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PAPER

Scheduling Parallel Tasks with Communication Overhead 

in an Environment with Multiple Machines

Jiann-Fu LINa), Member

SUMMARY This paper investigates the problem of nonpreemptively 

scheduling independent parallel tasks in an environment with multiple ma-

chines, which is motivated from the recent studies in  scheduling tasks in a 

multi-machine environment. In this scheduling environment, each machiie 

contains a number of identical processors and each parallel task can simul-

taneously require a number of processors for its processing in any single 

machine. Whenever tasks are processed in parallel in a parallel machine
, 

message communication among processors is often inevitable. The prob-

lem of finding a shortest schedule length on scheduling independent par-

allel tasks with the consideration of communication overhead in a multi-

machine environment is NP-hard. The aim of this paper is to propose a 

heuristic algorithm for this kind of problem and to analyze the performance 

bound of this heuristic algorithm.

key words: parallel task scheduling, multi-machine, communication over-

head, performance bound

1. Introduction

The conventional tasks scheduling approach is that tasks are 

to be scheduled in a single machine with multiple identical 

processors, and that each task is processed only on one pro-

cessor at a time. The conventional tasks scheduling prob-

lems have been extensively studied for decades, and these 

problems have evolved to become parallel tasks schedul-

ing problems [3], [7], [8], [14], [15]. The difference between 

the parallel task and conventional task is that a parallel task 

can simultaneously require a number of processors for its 

processing, under the constraint that the number of proces-

sors required cannot be greater than a given maximum de-

gree of parallelism of that task, while the conventional task 

only requires one processor at a time. The parallel task 

scheduling problem considers a set of n independent par-

allel tasks T={T1,T2,•c,Tn} that are to be scheduled in a 

scheduling environment. Each task Ti, i=1,2,•c, n, has 

its computation requirement ti and associates with a max-

imum degree of parallelism ƒ¢i. The maximum degree of 

parallelism of task Ti means that task Ti may be scheduled 

to process on up to ƒ¢i processors, and this degree of paral-

lelism, once determined for Ti, will not be altered during its 

processing. Suppose that a task Ti is scheduled to be pro-

cessed on ƒÂi processors, 1•…ƒÂi•…ƒ¢i, ƒÂi is called the degree 

of scheduled parallelism of Ti and the processing time re-

quired by Ti, under the linear speedup assumption, will be

(ti/ƒÂi). One of the goals of the above tasks scheduling prob-

lems is to find an optimal schedule, a schedule with min-

imum length (makespan), which is known as an NP-hard 

problem [3]. Hence, polynomial time heuristic scheduling 

algorithms are usually used to get approximate solutions. A 

heuristic scheduling algorithm H has a performance bound 

of ƒÀ, if (SH/SOPT)•…ƒÀ for all problem instances, where SH 

and SOPT denote the length of a heuristic schedule and that 

of an optimal schedule, respectively.

Under the linear speedup assumption, Wang and 

Cheng [14] applied the concept of Graham's List Schedul-

ing (LS) algorithm [6] to the parallel task scheduling prob-

lem in a single machine with P processors, and showed that 

the performance bound is , where =max{i

i=1,2,•c,n}. They also proposed the Earliest Completion 

Time (ECT) algorithm [15] for the same scheduling problem 

and derived the performance bound as. Then, Lin, 

See and Chen [8] also discussed the problem of schedul-

ing parallel tasks in a single machine, but with communi-

cation overhead among processors also taken into consid-

eration. They proposed the Largest Scheduled Parallelism 

First (LSPF) algorithm and derived the performance bounds 

as and on a P-processor ma-
chine and on a d-dimension hypercube machine, respec-
tively, where k is a given positive constant.

The above studies only discussed the problems of 
scheduling independent parallel tasks on a single machine 
with multiple identical processors. With the vast improve-
ments in wide-area network performance and powerful com-

puters, the grid environment has emerged as a promising 
computing platform that can support the execution of next 

generation scientific applications, and will open up avenues 
in many research fields [5], [13]. Grid environment is a large 
virtual organization that integrates a large amount of dis-
tributed resources and high performance computing capa-
bilities into a super service, which can provide huge com-

puting services, storage capability and so on. Grid environ-
ment allows the use of geographically distributed computing 
systems belonging to multiple organizations as a single sys-
tem. Thus, for simplicity, a grid environment can be seen as 
a multi-machine environment in which each machine con-
tains multiple processors. In the multi-machine environ-
ment, users submit their tasks from any one of machine and 
a scheduler allocates tasks to machines. In general, on re-
ceipt of a task request, the scheduler check whether the task 
can be processed on the available resources and meet the
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user-specified requirements. Thus, instead of computing lo-
cally, users dispatch their tasks to the remote machines. To 
achieve the potentials of a multi-machine environment, an 
effective and efficient scheduling framework within a multi-
machine environment is fundamentally important.

In 2001, Braun et al. [2] made a performance com-
parison among eleven heuristic algorithms for scheduling 
a set of independent tasks onto heterogeneous distributed 
computing systems by simulation. In 2004, Martino and 
Mililotti [9] developed a simulation grid environment to 
study the usefulness of genetic algorithms for scheduling 
tasks in a distributed group of parallel machines. They found 
that the genetic algorithm for scheduling 32 tasks does not 
converge to the optimal schedule within a limited number of 
trial performed, only a sub-optimal schedule could be got. 
In 2005, Weng and Lu [16] proposed a heuristic to sched-
ule independent tasks in the grid environment. According to 
the experimental results, they showed that their heuristic al-
gorithm could obtain a better performance compared to the 
other four existing algorithms. In 2007, Pascual, Rzadca and 
Trystram [10] discussed the problem of scheduling rigid par-
allel tasks (multiprocessor tasks [1]) in a grid environment, 
they proposed the Multi-Organization Load Balancing Al-
gorithm (MOLBA) and derived the worst case performance 
bound as 3 if the last completed task requires at most half of 
the available processors, and 4 in the general case.

Due to the reasons that tasks scheduling are the im-
portant components in a grid environment, a multi-machine 
environment, and that we found the proof of Lemma 1 in 
[8] is not correct, we will extend the problem of scheduling 
independent parallel tasks with the consideration of commu-
nication overhead to a multi-machine environment and an-
alyze its performance bound on such an environment. This 
problem of scheduling parallel tasks with communication 
overhead in a multi-machine environment, in which each 
machine contains a number of identical processors, is NP-
hard, because scheduling independent parallel tasks without 
considering communication overhead in a single machine 
with multiple processors has been known as NP-hard [3]. 
Therefore, we are interested in developing a polynomial 
time heuristic algorithm for such a problem, and in deriv-
ing its performance bound. The rest of this paper is or-
ganized as follows: Under a communication overhead as-
sumption, we illustrate a strategy for deciding a beneficial 
degree of parallelism of each task in Sect. 2. In Sect. 3, we 
modify the Largest Scheduled Parallelism First algorithm 
into the Modified Largest Scheduled Parallelism First al-
gorithm (MLSPF) for the problem of scheduling parallel 
tasks in a multi-machine environment, and derive its perfor-
mance bound. Finally, some concluding remarks are given 
in Sect. 4.

2. Preliminaries

2.1 Scheduling Environment and Task Model

In this paper, we consider that a set of n independent par-

allel tasks T={T1,T2,•c,Tn} are to be scheduled in an 

M-machine environment. In this tasks scheduling environ-

ment, each machine ma consists of pa identical processors 

and each parallel task Ti can only be processed in a single 

machine with its required processors simultaneously, where 

1•…a•…M and 1•…i•…n. Each parallel task is as-

sumed to be processable in any machine with its maximum 

degree of parallelism, that is, max{ƒ¢i|i=1,2,•c,n}•…

min{pa|a=1,2,•c,M}. Whenever a task is processed 

in parallel in a machine, communication overhead is an 

important factor that has great effect on the total process-

ing time of a task. Thus, if communication overhead is 

taken into consideration, a linear speedup is hard to achieve. 

Generally, communication overhead depends on the charac-

teristics of a task and a system, the degree of parallelism 

adopted by a task, and the topology of processors allo-

cated to a task [4], [11], [12]. In most situations, the aver-

age communication overhead will be increased with the de-

gree of parallelism adopted by a task [12]. In [4], the total 

communication overhead is computed as (total number of 

messages•~communication delay per message), in which the 

total number of messages is defined as the number of pro-

cessor pairs. Namely, the total number of messages is pro-

portional to the power of the degree of parallelism adopted 

by a task. As a consequence, a reasonable assumption of 

the average communication overhead among subtasks of a 

task is given as comm(x)=cxk[8], where x is the degree 

of parallelism adopted by a task, and c and k are positive 

constants which depend on the characteristics of the inter-

connection networks among processors.

In this paper, we adopt the communication overhead 

assumption in [8], and we only consider a specific condi-

tion in which the characteristics of each machine are all the 

same except the number of processors, say, the interconnec-

tion network in each machine is fully connected, and the 

transmission media in each machine is the same. That is, 

the same constants c and k are used in calculating the com-

munication overhead of each task when it is processed in 

any machine. Thus, under the communication overhead as-

sumption of [8], the total time required for processing a task 

Ti with a degree of parallelism x in any machine can be de-

fined as

2.2 The Beneficial Scheduled Parallelism

Since the communication overhead is taken into consider-
ation, a highest degree of parallelism does not , guarantee 
that it always leads to the shortest processing time. Though 
a higher degree of parallelism will reduce the computation 
time of a task, a higher degree of parallelism will also incur 
much more message communicating among processors. In 
order to get the shortest total processing time of task Ti, we 
have to find out the minimum value of f(x,ti). By calculus, 
the first derivative and the second derivative of f(x,ti) are
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and

respectively.

Owing to and at 

f(x,ti) reaches its minimum value at. Since 

the number of processors required by a task must be an in-

teger, the beneficial degree of parallelism ƒÓi of task Ti will

be either , which makes f(ƒÓi, ti)

have the smallest value. However, the degree of parallelism 

really adopted by task Ti cannot be greater than the given 

maximum degree of parallelism ƒ¢i. Hence, the degree of 

scheduled parallelism ƒÂi of task Ti is given as min(ƒÓi,ƒ¢i). 

The procedure of deciding the degree of scheduled paral-

lelism of each task is described as follows.

Procedure scheduled-parallelism

{Input the computation requirement ti and the maxi-

mum degree of parallelism ƒ¢i of task Ti, where i=

1,2,•c,n;

For i=1 to n do

{Let ƒÓi be either , which 

makes f(ƒÓi,ti) have the smallest value;

Let the degree of scheduled parallelism of task Ti be 

ƒÂi=min(ƒÓi,ƒ¢i);}

}

According to the degree of scheduled parallelism ƒÂi 

of each task Ti determined by the scheduled-parallelism 

procedure, the task set T={T1,T2,•c,Tn} is catego-

rized into ƒÂ task subsets; TƒÂ={TƒÂ1,TƒÂ2,•c,TƒÂnƒÂ}, TƒÂ-1=

{TƒÂ-11,TƒÂ-12,•c,TƒÂ-1nƒÂ-1},•c, and T1={T11,T12,•c,T1n1},

where ƒÂ=max{ƒÂi|i=1,2,•c,n} and n=ƒ°ƒÂj=1nj. This 

means that T=•¾ni=1Ti=•¾ƒÂj=1•¾njr=1Tjr. In other words, there is 

a bijective function G that maps {T1,T2,•c,Tn} to {TƒÂ1,TƒÂ2,

•c,TƒÂnƒÂ,TƒÂ-11,TƒÂ-12,•c,T11,•c,T1n1}. Each task Ti is catego-

rized into only one task subset, according to its degree of 

scheduled parallelism, which turns out to be task Tjr. Thus, 

we can assume that the computation requirement ti=tjr,

the maximum degree of parallelism ƒ¢i=ƒ¢jr and the sched-

uled parallelism ƒÂi=j, where 1•…i•…n, 1•…j•…ƒÂ and 

1•…r•…nj. After categorization, each task Tjr in the task 

subset Tj means its degree of scheduled parallelism is j and 

its total processing time is f(j,tjr).

3. The Modified Largest Scheduled Parallelism First 

Scheduling Algorithm

As we have briefly mentioned in Sect. 1, the proof of 

Lemma 1 in [8] is not correct. The incorrectness originates

from the improper depicted of Fig. 1 [8], which is a special 

case of all possible schedules. Figure 1 [8] illustrated that 

the maximum number of idle processors is (j-2) between 

the time at which the first task in Tj is started and the time 

at which tasks in Tj have all been finished, however, it is 

possible to be (j-1). Besides, the number of idle regions 

is not necessarily equal to m/j, the number of tasks in Tj 

also has an effect on it, for example there is only one task in 

Tj.

Due to the reasons that the proof of Lemma 1 in [8] is 

incorrect and that tasks scheduling are the important compo-

nent in a multi-machine environment, we modify the LSPF 

algorithm [8] and propose the Modified Largest Scheduled 

Parallelism First (MLSPF) scheduling algorithm for non-

preemptively scheduling independent parallel tasks in an 

M-machines environment and will analyze its performance 

bound on such an environment. The major policy of MLSPF 

is that, according to the degrees of scheduled parallelism 

of tasks, tasks are categorized into several task subsets and 

these task subsets are arranged in nonincreasing order . Ac-

cording to this nonincreasing order, tasks are assigned to any 

machine that has enough free processors for processing this 

task. That is, a task has higher priority for assignment if it 

has a larger degree of scheduled parallelism. The detail of 

the MLSPF algorithm is described as follows.

Algorithm MLSPF

{Call scheduled-parallelism procedure;

According to the degrees of scheduled parallelism, 

T1,T2,•c, and Tn are divided into ƒÂ task subsets TƒÂ=

{TƒÂ1,TƒÂ2,•c,TƒÂnƒÂ}, TƒÂ-1={TƒÂ-11,TƒÂ-12,•c,TƒÂ-1nƒÂ-1}

, and T1={T11,T12,•c,T1n1};

For j=ƒÂ to 1 do

For r=1 to nj do

{Wait until there exists a machine ma that has at least 

j free processors, where 1•…a•…M;

Machine ma allocates j processors to task Tjr for 

execution;}

}

While the MLSPF algorithm schedules tasks to ma-

chines, it is possible that some processors in a machine are 

not allocated to any task because the number of free proces-

sors for allocation at that moment is smaller than the degree 

of the scheduled parallelism of a task which is next to be 

assigned. Hence, there are some processors idle during the 

period of the MLSPF schedule. In order to calculate the to-

tal idle time of processors in each machine, STua and FTua 

are defined as the time at which a task in Tu is first started 

in the machine ma, and the time at which those tasks in Tu 

assigned in machine ma have all been finished, respectively, 

where 1•…a•…M and 1•…u•…ƒÂ. We cannot make sure 

whether the next task set to be scheduled after scheduling 

Tu is Tu-1, therefore, Tv is assumed to be the task set which 

is next to be scheduled after Tu, where 1•…v•…u•…ƒÂ. 

In addition, let Twz be the task finished at time SMLSPF and 

Aua denote the sum of idle time of each processor between 

STua and STva in the machine ma, where SMLSPF represents
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the finish time of an MLSPF schedule, and 1•…w•…ƒÂ. A 

reasonable assumption is that tasks are to be scheduled from 

time 0. Thus, the finish time of the MLSPF schedule is also 

the length of the MLSPF schedule.

Lemma 1: STua•…STva•…FTua, where 1•…a•…M and 

1•…v<u•…ƒÂ.

Proof: (1) According to the MLSPF scheduling rule, the 

first task in Tv can be started in the machine ma only when 

all tasks in Tu have been assigned. Then, STua•…STva.

(2) Since v<u and, according to the definition of FTua, 

there must be at least u free processors in the machine ma 

at time FTua, then any task in Tv can be started at that time. 

Therefore, it is impossible that STva is greater than FTua.

Lemma 2: The number of idle processors in the machine ma 

between STua and STva is smaller than u, where 1•…a•…M.

Proof: The number of idle processors in the machine ma 

at the time ƒÑ, STua•…ƒÑ<STva, must be smaller than u; 

otherwise, a task in Tu could be started at time ƒÑ.

Lemma 3: ƒ°Ma=1Aua•…(u-1)ƒ°Ma=1(FTua-STua), where 1•…u•…ƒÂ.

Proof: Aua is defined as the sum of idle time of each pro-

cessor between STua and STva in the machine ma. Then, 

according to Lemma 2 and the definition of Aua, Aua•…

(u-1)(STva-STua). By Lemma 1,Aua•…(u-1)(FTua-STua). 

Thus, ƒ°Ma=1Aua•…(u-1)ƒ°Ma=1(FTua-STua).

Lemma 4: ƒ°Ma=1(FTua-STua)•…ƒ°nur=1f(u,tur), where 1•…u•…ƒÂ, 

f(u,tur) is the total processing time of task Tur and nu is the 

number of tasks in Tu.

Proof: (FTua-STua) can be seen as a schedule length of 

assigning partial tasks of Tu in the machine ma. Then, it is 

obvious that the sum of these schedule lengths of scheduling 

partial tasks of Tu in each machine is not greater than the 

total processing time of all tasks in Tu, that is, ƒ°Ma=1(FTua-

STua)•…ƒ°nur=1f(u,tur).

Lemma 5: ƒ°Ma=1Aua•…(u-1)ƒ°nur=1f(u,tur), where 1•…u•…ƒÂ.

Proof: By Lemma 3 and Lemma 4.

Since task Twz is assumed to be the task finished at time 

SMLSPF, the total processing time of task Twz is f(w,twz). 

Thus, (SMLSPF-f(w,twz)) is the starting time of Twz. For 

simplification, we denote (SMLSPF-f(w,twz)) as ƒÕ.

Lemma 6: The number of idle processors in any machine 

ma between the time min{STwa|a=1,2,•c,M} and ƒÕ is 

smaller than w, where 1•…w•…ƒÂ.

Proof: According to the definition of STwa, ƒÕ is not smaller 

than min{STwa|a=1,2,•c,M}. Hence, there must be 

at most (w-1) free processors at that period; otherwise, Twz 

could be assigned earlier than ƒÕ.

Lemma 7: (j-1)•~f(j,tjr)•…(1+1/k)tjr, where 1•…j•…ƒÂ 

and 1•…r•…nj.

Proof: According to the scheduled-parallelism procedure, 

the degree of scheduled parallelism j, j•…ƒ¢jr, makes f(j,tjr)

have the shortest total processing time among all possible 

degrees of parallelism. However, the degree of scheduled

parallelism j may be equal to or

ƒ¢j r.

(1) If , then it implies that f(j,tjr)•…f(j-

1,tjr).

because

(2) If  or j=ƒ¢jr, it implies that j•…

Thus,

Lemma 8: j•~f(j,tjr)•…(2+1/k)tjr.

Proof: j•~f(j,tjr)=(j-1)•~f(j,tjr)+f(j,tjr).

By Lemma 7, j•~f(j,tjr)•…(1+1/k)tjr+f(j,tjr). 

Since f(j,tjr)•…tjr, we have that

Lemma 9: For any task Tjr, f(j,tjr)•…SOPT, where 1•…j•…ƒÂ 

and 1•…r•…nj.

Proof: According to the scheduled-parallelism procedure, 

j is the degree of parallelism that makes task Tjr have the 

shortest total processing time f(j,tjr). Thus, f(j,tjr)•…SOPT.

Theorem 1: The performance bound of MLSPF is 

, where.

Proof: Since Twz is the task finished at time SMLSPF, then
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By Lemma 4 and Lemma 5,

By Lemma 7 and Lemma 8,

Because SOPT and according to Lemma 9, 

SMLSPFSOPT.

In the following, we will discuss the performance 

bound of MLSPF if, where ƒÆ=min{pa|a

1,2,•c,M}, and we denote the number of occupied proces-

sors and the number of idle processors in the machine ma at 

time ƒÑ by OƒÑ|a and IƒÑ|a, respectively.

Lemma 10: If STua•…ƒÑ•…STva and STva•…ƒÕ, then ƒÁ•EIƒÑ|a•…

OƒÑ|a, where ƒÆ/ƒÂ=ƒÁ, ƒÆ=min{pa|a=1,2,•c,M} and 

1<u•….

Proof: ƒÆ/ƒÂ=ƒÁ implies that the maximum number of tasks 

all with the degree of scheduled parallelism b can be pro-

cessed in a machine with ƒÆ processors. If Tv is the task 

set next to be scheduled after Tu, according to Lemma 1, 

STua•…STva.

(1) If STua<STva, according to the definition of STva, none 

of the tasks with the degree of scheduled parallelism v 

can be started before the time STva in the machine ma. 

This implies that the degrees of scheduled parallelism 

of tasks processed in the machine ma between STua and 

STva are all at least u. Since ƒÆ•…pa and 1•…u•…ƒÂ, ƒÁ•…p
a/u

. Then, there must be at least ƒÁ tasks with the degree 

of scheduled parallelism u assigned in the machine ma 

with pa processors at time ƒÑ, that is, ƒÁ•Eu•…OƒÑ|a, where 

1•…a•…M and STua•…ƒÑ<STva. By Lemma 2, IƒÑ|a•…

(u-1). Thus,.

(2) If STua=STva, then the same discussion with the task 

sets Tv and Tv', where Tv' is the task next to be sched-

uled after Tv.

Lemma 11: ƒÁ•EIƒÑ|a•…OƒÑ|a, where 1•…a•…M and 

min{STwa,.

Proof: By Lemma 6 and Lemma 10.

Lemma 12: ƒÁ•EIƒÑ|a•…OƒÑ|a, where 0•…ƒÑ<ƒÕ.

Proof: According to Lemma 10 and Lemma 11.

Lemma 13: njr=1j•~f(j,tjr).

Proof: By Lemma 12, a . Since 

occupied processors means that those processors are allo-

Gated to tasks, njr=1j•~f(j,tjr). Hence, 

f(j,tjr).

Corollary 1: The performance bound of MLSPF is 

, where and ƒÆ=min{pa|a=

1,2,•c,M}.

Proof:

Corollary 2: The performance bound of MLSPF ap-

proaches if ƒÁ is sufficiently large.

Proof: The term approaches 0 if ƒÁ is sufficiently large. 

Since, it also means that p approaches 0. Thus, it is 
clear that SMLSPFSOPT.

Example 1: Assume there are (2p-1) tasks to be sched-

uled in a 2-machine environment, in which each task Ti, 

i=1,2,•c,(2p-1), is associated with a computation re-

quirement ti and a maximum degree of parallelism ƒ¢i, and 

each machine ma, a=1,2, contains p processors. Let ti=t 

and ƒ¢i=p/2+1 for i=1,2,•c,2p-6; tj=t and ƒ¢j=p/2 

for j=2p-5,2p-4,•c,2p-2; t2p-1=t and ƒ¢2p-1=1; 

Then,  t, 

f(p/2,tj)2t/p and f(1,t2p-1)=t, where i=1,2,•c,2p-6 

and j=2p-5,2p-4,•c,2p-2. Figures 1(a) and (b) show 

the schedule lengths of an MLSPF schedule and that of an 

optimal schedule are t, approxi-

mately, and t, respectively. If p is an extremely large integer, 

the performance bound of this example approaches.
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Fig. 1 (a) An MLSPF schedule and (b) an optimal schedule of exam-

ple 1.

This example looks like that the derived performance bound 

of Corollary 2 is tight. However, that does 

not satisfy the condition that ƒÁ is an extremely large integer.

In the following, we will give another example that sat-

isfies the condition that ƒÁ is an extremely large integer.

Example 2: Assume that p is an extremely large integer and 

that there are (4p+1) tasks to be scheduled in a 2-machine 

environment, in which each task Ti, i=1,2,•c,(4p+1), 

is associated with a computation requirement ti and a max-

imum degree of parallelism ƒ¢i, and each machine ma, a=

1, 2, contains (2p+1) processors. Let ti=t and ƒ¢i=2, 

i=1,2,•c,4p+1, and Then, we cal-

culate that the degree of scheduled parallelism of task Ti is 

2 and f, where i=1,2,•c,4p+1. Fig-

ures 2 (a) and (b) show the schedule lengths of an MLSPF 

schedule and that of an optimal schedule are t and 

t, respectively. Since p is extremely large, the performance 

bound of this example is approximately 3. This example has 

satisfied the condition that is extremely large, but 

it shows that the derived performance bound of Corollary 2 

is not tight.

Fig. 2 (a) An MLSPF schedule and (b) an optimal schedule of exam-

ple 2.

4. Conclusion

In this paper, the problem of nonpreemptively scheduling in-

dependent parallel tasks with the consideration of commu-

nication overhead in a multi-machine environment is dis-

cussed. For such a problem, we proposed the MLSPF al-

gorithm and derived its performance bound as . 

The performance bound of the MLSPF can also be presented 

as, where ƒÆ=min{pa|a=1,2,•c,M} 

and. The performance bound of the MLSPF ap-

proaches if ƒÁ is sufficiently large, but the derived 

performance bound of the MLSPF in Corollary 2 is still not 

tight.
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