
IEICE TRANS. INF. & SYST., VOL.E91-D, NO .10 OCTOBER 2008

2379

PAPER

Scheduling Parallel Tasks with Communication Overhead

in an Environment with Multiple Machines

Jiann-Fu LINa), Member

SUMMARY This paper investigates the problem of nonpreemptively

scheduling independent parallel tasks in an environment with multiple ma-

chines, which is motivated from the recent studies in scheduling tasks in a

multi-machine environment. In this scheduling environment, each machiie

contains a number of identical processors and each parallel task can simul-

taneously require a number of processors for its processing in any single

machine. Whenever tasks are processed in parallel in a parallel machine
,

message communication among processors is often inevitable. The prob-

lem of finding a shortest schedule length on scheduling independent par-

allel tasks with the consideration of communication overhead in a multi-

machine environment is NP-hard. The aim of this paper is to propose a

heuristic algorithm for this kind of problem and to analyze the performance

bound of this heuristic algorithm.

key words: parallel task scheduling, multi-machine, communication over-

head, performance bound

1. Introduction

The conventional tasks scheduling approach is that tasks are

to be scheduled in a single machine with multiple identical

processors, and that each task is processed only on one pro-

cessor at a time. The conventional tasks scheduling prob-

lems have been extensively studied for decades, and these

problems have evolved to become parallel tasks schedul-

ing problems [3], [7], [8], [14], [15]. The difference between

the parallel task and conventional task is that a parallel task

can simultaneously require a number of processors for its

processing, under the constraint that the number of proces-

sors required cannot be greater than a given maximum de-

gree of parallelism of that task, while the conventional task

only requires one processor at a time. The parallel task

scheduling problem considers a set of n independent par-

allel tasks T={T1,T2,•c,Tn} that are to be scheduled in a

scheduling environment. Each task Ti, i=1,2,•c, n, has

its computation requirement ti and associates with a max-

imum degree of parallelism ƒ¢i. The maximum degree of

parallelism of task Ti means that task Ti may be scheduled

to process on up to ƒ¢i processors, and this degree of paral-

lelism, once determined for Ti, will not be altered during its

processing. Suppose that a task Ti is scheduled to be pro-

cessed on ƒÂi processors, 1•…ƒÂi•…ƒ¢i, ƒÂi is called the degree

of scheduled parallelism of Ti and the processing time re-

quired by Ti, under the linear speedup assumption, will be

(ti/ƒÂi). One of the goals of the above tasks scheduling prob-

lems is to find an optimal schedule, a schedule with min-

imum length (makespan), which is known as an NP-hard

problem [3]. Hence, polynomial time heuristic scheduling

algorithms are usually used to get approximate solutions. A

heuristic scheduling algorithm H has a performance bound

of ƒÀ, if (SH/SOPT)•…ƒÀ for all problem instances, where SH

and SOPT denote the length of a heuristic schedule and that

of an optimal schedule, respectively.

Under the linear speedup assumption, Wang and

Cheng [14] applied the concept of Graham's List Schedul-

ing (LS) algorithm [6] to the parallel task scheduling prob-

lem in a single machine with P processors, and showed that

the performance bound is , where =max{i

i=1,2,•c,n}. They also proposed the Earliest Completion

Time (ECT) algorithm [15] for the same scheduling problem

and derived the performance bound as. Then, Lin,

See and Chen [8] also discussed the problem of schedul-

ing parallel tasks in a single machine, but with communi-

cation overhead among processors also taken into consid-

eration. They proposed the Largest Scheduled Parallelism

First (LSPF) algorithm and derived the performance bounds

as and on a P-processor ma-
chine and on a d-dimension hypercube machine, respec-
tively, where k is a given positive constant.

The above studies only discussed the problems of
scheduling independent parallel tasks on a single machine
with multiple identical processors. With the vast improve-
ments in wide-area network performance and powerful com-

puters, the grid environment has emerged as a promising
computing platform that can support the execution of next

generation scientific applications, and will open up avenues
in many research fields [5], [13]. Grid environment is a large
virtual organization that integrates a large amount of dis-
tributed resources and high performance computing capa-
bilities into a super service, which can provide huge com-

puting services, storage capability and so on. Grid environ-
ment allows the use of geographically distributed computing
systems belonging to multiple organizations as a single sys-
tem. Thus, for simplicity, a grid environment can be seen as
a multi-machine environment in which each machine con-
tains multiple processors. In the multi-machine environ-
ment, users submit their tasks from any one of machine and
a scheduler allocates tasks to machines. In general, on re-
ceipt of a task request, the scheduler check whether the task
can be processed on the available resources and meet the

Manuscript received March 4, 2008.
Manuscript revised June 12, 2008.
The author is with the Department of Management Infor-

mation System, Takming University of Science and Technology,
No.56, Sec. 1, HuanShan Rd., NeiHu, Taipei, 11451, Taiwan.

a) E-mail: alfu@takming.edu.tw
DOI:10.1093/ietisy/e91-d.10.2379

Copyright (c) 2008 The Institute of Electronics, Information and Communication Engineers

2380
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.10 OCTOBER 2008

user-specified requirements. Thus, instead of computing lo-
cally, users dispatch their tasks to the remote machines. To
achieve the potentials of a multi-machine environment, an
effective and efficient scheduling framework within a multi-
machine environment is fundamentally important.

In 2001, Braun et al. [2] made a performance com-
parison among eleven heuristic algorithms for scheduling
a set of independent tasks onto heterogeneous distributed
computing systems by simulation. In 2004, Martino and
Mililotti [9] developed a simulation grid environment to
study the usefulness of genetic algorithms for scheduling
tasks in a distributed group of parallel machines. They found
that the genetic algorithm for scheduling 32 tasks does not
converge to the optimal schedule within a limited number of
trial performed, only a sub-optimal schedule could be got.
In 2005, Weng and Lu [16] proposed a heuristic to sched-
ule independent tasks in the grid environment. According to
the experimental results, they showed that their heuristic al-
gorithm could obtain a better performance compared to the
other four existing algorithms. In 2007, Pascual, Rzadca and
Trystram [10] discussed the problem of scheduling rigid par-
allel tasks (multiprocessor tasks [1]) in a grid environment,
they proposed the Multi-Organization Load Balancing Al-
gorithm (MOLBA) and derived the worst case performance
bound as 3 if the last completed task requires at most half of
the available processors, and 4 in the general case.

Due to the reasons that tasks scheduling are the im-
portant components in a grid environment, a multi-machine
environment, and that we found the proof of Lemma 1 in
[8] is not correct, we will extend the problem of scheduling
independent parallel tasks with the consideration of commu-
nication overhead to a multi-machine environment and an-
alyze its performance bound on such an environment. This
problem of scheduling parallel tasks with communication
overhead in a multi-machine environment, in which each
machine contains a number of identical processors, is NP-
hard, because scheduling independent parallel tasks without
considering communication overhead in a single machine
with multiple processors has been known as NP-hard [3].
Therefore, we are interested in developing a polynomial
time heuristic algorithm for such a problem, and in deriv-
ing its performance bound. The rest of this paper is or-
ganized as follows: Under a communication overhead as-
sumption, we illustrate a strategy for deciding a beneficial
degree of parallelism of each task in Sect. 2. In Sect. 3, we
modify the Largest Scheduled Parallelism First algorithm
into the Modified Largest Scheduled Parallelism First al-
gorithm (MLSPF) for the problem of scheduling parallel
tasks in a multi-machine environment, and derive its perfor-
mance bound. Finally, some concluding remarks are given
in Sect. 4.

2. Preliminaries

2.1 Scheduling Environment and Task Model

In this paper, we consider that a set of n independent par-

allel tasks T={T1,T2,•c,Tn} are to be scheduled in an

M-machine environment. In this tasks scheduling environ-

ment, each machine ma consists of pa identical processors

and each parallel task Ti can only be processed in a single

machine with its required processors simultaneously, where

1•…a•…M and 1•…i•…n. Each parallel task is as-

sumed to be processable in any machine with its maximum

degree of parallelism, that is, max{ƒ¢i|i=1,2,•c,n}•…

min{pa|a=1,2,•c,M}. Whenever a task is processed

in parallel in a machine, communication overhead is an

important factor that has great effect on the total process-

ing time of a task. Thus, if communication overhead is

taken into consideration, a linear speedup is hard to achieve.

Generally, communication overhead depends on the charac-

teristics of a task and a system, the degree of parallelism

adopted by a task, and the topology of processors allo-

cated to a task [4], [11], [12]. In most situations, the aver-

age communication overhead will be increased with the de-

gree of parallelism adopted by a task [12]. In [4], the total

communication overhead is computed as (total number of

messages•~communication delay per message), in which the

total number of messages is defined as the number of pro-

cessor pairs. Namely, the total number of messages is pro-

portional to the power of the degree of parallelism adopted

by a task. As a consequence, a reasonable assumption of

the average communication overhead among subtasks of a

task is given as comm(x)=cxk[8], where x is the degree

of parallelism adopted by a task, and c and k are positive

constants which depend on the characteristics of the inter-

connection networks among processors.

In this paper, we adopt the communication overhead

assumption in [8], and we only consider a specific condi-

tion in which the characteristics of each machine are all the

same except the number of processors, say, the interconnec-

tion network in each machine is fully connected, and the

transmission media in each machine is the same. That is,

the same constants c and k are used in calculating the com-

munication overhead of each task when it is processed in

any machine. Thus, under the communication overhead as-

sumption of [8], the total time required for processing a task

Ti with a degree of parallelism x in any machine can be de-

fined as

2.2 The Beneficial Scheduled Parallelism

Since the communication overhead is taken into consider-
ation, a highest degree of parallelism does not , guarantee
that it always leads to the shortest processing time. Though
a higher degree of parallelism will reduce the computation
time of a task, a higher degree of parallelism will also incur
much more message communicating among processors. In
order to get the shortest total processing time of task Ti, we
have to find out the minimum value of f(x,ti). By calculus,
the first derivative and the second derivative of f(x,ti) are

LIN: SCHEDULING PARALLEL TASKS WITH COMMUNICATION OVERHEAD

2381

and

respectively.

Owing to and at

f(x,ti) reaches its minimum value at. Since

the number of processors required by a task must be an in-

teger, the beneficial degree of parallelism ƒÓi of task Ti will

be either , which makes f(ƒÓi, ti)

have the smallest value. However, the degree of parallelism

really adopted by task Ti cannot be greater than the given

maximum degree of parallelism ƒ¢i. Hence, the degree of

scheduled parallelism ƒÂi of task Ti is given as min(ƒÓi,ƒ¢i).

The procedure of deciding the degree of scheduled paral-

lelism of each task is described as follows.

Procedure scheduled-parallelism

{Input the computation requirement ti and the maxi-

mum degree of parallelism ƒ¢i of task Ti, where i=

1,2,•c,n;

For i=1 to n do

{Let ƒÓi be either , which

makes f(ƒÓi,ti) have the smallest value;

Let the degree of scheduled parallelism of task Ti be

ƒÂi=min(ƒÓi,ƒ¢i);}

}

According to the degree of scheduled parallelism ƒÂi

of each task Ti determined by the scheduled-parallelism

procedure, the task set T={T1,T2,•c,Tn} is catego-

rized into ƒÂ task subsets; TƒÂ={TƒÂ1,TƒÂ2,•c,TƒÂnƒÂ}, TƒÂ-1=

{TƒÂ-11,TƒÂ-12,•c,TƒÂ-1nƒÂ-1},•c, and T1={T11,T12,•c,T1n1},

where ƒÂ=max{ƒÂi|i=1,2,•c,n} and n=ƒ°ƒÂj=1nj. This

means that T=•¾ni=1Ti=•¾ƒÂj=1•¾njr=1Tjr. In other words, there is

a bijective function G that maps {T1,T2,•c,Tn} to {TƒÂ1,TƒÂ2,

•c,TƒÂnƒÂ,TƒÂ-11,TƒÂ-12,•c,T11,•c,T1n1}. Each task Ti is catego-

rized into only one task subset, according to its degree of

scheduled parallelism, which turns out to be task Tjr. Thus,

we can assume that the computation requirement ti=tjr,

the maximum degree of parallelism ƒ¢i=ƒ¢jr and the sched-

uled parallelism ƒÂi=j, where 1•…i•…n, 1•…j•…ƒÂ and

1•…r•…nj. After categorization, each task Tjr in the task

subset Tj means its degree of scheduled parallelism is j and

its total processing time is f(j,tjr).

3. The Modified Largest Scheduled Parallelism First

Scheduling Algorithm

As we have briefly mentioned in Sect. 1, the proof of

Lemma 1 in [8] is not correct. The incorrectness originates

from the improper depicted of Fig. 1 [8], which is a special

case of all possible schedules. Figure 1 [8] illustrated that

the maximum number of idle processors is (j-2) between

the time at which the first task in Tj is started and the time

at which tasks in Tj have all been finished, however, it is

possible to be (j-1). Besides, the number of idle regions

is not necessarily equal to m/j, the number of tasks in Tj

also has an effect on it, for example there is only one task in

Tj.

Due to the reasons that the proof of Lemma 1 in [8] is

incorrect and that tasks scheduling are the important compo-

nent in a multi-machine environment, we modify the LSPF

algorithm [8] and propose the Modified Largest Scheduled

Parallelism First (MLSPF) scheduling algorithm for non-

preemptively scheduling independent parallel tasks in an

M-machines environment and will analyze its performance

bound on such an environment. The major policy of MLSPF

is that, according to the degrees of scheduled parallelism

of tasks, tasks are categorized into several task subsets and

these task subsets are arranged in nonincreasing order . Ac-

cording to this nonincreasing order, tasks are assigned to any

machine that has enough free processors for processing this

task. That is, a task has higher priority for assignment if it

has a larger degree of scheduled parallelism. The detail of

the MLSPF algorithm is described as follows.

Algorithm MLSPF

{Call scheduled-parallelism procedure;

According to the degrees of scheduled parallelism,

T1,T2,•c, and Tn are divided into ƒÂ task subsets TƒÂ=

{TƒÂ1,TƒÂ2,•c,TƒÂnƒÂ}, TƒÂ-1={TƒÂ-11,TƒÂ-12,•c,TƒÂ-1nƒÂ-1}

, and T1={T11,T12,•c,T1n1};

For j=ƒÂ to 1 do

For r=1 to nj do

{Wait until there exists a machine ma that has at least

j free processors, where 1•…a•…M;

Machine ma allocates j processors to task Tjr for

execution;}

}

While the MLSPF algorithm schedules tasks to ma-

chines, it is possible that some processors in a machine are

not allocated to any task because the number of free proces-

sors for allocation at that moment is smaller than the degree

of the scheduled parallelism of a task which is next to be

assigned. Hence, there are some processors idle during the

period of the MLSPF schedule. In order to calculate the to-

tal idle time of processors in each machine, STua and FTua

are defined as the time at which a task in Tu is first started

in the machine ma, and the time at which those tasks in Tu

assigned in machine ma have all been finished, respectively,

where 1•…a•…M and 1•…u•…ƒÂ. We cannot make sure

whether the next task set to be scheduled after scheduling

Tu is Tu-1, therefore, Tv is assumed to be the task set which

is next to be scheduled after Tu, where 1•…v•…u•…ƒÂ.

In addition, let Twz be the task finished at time SMLSPF and

Aua denote the sum of idle time of each processor between

STua and STva in the machine ma, where SMLSPF represents

2382
IEICE TRANS. INF. & SYST., VOL.E91-D, NO.10 OCTOBER 2008

the finish time of an MLSPF schedule, and 1•…w•…ƒÂ. A

reasonable assumption is that tasks are to be scheduled from

time 0. Thus, the finish time of the MLSPF schedule is also

the length of the MLSPF schedule.

Lemma 1: STua•…STva•…FTua, where 1•…a•…M and

1•…v<u•…ƒÂ.

Proof: (1) According to the MLSPF scheduling rule, the

first task in Tv can be started in the machine ma only when

all tasks in Tu have been assigned. Then, STua•…STva.

(2) Since v<u and, according to the definition of FTua,

there must be at least u free processors in the machine ma

at time FTua, then any task in Tv can be started at that time.

Therefore, it is impossible that STva is greater than FTua.

Lemma 2: The number of idle processors in the machine ma

between STua and STva is smaller than u, where 1•…a•…M.

Proof: The number of idle processors in the machine ma

at the time ƒÑ, STua•…ƒÑ<STva, must be smaller than u;

otherwise, a task in Tu could be started at time ƒÑ.

Lemma 3: ƒ°Ma=1Aua•…(u-1)ƒ°Ma=1(FTua-STua), where 1•…u•…ƒÂ.

Proof: Aua is defined as the sum of idle time of each pro-

cessor between STua and STva in the machine ma. Then,

according to Lemma 2 and the definition of Aua, Aua•…

(u-1)(STva-STua). By Lemma 1,Aua•…(u-1)(FTua-STua).

Thus, ƒ°Ma=1Aua•…(u-1)ƒ°Ma=1(FTua-STua).

Lemma 4: ƒ°Ma=1(FTua-STua)•…ƒ°nur=1f(u,tur), where 1•…u•…ƒÂ,

f(u,tur) is the total processing time of task Tur and nu is the

number of tasks in Tu.

Proof: (FTua-STua) can be seen as a schedule length of

assigning partial tasks of Tu in the machine ma. Then, it is

obvious that the sum of these schedule lengths of scheduling

partial tasks of Tu in each machine is not greater than the

total processing time of all tasks in Tu, that is, ƒ°Ma=1(FTua-

STua)•…ƒ°nur=1f(u,tur).

Lemma 5: ƒ°Ma=1Aua•…(u-1)ƒ°nur=1f(u,tur), where 1•…u•…ƒÂ.

Proof: By Lemma 3 and Lemma 4.

Since task Twz is assumed to be the task finished at time

SMLSPF, the total processing time of task Twz is f(w,twz).

Thus, (SMLSPF-f(w,twz)) is the starting time of Twz. For

simplification, we denote (SMLSPF-f(w,twz)) as ƒÕ.

Lemma 6: The number of idle processors in any machine

ma between the time min{STwa|a=1,2,•c,M} and ƒÕ is

smaller than w, where 1•…w•…ƒÂ.

Proof: According to the definition of STwa, ƒÕ is not smaller

than min{STwa|a=1,2,•c,M}. Hence, there must be

at most (w-1) free processors at that period; otherwise, Twz

could be assigned earlier than ƒÕ.

Lemma 7: (j-1)•~f(j,tjr)•…(1+1/k)tjr, where 1•…j•…ƒÂ

and 1•…r•…nj.

Proof: According to the scheduled-parallelism procedure,

the degree of scheduled parallelism j, j•…ƒ¢jr, makes f(j,tjr)

have the shortest total processing time among all possible

degrees of parallelism. However, the degree of scheduled

parallelism j may be equal to or

ƒ¢j r.

(1) If , then it implies that f(j,tjr)•…f(j-

1,tjr).

because

(2) If or j=ƒ¢jr, it implies that j•…

Thus,

Lemma 8: j•~f(j,tjr)•…(2+1/k)tjr.

Proof: j•~f(j,tjr)=(j-1)•~f(j,tjr)+f(j,tjr).

By Lemma 7, j•~f(j,tjr)•…(1+1/k)tjr+f(j,tjr).

Since f(j,tjr)•…tjr, we have that

Lemma 9: For any task Tjr, f(j,tjr)•…SOPT, where 1•…j•…ƒÂ

and 1•…r•…nj.

Proof: According to the scheduled-parallelism procedure,

j is the degree of parallelism that makes task Tjr have the

shortest total processing time f(j,tjr). Thus, f(j,tjr)•…SOPT.

Theorem 1: The performance bound of MLSPF is

, where.

Proof: Since Twz is the task finished at time SMLSPF, then

LIN: SCHEDULING PARALLEL TASKS WITH COMMUNICATION OVERHEAD

2383

By Lemma 4 and Lemma 5,

By Lemma 7 and Lemma 8,

Because SOPT and according to Lemma 9,

SMLSPFSOPT.

In the following, we will discuss the performance

bound of MLSPF if, where ƒÆ=min{pa|a

1,2,•c,M}, and we denote the number of occupied proces-

sors and the number of idle processors in the machine ma at

time ƒÑ by OƒÑ|a and IƒÑ|a, respectively.

Lemma 10: If STua•…ƒÑ•…STva and STva•…ƒÕ, then ƒÁ•EIƒÑ|a•…

OƒÑ|a, where ƒÆ/ƒÂ=ƒÁ, ƒÆ=min{pa|a=1,2,•c,M} and

1<u•….

Proof: ƒÆ/ƒÂ=ƒÁ implies that the maximum number of tasks

all with the degree of scheduled parallelism b can be pro-

cessed in a machine with ƒÆ processors. If Tv is the task

set next to be scheduled after Tu, according to Lemma 1,

STua•…STva.

(1) If STua<STva, according to the definition of STva, none

of the tasks with the degree of scheduled parallelism v

can be started before the time STva in the machine ma.

This implies that the degrees of scheduled parallelism

of tasks processed in the machine ma between STua and

STva are all at least u. Since ƒÆ•…pa and 1•…u•…ƒÂ, ƒÁ•…p
a/u

. Then, there must be at least ƒÁ tasks with the degree

of scheduled parallelism u assigned in the machine ma

with pa processors at time ƒÑ, that is, ƒÁ•Eu•…OƒÑ|a, where

1•…a•…M and STua•…ƒÑ<STva. By Lemma 2, IƒÑ|a•…

(u-1). Thus,.

(2) If STua=STva, then the same discussion with the task

sets Tv and Tv', where Tv' is the task next to be sched-

uled after Tv.

Lemma 11: ƒÁ•EIƒÑ|a•…OƒÑ|a, where 1•…a•…M and

min{STwa,.

Proof: By Lemma 6 and Lemma 10.

Lemma 12: ƒÁ•EIƒÑ|a•…OƒÑ|a, where 0•…ƒÑ<ƒÕ.

Proof: According to Lemma 10 and Lemma 11.

Lemma 13: njr=1j•~f(j,tjr).

Proof: By Lemma 12, a . Since

occupied processors means that those processors are allo-

Gated to tasks, njr=1j•~f(j,tjr). Hence,

f(j,tjr).

Corollary 1: The performance bound of MLSPF is

, where and ƒÆ=min{pa|a=

1,2,•c,M}.

Proof:

Corollary 2: The performance bound of MLSPF ap-

proaches if ƒÁ is sufficiently large.

Proof: The term approaches 0 if ƒÁ is sufficiently large.

Since, it also means that p approaches 0. Thus, it is
clear that SMLSPFSOPT.

Example 1: Assume there are (2p-1) tasks to be sched-

uled in a 2-machine environment, in which each task Ti,

i=1,2,•c,(2p-1), is associated with a computation re-

quirement ti and a maximum degree of parallelism ƒ¢i, and

each machine ma, a=1,2, contains p processors. Let ti=t

and ƒ¢i=p/2+1 for i=1,2,•c,2p-6; tj=t and ƒ¢j=p/2

for j=2p-5,2p-4,•c,2p-2; t2p-1=t and ƒ¢2p-1=1;

Then, t,

f(p/2,tj)2t/p and f(1,t2p-1)=t, where i=1,2,•c,2p-6

and j=2p-5,2p-4,•c,2p-2. Figures 1(a) and (b) show

the schedule lengths of an MLSPF schedule and that of an

optimal schedule are t, approxi-

mately, and t, respectively. If p is an extremely large integer,

the performance bound of this example approaches.

2384
IEICE TRANS. INF. & SYST., VOL.E91-D , NO.10 OCTOBER 2008

Fig. 1 (a) An MLSPF schedule and (b) an optimal schedule of exam-

ple 1.

This example looks like that the derived performance bound

of Corollary 2 is tight. However, that does

not satisfy the condition that ƒÁ is an extremely large integer.

In the following, we will give another example that sat-

isfies the condition that ƒÁ is an extremely large integer.

Example 2: Assume that p is an extremely large integer and

that there are (4p+1) tasks to be scheduled in a 2-machine

environment, in which each task Ti, i=1,2,•c,(4p+1),

is associated with a computation requirement ti and a max-

imum degree of parallelism ƒ¢i, and each machine ma, a=

1, 2, contains (2p+1) processors. Let ti=t and ƒ¢i=2,

i=1,2,•c,4p+1, and Then, we cal-

culate that the degree of scheduled parallelism of task Ti is

2 and f, where i=1,2,•c,4p+1. Fig-

ures 2 (a) and (b) show the schedule lengths of an MLSPF

schedule and that of an optimal schedule are t and

t, respectively. Since p is extremely large, the performance

bound of this example is approximately 3. This example has

satisfied the condition that is extremely large, but

it shows that the derived performance bound of Corollary 2

is not tight.

Fig. 2 (a) An MLSPF schedule and (b) an optimal schedule of exam-

ple 2.

4. Conclusion

In this paper, the problem of nonpreemptively scheduling in-

dependent parallel tasks with the consideration of commu-

nication overhead in a multi-machine environment is dis-

cussed. For such a problem, we proposed the MLSPF al-

gorithm and derived its performance bound as .

The performance bound of the MLSPF can also be presented

as, where ƒÆ=min{pa|a=1,2,•c,M}

and. The performance bound of the MLSPF ap-

proaches if ƒÁ is sufficiently large, but the derived

performance bound of the MLSPF in Corollary 2 is still not

tight.

Acknowledgements

The author would like to thank the anonymous referees for

their helpful comments and their carefully correcting the

mistakes in the paper.

LIN: SCHEDULING PARALLEL TASKS WITH COMMUNICATION OVERHEAD

2385

References

[1] J. Blazewicz, M. Drabowski, and J. Weglarz, •gScheduling multipro-

cessor tasks to minimize schedule length,•h IEEE Trans. Comput.,

vol.35, no.5, pp. 389-393, 1986.

[2] T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran,

A.I. Reuther, J.P. Robertso, M.D. Theys, B. Yao, D. Hensgen, and

R.F. Freund, •gA comparison of eleven static heuristics for mapping a

class of independent tasks onto heterogeneous distributed computing

systems,•h J. Parallel Distrib. Comput., vol.61, pp. 810-837, 2001.

[3] J. Du and J.Y. Leung, •gComplexity of scheduling parallel task sys-

tem,•h SIAM J. Discrete Math., vol.2, pp. 473-487, 1989.

[4] H. El-Rewini and M. Abd-El-Barr, •gScheduling and task alloca-

tion,•h in Advanced Computer Architecture and Parallel Processing,

pp. 235-265, John Wiley & Sons, 2005.

[5] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Com-

puting Infrastructure, Elsevier, Amsterdam, 2004.

[6] R.L. Graham, •gBounds on multiprocessing timing anomalies,•h

SIAM J. Appl. Math., vol.17, no.2, pp. 416-429, 1969.

[7] J.F. Lin and S.J. Chen, •gPerformance bounds on scheduling parallel

tasks with setup time on hypercube systems,•h Informatica, vol.19,

pp. 313-318, 1995.

[8] J.F. Lin, W.B. See, and S.J. Chen, •gPerformance bounds on schedul-

ing parallel tasks with communication cost,•h IEICE Trans. Inf. &

Syst., vol.E78-D, no.3, pp. 263-268, March 1995.

[9] V. Di Martin and M. Mililotti, •gSub optimal scheduling in a grid

using genetic algorithms,•h Parallel Comput., vol.30, pp. 553-565,

2004.

[10] F. Pascual, K. Rzadca, and D. Trystram, •gCooperation in multi-

organization scheduling,•h Euro-Par 2007, pp. 224-233, Rennes,

France, Aug. 2007.

[11] G.S. Sajjan, •gArray processors,•h in Advanced Computer Architec-

tures, pp. 167-220, Taylor & Franics Group, 2006.

[12] J.P. Singh, J.L. Hennessy, and A. Gupta, •gScaling parallel programs

for multiprocessors: Methodology and examples, computer,•h Com-

puter, pp. 42-50, July 1993.

[13] B. Tierney, W. Johnston, J. Lee, and M. Thompson, •gA data intensive

distributed computing architecture for •eGrid•f applications,•h Future

Gener. Comput. Syst., vol.16, pp. 473-481, 2000.

[14] Q. Wang and K.H. Cheng, •gList scheduling of parallel tasks,•h Inf.

Process. Lett., vol.37, no.5, pp. 291-297, 1991.

[15] Q. Wang and K.H. Cheng, •gA heuristic of scheduling parallel tasks

and its analysis,•h SIAM J. Comput., vol.21, no.2, pp. 281-294, 1992.

[16] C. Weng and X. Lu, •gHeuristic scheduling for bag-of-tasks appli-

cations in combination with QoS in the computational grid,•h Future

Gener. Comput. Syst., vol.21, pp. 271-280, 2005.

Jiann-Fu Lin received the B.S. and M.S.
degrees in Applied Mathematics from National

Chung-Hsing University, Taipei, Taiwan in 1988

and 1990, respectively, and the Ph.D. degree

in Electrical Engineering from National Taiwan

University, Taipei, Taiwan in 1994. He is cur-
rently an associate professor in the department

of Management Information System, Takming
University of Science and Technology, Taipei,

Taiwan. Dr. Lin's current research interests in-

clude tasks scheduling problems and data secu-

rity.

