob durations are tunctions of consumed
 trion of a vanity of noupreemptive project scheduling problems rete tunctions of job performance modes:
vaniant of the discrete nonpreamptive multi-mode oblem, where the resources are substivtional, ie. - Bach, ob must be scheduled reguining onlp one red per period and total availabijity) Job

II this paper we consider a resource-constrauned scheduling pro may be assigned alternatively to the job of the doubly-constrained resources fimn:

```
TABLE/
Defuritions and Natation
```


finition / Notation

s of scheduling job j joy resource \&

seduling job joby resource s.

```
ces(in, periods)
```

8
re of job
job
slact time of jobl

$$
\text { A specific period, } t=0,1, \ldots, ?
$$

Planning honzon (deadline)
The set of immediate predecessors of job ${ }^{\prime}$
Sob \backslash is assigned to resource k and buished in time periodt
Dbjective function value
mal objective function value

4. Eistorical Preatment of the Problent

hould be stressed that in the presence of time and resource restrictions 0 way of successfully using conventional scheduting rules (II), (IS), to definitely find a (hopetullf zood) teasible solution /see section know in advance whether any teasible solution exists at all. in (I)-(b) the number of variables and constraints grons vize. Thus general 0-1 programming approaches are of

Bist of all, it si there seems to be a Pol, (OT1, lo35 in order F. In fact, we even don' Rurthermore, in our formulath rapidly mith increasing problems only limited importance.
(1) 1 (6) have been suggested: The bist one, , additional precedence relationg which competing for scarce resources. In the allows for asvigning resources and The main drawbacks of this rrecedence relations and the although the number of
The second approach re partial teasible ce the tessible

Th to now three approaches tor solving, presented in 19 , defines in the first phase guarantes, that in no period more than H jobs are second phase a binary program is formulated, which determinigg start times of jobs (without overlapping). approach are the unsystematic way of generating additional
effort needed to salve the binary proprann by standard methods, vaniables is reduced by a factor of 5 to 10 , compared with (1)-(6)). user set - partitioning technigues (IS). One determines in the tivt phia schedules for each of the 1 I resource trpes. Therefore it is necessasy to redun
 phase two, one formulates and solves a set - partitioning problem. The main dra of this approach is that the number of variables (columns) of the set - partition problem is growing exponentiallf with increasing problem sige Although both approaches use optimization technigues, they do not guarantee that they will determine the optimum solution to a problem even with "nifnite time". The third one, presented in (of, is an enumerative trpe of optimiation algorithn. In section 6 we mill outline this ageasithon.

5. Monte Carlo Heunistic

heduling rules for heuristically constructing teasible solutions /and thus bounds Z for the unbnown optimum objective function value Z*) d an (evisting) leasible solution in the presence of time and resource I below). Therefore a more spobisticated stochastic (Monte e the following should be used's this contert. similar to the one described in (IV) tor traditional seduled are selected as candidates, if all predecessors

Traditional sc determining uppe quite aften do not bint restrictions /see section Caslo/ scheduling method lis

Adopting an operating scheme schedulizg rules, jobs currently unsce
an scheduled, and if the earliest start time is less than or equal to the time tof ion clock. Sitarting with $t:=0$ the simulation clock is increased successivelf. ye obtain the set of candídater $5 C$ as follows:
¿currently is unscheduled!
crently is scheduled!

rees which are available in t lassigned to a job only the following ppportunity costs may be calculated:

C and $S \in A B$
urcel with the worst-cuse conseguence e appropniate to take fis in order to rch candídate jób.
have be the simulats Nore formally
$50=\mathrm{Fil}$ job

$$
S C:=S E S O / E S S
$$

Denoting with AR the set of resou until $t-1$, enough left-over capacity),

25 stochastic assignment
chest scheduling costs ence in the case of

In the following we will take tyr lolightly moditied probabilitien. Tabing fis ar defned above all resourcer with his mould get an assignment probability of zero - a misleading consequ scarce resources and tight times. In order to overcome this deficiency we
and calculate

Tabing ois as stochastic assignment probabilitieg we get an arbitranily lagge range of stochastic scheduling rules for as 0 .
should be noted that the above choice of min is not crucial tor the behavior of the ithm. Alternatively we could take /mithout affectigg algorithmic performance "Ilfl a parameter $A>0$ leg. $A=1 /$ which should be "mall" compared mith substant ? adiective "mall" is the motivation for tabing 隹in
as not bnow in advance the tigbtness of resources and daters, therefore an appropniate high value of a leg. a $=2.0$ in order to hopetully ution some trials fait in attempting to construct a teasible creased and the solution process should be repeated. Table 6 It of the salution process to the exponential weight a.

In general, one da one should start with get a near-optimum sor solution a should then be de explains more about the sensitiv
ssibifitier exist for stochastically assigning resources to jobs For example a signment problem (INf can be formulated taking of as cost coefficients, wration algorithm and stopping before reaching optimality. Due to the propriate stopping criteria for assignment afonithms, we abase a sivelf assigning resources to jobs. We randomly assign LE AR to th and the stochastic assignment probabilities (I), assign nf as either AR or SC is for both ares empty. Then we mber of time periods such that both sets become mont process once more.

Many po:
linear sum a starting an optic unavailability of as pragmatic way of succe IF SC, update both ac randomly once more etc. as lo. increase of by the minimum nu nonempty and start the random assiga
ad STOCDII may be described as follows
A AD (availability date of resource sf as

Formally the stochastic construction meth. using DI, (leftover capacity of resource sf) an additional symbols.

Elvis.
(using of.
$=0$ Of ir

$$
\because \quad A=0, D I_{F}=D_{F} \forall B_{F} \cdot A D_{F}=O H B, S H=A, S D=
$$

2 Determine B5, and LE, by traditional critical path analysis,

 $\sigma_{\text {II }}=O H$ ind 4 then goth 6 .
5. Chose yE SC and rf AR randomly with probability proportional to o in if t to σ_{M}
\rightarrow LE, then STOP In feasible solution found); $D I_{y}=D L_{y}-0_{M}, \dot{S O}=50 \rightarrow \pi$
 successors of \%r if all jobs have been scheduled then sTOP Iteasible solution toundi; soto?

3 with a feasible solution, if all jobs have been assigned, or at a
moments are possible. In both caver one should make some
If in order to hopefully get tensible (near-optimum)

The procedure either stop point, where no further asslg restarts at $t:=0$ l see section solutions.
res. The precedence relations are stored in a forvard manner (successons) 23 Grard manner (predecessons), both as node oriented lists. The seth $5 C$ as cesented by cyalic linked Liste. Thus all algonithonic justructions can be eqperations.
resting to restrict the set of candidate jobs to thase elements ne. Denoting mith LSF, the latest start time Coalculated $=$ L5, - LIS. the corresponding slack time we get an

To some cuses it may be jate of SC mith minimum slacts tin 2nalogously to LB, and with SP. alternative job candídate set as follows:

CSCl
reveal an algonithmic variant mith a
tic generatization of Vagel's deterministic wap.

$$
S R C:=\operatorname{Si} S C / S T=\min / S F_{y} /,
$$

Sing STC instead of $5 C$ may - in some cases better performance (see section \%.

Conceptually 5 ITOCOM may be interpreted as a stochas, method to the transportation problem, which usen "regrets" in a

6. Bract Alponithm

The afoonithm is an enumerative tppe of branch and bound method. It simu wrcedecides about job-sequencing (which job should preceed others?/ and resr asyjument (which resource should be assigned to which job .\%. Beginning with all 11 being unassigned $/$ rift $=0$ tor all if's, th the afoorithm starts by selecting one job as a candidate for being scheduled as early as possible by one of the resources, setting the corresponding variable $\boldsymbol{N}_{\text {tht }}:=1$. The afonithm always build precedence and resource teasible partial schedules /solutions). "Partial" indicater that not all jobs have currently been scheduled (corresponds to "/ "instead of "ו="in (I)|. Scheduing jobs is equivalent ugmenting the partial teasible solution. Bumeration is done in a Llfro-implicit partial leasible schedules are augrnented as long as nerither precedence/resource as occur nor lower bounds erceed the upper bound;' in both cases backtracking
cheme is similar to ane proposed by other researchers (15), (10), [33) nult'-mode resource-constrained project scheduling problems. (experiences with this scheme (mithont additional teatures) So we incorporate particular upper /section 5/ and lower gramming leatures as well as preprocessing technigues Ve now outine all these componentr; for a detwiled

This enumeration a For salvigg diccrete 4 Prefiminary computationa have been rather díscouraging boundigg procedures; dvnamic pr in order to accelerate convergence. description see lof.
the ratio "cost increase / time saving" regarding the resource with minimum sts is minimal. Sob l yields the relative least expensive project crasting conceptually this propect crasting procedure may be considered as a

14 (aUbs)
Aptimalis Lower Boun
uing constraints (3) and (t). This leads to a model which is t assignment problem (GAP) |O1, (IS, (IT), The GAP iz It wrould take substantial CPD - time to solve smaller dimensions to optimatits, aspecially in to calculate a lower bound I for the optimum tiplier adjustment method of (s) mithout
thain these bounds we propose to OLBA

1 20, 23x.anam. 20.
 4.

 $=$

 Ta,

-

-

4.5.
-raccumasis 4. Whay

2.-

97and

-1
-2, -

-2,
-

 —ncersurw
7.

 2.

 -20.

24.

4. 4 _-
 Whan
 2

0

 20, -

1.2. Wheremanimen 2.and
 2.

 and W.

PABCDZ

An Erample tram licerature

5540 o $200295200 \rightarrow$ o o
 $550=23 \quad 200225 \approx 200285$
s of Table 3 give some jutormation about the relative ettectiveness of 3. Bach enty represeats the ratio Mumber of times, when the backtracking" divided by the "total number of executions of The effectiveness of ITB and OLBI is (not surpisingly) - degree of capacity scarceness. The other bounding - regarding all capacity restrictions. OLBP and "bensitive" mith respect to scarce resources,

The last tive column the bounding procedure bounding procedure causer the corresponding procedure". opposite with respect to a varyin procedures are relatively finfettectiv ArBl, which were initiallf thought to b
\qquad

- -6

,
\qquad
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
 \qquad
-

\qquad
\qquad
\qquad
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
 \qquad
\qquad
\qquad

\qquad
唯 -20.
\qquad

2F.
\qquad

\qquad
W.

\qquad
\qquad

促

 －

 нй

Thurimenworak

品
 $\cdots=1$

Sum
上等

 $\square \rightarrow-2$
 Nuncun

 NHO

 -
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- - - \qquad

\qquad
 -
\qquad相 —urnar前 -
and 1מ. 2.an. 2aw,

-

-

 Mand

 40,
 Namand

-

 4.
 4. 2 .

2nax -

1 . -2.

Qwawnand.
-
 -

- mom -

т \qquad

W0,
Trmm \rightarrow m
 1.7.
 andermbind

 Mom $\frac{10}{}$

Namour 1

2-20.

 -10

 Han womer wa д.

[^0]: Suggested Citation: Drexl, Andreas (1990) : Scheduling of project networks by job assignment, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 247, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

[^1]: Terms of use:
 Documents in EconStor may be saved and copied for your personal and scholarly purposes.

 You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

 If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

