
Scheduling Parallel Workflow Applications with Energy-Aware on a Cloud Platform 11

Scheduling Parallel Workflow Applications
with Energy-Aware on a Cloud Platform

Thanawut Thanavanich1 and Putchong Uthayopas 2 , Non-members

ABSTRACT

An inefficient energy consumption of computing
resources in a large cloud datacenter is a very im-
portant issue since the energy cost is now a ma-
jor part of the operating expense. In this paper,
the challenge of scheduling a parallel application on
a cloud platform to achieve both time and energy
efficiency is addressed by two new proposed algo-
rithms Enhancing Heterogonous Earliest Finish Time
(EHEFT) and Enhancing Critical Path on a Proces-
sor (ECPOP). The objective of these two algorithms
is to reduce the energy consumption while achieving
the best execution makespan. The algorithms use
a metric that identifies and turns off the inefficient
processors to reduce energy consumption. Then, the
application tasks are rescheduled on fewer processors
to obtain better energy efficiency. The experimental
results from the simulation using real-world applica-
tion workload show that the proposed algorithms not
only reduce the energy consumption, but also main-
tain an acceptable scheduling quality. Thus, these al-
gorithms can be employed to substantially reduce the
operating cost in a large cloud computing system.

Keywords: Task Scheduling, Energy-aware, Cloud
Computing, Energy Efficiency

1. INTRODUCTION

With rapid growth worldwide in information tech-
nology demands during the last decades, there is an
emerging trend in the use of public utility comput-
ing services based on the cloud computing platforms.
Cloud computing is an emerging technology that en-
ables a massive number of computer servers to act as
a single system. This technology helps deliver a mas-
sive and scalable computing infrastructure for mod-
ern computing needs. In general, a cloud datacenter
is composed of a large pool of computing resources
which can be utilized to execute a cloud application
with a reasonable time. One of the main issues in
operating a cloud data center is the energy cost re-
duction. Recent study [1] shows that the power con-
sumption in large-scale datacenter is now account for
as much as 0.5 % of the world’s total power usage. For

Manuscript received on October 30, 2014.
Final manuscript received December 5, 2014.
1,2 The author is with Computer Engineering Department,

Faculty of Engineering, Kasetsart University, Bangkok, Thai-
land., E-mail: thanawut.cru@gmail.com and pu@ku.ac.th

example, a datacenter housing 1,000 racks can con-
sume approximately 10 MW of electricity [2]. Junaid
Shuja et al. [3] conducted a study and found that the
cost of power consumption in a datacenter has dou-
bled every five years. By reducing the energy used
to execute the application may lead to performance
degradation (e.g., longer completion time), since the
speed of processors also depends on energy and clock
frequency. Thus, the energy-efficiency issue and task
execution performance must be addressed together by
the scheduler. Normally, there are two approaches to
reduce energy consumption in a large-scale datacen-
ter [4] [5] . First, a static approach can be used by
upgrading the hardware components in the datacen-
ter. Second, the dynamic approach that takes into
consideration the energy consumption and computing
power must be used. Many efforts in task scheduling
focused on a single performance goal such as minimiz-
ing the application execution time (i.e., the schedule
length or makespan). By deploying an energy-aware
task scheduling, the cloud platform can be utilized
more efficiently while the operating cost is substan-
tially reduced.

In this paper, we propose two enhanced energy-
aware scheduling algorithms, called Enhancing Het-
erogonous Earliest Finish Time (EHEFT) and En-
hancing Critical Path on a Processor (ECPOP). Both
algorithms take into account the makespan conserva-
tion and energy reduction. A metric called ratio of
effectiveness (RE) is proposed that measure a level
of virtue for executing a task on a processor, and how
efficient the energy is consumed. The main difference
between the proposed scheduling algorithms and pre-
vious works are the measurement of the utilization of
task assigned to each processor.

This paper is organized as follows. First, the re-
views of the related works are presented.Then, the
cloud system model, cloud application, energy con-
sumption, and scheduling model are defined followed
by the presentation of the proposed algorithms. The
experiment has been conducted using simulation and
the results are given with discussion in the next sec-
tion. Finally, the summary of the work has been pro-
vided.

2. RELATED WORK

The energy consumption reduction in various sys-
tems such as cluster, grid, and cloud is an important
problem that was addressed in many literatures [4]



12 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

[6] [7] [8]. The first approach, the Static Power Man-
agement (SPM), requires low-power hardware equip-
ment e.g., mobile or handheld device. The second
approach, the Dynamic power management (DPM)
techniques, is based on the improvement of current
resource utilization and the management of applica-
tion workloads. The DPM relies on software tech-
niques, power-scalable processor, and memory com-
ponents. In recent literature, many effective power-
scalable techniques exist for reducing the energy con-
sumption of a processor [4] [10]. One of the most used
techniques to reduce the power consumption of a pro-
cessor is called Dynamic Voltage/Frequency Scaling
(DVFS) [10] [11] [12] [13] [14] [15] . This technique
enables a processor to operate at different voltage
level. By lowering the level of voltage during the idle
time, a significant reduction in power consumption
can be achieved. For software component, a suitable
scheduling algorithm can increase the resource uti-
lization while adjusting a proper operating power for
processors was proposed in [11] [15] [16] [17] [18] [20]
[21].

Scheduling of parallel applications presented as a
set of precedence-constrained tasks has been stud-
ied with different environments e.g., single processor
system [20] [22], homogeneous system [11] [15] and
heterogeneous system [11] [16] [18] [19]. In general,
task scheduling algorithm for those environments can
be classified into two groups: static and dynamic
scheduling [23]. In static scheduling, task informa-
tion (i.e. computation cost of tasks and communi-
cation cost between tasks) must be known prior to
the task execution using some estimation technique.
In contrast, task information in dynamic scheduling
can be obtained when the task is executed. However,
both scheduling approaches focused on the minimiza-
tion of the application execution time (called schedule
length or makespan) [11] [16] [17] [18] [19] [23] [24] [25]
[26] [27] [28] [29]. In recent works [11] [15] [16] [17]
[18] [19] [20] [22] [29], the reduction of energy usage
was taken into consideration as another important
objective of the task scheduling. For example, a con-
cept of makespan conservation with energy reduction
technique was proposed [17]. This technique is based
on adopting the slack reclamation to achieve the en-
ergy reduction. The concept of slack management
was proposed to enhance a utilization of task execu-
tion within idle phase in processors enabling DVFS
[13]. The slack time occur in processor that executes
a task with earlier completion. Nevertheless, the ap-
plication of scheduling with DVFS may results in a
lower power consumption but longer execution time.

Mainly, two approaches, namely heuristic [17] [30]
and metaheuristic[19] [29] [31] [32] [33] were applied
to address this problem. Most works applied heuristic
methods for scheduling a set of tasks. The heuristic
method is one of the most commonly used approaches
to schedule a parallel application. This method can

be classified into three main techniques [25], list
scheduling [34], clustering [35], and task duplication
[5]. Another method is metaheuristic approach that
uses random choice to guide an approximate solution.
There are many well-known algorithms such as Ge-
netic Algorithm (GA) [19] [29], Artificial Bee Colony
(ABC) [32], Ant Colony Optimization (ACO) [33],
and Particle Swarm Optimization (PSO)[31]. Al-
though meta-heuristic approach can generates good
solution, they usually spend much longer time to get
a solution as a system become very large.

Energy-aware scheduling algorithms proposed in
many previous works [11] [13] [15] [16] [17] [18] [19]
[20] [21] [28] [29] [34] [36] took into account the perfor-
mance loss due to the decreasing computing power.
To effectively balance both objectives a concept of
makespan conservation with energy reduction tech-
nique is proposed in [17] [18]. The HEFT and CPOP
algorithms were adapted for scheduling with energy-
aware in many works [16] [17] [18] [37]. We found
that both scheduling algorithms with slack manage-
ment technique still consume energy while waiting
for data from the precedence task. Those scheduling
algorithms aim to schedule tasks within a deadline
and also reduce the power consumption. Our pro-
posed scheduling algorithms focus on maintaining the
makespan of task scheduled and reducing energy con-
sumption at the same time. Moreover, the propose
methods can be applied to various environments and
system with different power management technique.

3. MODELS

3.1 Cloud System Model

A cloud data center considered in this work con-
sists of a large pool of heterogeneous machines viewed
as services. The data center consists of a set P of
fully connecting p processors. Each processor pj ∈ P

is DVFS-enabled. Hence, the processors can operate
with different voltage levels and clock frequencies. We
define the supply voltage on processor pj as set Vj of
v and the clock frequency on processor pjas set Fj

of f . While the supply voltage operates at level vl,
the clock frequency also performs in fl. A proces-
sor in an idle state of execution and waiting data of
precedence task will operate at a lowest voltage level
(vlow) . In this paper, we assume that the overhead
of the frequency transition is negligible. In addition,
the inter-processor communication is assumed to be
at the same speed for all processors. It is also as-
sumed that data can be exchanged among processors
while a task is executing. In this work, one physi-
cal machine will host only one virtual machine. This
virtual machine is implemented using virtualization
tool, i.e. Linux KVM, VMware, Xen, Parallel Desk-
top, and Virtual Box.



Scheduling Parallel Workflow Applications with Energy-Aware on a Cloud Platform 13

3.2 Cloud Application Model

A cloud application is a workflow represented by a
directed acyclic graph (DAG), for example, the graph
shown in Fig. 1 . Task graph G = (T,E) consists of
a set of vertices T and edges E. Each vertex rep-
resents a task tagged with the computation cost of
the application. Each edge represents the precedence
constraints of the task. The weight of each edge is
the communication cost between two tasks. In gen-
eral, a task without precedence is called an entry

task (tentry) and a task without successor is called an
exit task (texit). The schedule length is defined as
the finish time of the latest task. The critical path

(CP) path is defined as the longest execution path of
the scheduled task graph.

Fig.1: A task graph

Table 1: Computation cost on each processor
Taski P0 P1 P2 P3 P4 w̄i

0 20 16 15 13 12 15.2
1 15 19 18 17 10 15.8
2 11 13 19 15 20 15.6
3 13 8 17 16 21 15
4 12 13 10 15 14 12.8
5 13 16 20 9 18 15.2
6 7 15 11 8 12 10.6
7 5 11 14 13 7 10
8 18 12 20 15 21 17.2
9 21 10 16 15 10 14.4

The estimated task execution of a given applica-
tion denoted as W represents the computation cost
matrix ti × pj . Each wij is an execution time of task
ti on processor pj (for example, the execution times
in Table 1 ). An average computation cost of task
ti can be defined as w̄i . The task communication
denoted as cij represents the communication cost be-
tween task ti and tj . The communication cost is
ignored when both tasks are allocated to the same
processors.

3.3 Energy Computing Model

The energy consumption of a task execution on
any processor Etotal composed of the dynamic en-
ergy consumption Edynamic, static energy consump-
tion Estatic, and energy spent execute empty task
Eidle. In this work, the static energy consumption
is ignored since the dynamic power dissipation is
the most significant factor of the energy consump-
tion [16] [17]. Therefore, the total energy consump-
tion Etotal is given by Etotal = Edynamic + Eidle.
The dynamic power dissipation Pdynamic is computed
as Pdynamic = ACV 2

jlfjl where A is the number of
switches per clock cycle,C is the total capacitance
load, Vjl is the supply voltage at level l on pro-
cessor pj , and f is the operating frequency that
operated the supply voltage at level l on processor
p . The parameters A and C , which are device
related constants, depend on each device capacity.
Thus, the dynamic energy consumption is computed
as Edynamic = Pdynamic∆wij where wij is the compu-
tation cost of task ti on the processor pj (the amount
of time used to execute task ). In the task exe-
cution period, we assume that the processor pj op-
erates at the highest level of supply voltage v2j,high
and the highest frequency fj,high. On the other
hand, the processor scales down the voltage and fre-
quency to lowest supply voltage v2j,low, and lowest fre-
quency fj,low, for idle period. The energy consump-
tion for all the idle period Eidle can be represented
as Eidle = ACV 2

j,lowfj,low∆widle,j where widle,j is an
idle time slot to execute the empty task on processor
pj .

4. ENERGY-AWARE SCHEDULING

In this work, the task scheduling problem is defined
as the allocation of a set T of t tasks to a set P of p
processors while minimizing the schedule length and
energy consumption. After the scheduling of t tasks
is completed, the schedule length or makespan is ob-
tained through the completion time texit. The ques-
tion addressed is how to obtain a scheduling which
lower the energy usage while preserving the makespan
as much as possible. Fig. 2(a) and 2(b) show the
task scheduling results given the task graph in Fig.
1 scheduled by HEFT and CPOP algorithms, respec-
tively. Since the primary performance goal of the
HEFT and CPOP are to assign all tasks to minimize
the completion time, the scheduling will not consider
the reduction of processors to increase the energy ef-
ficiency. By taking some shutting some processors,
there is the possibility of saving energy while slightly
increasing the makespan (as shown in Fig. 2(c) and
2(d)). The result shows that the schedule has length
equal to 114 for EHEFT and 118 for ECPOP. This
work tries to identify an opportunity of shutdown
some processors for energy saving. Although, there
are a few works that use different approaches for sav-
ing the energy (e.g. [16] [17]), this work uses the



14 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

schedule length and energy consumption of HEFT
and CPOP as based line algorithm.

4.1 Proposed Scheduling Algorithms

In this work, the scheduling algorithm called
EHEFT and ECPOP is proposed (as shown in Table.
2 and 3 ). The main idea of the algorithm is to re-
duce the energy consumption by shutting down a set
of processors that inefficiently execute the tasks. All
of the processors allocated to a set of tasks are eval-
uated by applying the ratio between active time and
makespan as criteria. EHEFT will try to aggressively
reduce the power consumption by allowing makespan
to be longer. ECPOP algorithm will use critical path
to maintain the make span. Thus, the performance
is better but the energy usage of the application is
higher than EHEFT. The following sections will de-
scribe in detail the concept of both proposed algo-
rithms.

Table 2: EHEFT
Algorithm1 : EHEFT(Enhancing HEFT)
Input : G = (T,E) and a set of p processor
Output : EHEFT scheduled set of G onto set of P
Phase1 : Task scheduling with HEFT onto set P

Phase2 : Compute RE of the assigned processor
with Algorithm 3: finding a set of
inefficient processor
Shutdown a set of inefficient processor

Phase3 : Rescheduling task with HEFT

4.2 EHEFT Scheduling Algorithm

The first algorithm, EHEFT is an enhancement
of HEFT algorithm and consists of three phases as
follows.

4.2.1 Phase 1: Task Scheduling

Heterogeneous Earliest-Finish Time (HEFT) is
used to allocate tasks to processors. The result of
the HEFT is the schedule of a given task graph that
minimize the makespan for this graph.

4.2.2 Phase 2: Discovering Inefficient Processor

This phase discovers the inefficient processors us-
ing a performance metric called ratio of effectiveness
(RE) . The RE value can be used to measure the uti-
lization of task execution on a processor. Let REj

denotes the RE value on processor pj . The RE value
is obtained by calculating the ratio of total active
time of a processor and schedule length as given in 1.

REj =
Σi∈pj

wij

Makespan
(1)

Let wij denote an active time slot which runs a task
ti on the processor pj . The output of this step is the
sorted RE list in an ascending order. For a processor
with a low RE value, most of the energy is consumed

by idle time slot not the task execution. Therefore,
these low RE processor can be shutdown to save en-
ergy. The process mentioned is summarized in Table
4.

4.2.3 Phase 3: Rescheduling

The EHEFT uses the set of the assigned proces-
sors that exclude a set of inefficient processors. Let P

′

be the set of processors after a set of inefficient pro-
cessors Pineff were shutdown. After the new set of
processor has been identified, the same task graph is
rescheduled again using HEFT using P

′

. For exam-
ple, EHEFT is applied to schedule tasks in Fig. 2(c).
The set of processors is used that is {p0, p1, p2, p3, p4}
.

Table 3: ECPOP
Algorithm2 : ECPOP(Enhancing CPOP)
Input : G = (T,E) and a set of p processor
Output : ECPOP scheduled set of G onto set of P
Phase1 : Task scheduling with CPOP onto set P

Phase2 : Compute RE of the
non-critical processor with
Algorithm 3: finding a set of
inefficient processor
Shutdown a set of inefficient processor

Phase3 : Rescheduling task with CPOP

4.3 ECPOP Scheduling Algorithm

In this section, another energy-aware scheduling
called ECPOP is proposed. The goal is to reduce
the energy consumption by increasing the utilization
of task execution while conserving the makespan. In
this algorithm, critical processor is defined as a pro-
cessor that executes a task that is on the critical path.
On the other hand, any processor that is assigned
with non-critical task is called non-critical processor
. A set of non-critical processors are evaluated for
the utilization. The metric used is RE (ratio of effec-
tiveness) which is the same as in EHEFT algorithm.
The makespan conservative technique applied to the
ECPOP is to shutdown the non-critical processors
only. The ECPOP algorithm consists of three phases
as follows.

4.3.1 Phase 1: Task Scheduling

First, the traditional Critical Path on a Proces-
sor (CPOP) algorithm is used to allocate the critical
tasks to the processors which have the minimum total
execution time. The result is a schedule of the critical
tasks on a set of processors.

4.3.2 Phase 2: Discovering Inefficient Processor

Let PnCP denote a set of processors that exe-
cute non-critical task. Hence, PnCP is given by
PnCP = P−PCP where PCP is a set of processor that
executes the critical tasks. After determining the set
of PnCP , the RE value of each processor is computed



Scheduling Parallel Workflow Applications with Energy-Aware on a Cloud Platform 15

(a)HEFT (b)CPOP

(c)EHEFT (d)ECPOP

Fig.2: Scheduling of task in Figure. 1

to identify the inefficient processor that can be shut-
down without increasing the makespan. Thus, the
RE measure is given in 2.

REj =
Σi∈pnCP

j
wij

Makespan
(2)

Let wij denote an active time slot which runs a
task ti on the processor pnCP

j . The output of this step
is the sorted RE list in an ascending order. Next, a
set of tasks allocated on the lowest RE processor are
assigned to the processor pnCP

k where RElowest . The
reassigned step is repeated till a set of tasks cannot
be allocated.

Table 4: Finding a set of inefficient processor

Algorithm3 : Finding a set of inefficient processor
Input : List of RE for set of P or set of non-critical
Output : Set of inefficient processor

Sort RE value

P
′

←− φ

ε←− 1

ρ

for ∀ pj ∈ P do

if REj < ε and Σ
p
′
∈P

′RE
P

′ 6 ε then

add processor pj to set of
inefficient processor

4.3.3 Phase 3: Rescheduling

Let PnCP be the new assigned processors excluding
the lowest RE processor pnCP

j . Thus,P
′

nCP is given by

P
′

nCP = PnCP − plowest
j . In this phase, ECPOP uses

CPOP algorithm to reschedule a set of non-critical
tasks on this new set of processor P

′

nCP . For exam-
ple, as illustrated in Fig. 2(d), ECPOP is applied to
rearrange the given task in Fig. 2(b) which is sched-
uled with the CPOP algorithm. In this example, set

of processors which is selected as the critical proces-
sor PnCP is {p0, p1, p2, p4} and set of non-critical path
processor PnCP is {p3} . After the RE value of set
PnCP is evaluated, the scheduling then selected the
processor p3 (it is the lowest RE plowest

j processor) as
the target to shutdown. In this case, we found that
the ECPOP does not only reduce the energy con-
sumption from shutting down inefficient processors,
but also maintain the makespan of task execution.

5. RESULTS AND DISCUSSION

This section presents the evaluation of our pro-
posed algorithms. The results are obtained from the
comparison of EHEFT, ECPOP, HEFT and CPOP
algorithm. The metric are schedule length and energy
consumption. In this study, the performance is stud-
ied using both synthesis task graphs and data taking
from real world applications. The simulation param-
eters are given as follows. For the number of tasks in
the synthesis DAG is {10, 20, 40}. For DAG workload
on tasks, we assign the communication to computa-
tion ratio (CCR) by the set {0.5, 1.0, 5.0} (if CCR
value is very high, i.e. 5.0, it can be considered as a
communication intensive application.). The α is used
to depict a shape of the graph. The values of α in this
simulation are 0.5 and 1.0. If α value is high, it gen-
erates high degree of concurrency (high parallelism
application). For heterogeneity factor for processor
speed (β) , we choose the set {0.5, 1.0} as a range
of computation cost (The computation cost among
processors is significantly different, if is high.). The
set of the number of processors that is available to
schedule is {5, 10, 15, 20, 25, 30}. In the experiments,
the number of total task graph evaluated is around
1000 DAGs and three applications on cloud are eval-
uated extensively. The performance of algorithms



16 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.5 1.0 5.0

A
ve

ra
ge

 S
LR

CCR

HEFT
EHEFT
CPOP

ECPOP

(a)α = 0.5

 0

 1

 2

 3

 4

 5

 6

0.5 1.0 5.0

A
ve

ra
ge

 S
LR

CCR

HEFT
EHEFT
CPOP

ECPOP

(b)α = 1.0

 0

 1

 2

 3

 4

 5

 6

 7

0.5 1.0 5.0

A
ve

ra
ge

 S
LR

CCR

HEFT
EHEFT
CPOP

ECPOP

(c)α = 5.0

 0

 1

 2

 3

 4

 5

0.5 1.0 5.0

A
ve

ra
ge

 E
C

R

CCR

HEFT
EHEFT
CPOP

ECPOP

(d)α = 0.5

 0

 2

 4

 6

 8

 10

0.5 1.0 5.0

A
ve

ra
ge

 E
C

R

CCR

HEFT
EHEFT
CPOP

ECPOP

(e)α = 1.0

 0

 2

 4

 6

 8

 10

 12

0.5 1.0 5.0

A
ve

ra
ge

 E
C

R

CCR

HEFT
EHEFT
CPOP

ECPOP

(f)α = 5.0

Fig.3: Average SLR and ECR with α = 0.5, 1.0, 5.0

is evaluated using two metrics: First, the Schedule
Length Ratio (SLR) which is obtained by dividing the
makespan by the summation of the minimum compu-
tation cost of task on the critical path. This is given
in 3.

SLR =
Makespan

Σti∈CPminpi∈P {wij}
(3)

Second, the Energy Consumption Ration (ECR)
which is obtained by dividing energy consumption by
the summation of the energy consumption of tasks,
the ECR is given in (4).

ECR =
Etotal

Σti∈CPminpi∈P {wij} ∗maxvjk∈Vj
{vjk}2

(4)

5.1 Experimental Results

In this subsection, we present the performance of
two proposed algorithms obtaining from the simu-
lation. First, the synthesis task graphs (randomly
generated) are used. Then, the data from three real
world applications are used.



Scheduling Parallel Workflow Applications with Energy-Aware on a Cloud Platform 17

(a)Fast Fourier Transformation with 4
points

(b)Gaussian Elimination for matrix size
5

(c)Parallel FI-Growth with 4 input data

Fig.4: Sample task graphs

5.1...1 Synthesis Task Graphs

From the result in Fig. 3 and Table 5, it can be
seen when EHEFT is employed on the task graph
with low degree of parallelism, i.e. α < 1.0 and low
CCR, the algorithm gives a similar SLR values to
HEFT algorithm. However, EHEFT clearly gives a
better performance for computation and communica-
tion intensive application as shown in Fig. 3(a) and
3(b). For the applications with low degree of par-
allelism and computation, ECPOP gives an average
SLR that is lower than EHEFT and HEFT. How-
ever, it can better maintain the application makespan
for different type of applications. When consider-
ing the value of ECR from Fig. 3(d), 3(e), and
3(f), it can be seen that EHEFT and ECOP can
reduce energy consumption more than HEFT and
CPOP for various applications. In case of applica-
tion with high degree of parallelism and high CCR,
the SLR value of EHEFT (Fig. 3(c)) increases, since
the HEFT usually try to minimize the communication
cost among tasks by scheduling task to lower number
of assigned processor than another case. As a result,
each of the assigned processor will have a higher uti-
lization. Hence, shutting down a few processors will
affect the makespan. On average, the average SLR
of both proposed scheduling on communication in-
tensive application can achieve its SLR value of less
than EHEFT and HEFT. Nevertheless, EHEFT pro-
vide results that have substantially lower ECR value,
and obtained more solution that reduce the energy
consumption than ECPOP, HEFT and CPOP. This
is shown in Fig. 3(c) 3(d), 3(e), and 3(f). The
comparative results of generated task graphs show
that EHEFT and ECPOP can maintain the quality
of schedule as similar to HEFT and CPOP. It is
not over then 3 % for EHEFT (as shown in Table
5). Clearly, the proposed algorithms can reduce the

energy as much as 34 %.

Table 5: Comparative results of synthesis task
graphs

α
EHEFT ECPOP

SLR ECR SLR ECR
0.5 2.37 17.47 0 11.75
1.0 2.64 34.89 0 25.57
5.0 2.85 18.90 0 17.71

5.1...2 Real World Application Task Graphs

In this work, the application graphs from three
real world applications: Fast Fourier Transformation
[38], Gauss elimination [25][9] and parallel FI-Growth
[37] is also used to evaluate the performance of the
proposed algorithm. For Fast Fourier Transforma-
tion (FFT), Gaussian elimination (GE), and parallel
FI-Growth application, we use the task graph in Fig.
4(a), 4(b) and 4(c) as an input to the simulation.
Since the structure of task graph is known, we can
ignore some simulation parameters, i.e. number of
tasks and shape of task graph (α) . However, com-
munication to computation ratio (CCR) and hetero-
geneity factor of processor speed (β) are thoroughly
applied to conduct various different characteristics
of application for more comprehensive experiments.
The results are as illustrated in Fig. 5 and Table 6.

Table 6: Comparative results of three real world
application task graphs

Set of task graph
EHEFT ECPOP

SLR ECR SLR ECR
FFT 2.16 15.69 0 16.89
GE 1.01 13.30 0 17.38

FI-Growth 3.17 6.88 0 7.57

From Fig. 5(a), 5(b) and 5(c), EHEFT and
ECPOP algorithm can maintain the same average



18 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 8 16

A
ve

ra
ge

 S
LR

 o
f F

F
T

Number of data points

HEFT
EHEFT
CPOP

ECPOP

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 10 15

A
ve

ra
ge

 S
LR

 o
f G

E

Matrix size

HEFT
EHEFT
CPOP

ECPOP

(b)

 0

 1

 2

 3

 4

 5

 6

4 8 16

A
ve

ra
ge

 S
LR

 o
f F

I-
G

ro
w

th

Number of input data

HEFT
EHEFT
CPOP

ECPOP

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 8 16

A
ve

ra
ge

 E
C

R
 o

f F
F

T

Number of data points

HEFT
EHEFT
CPOP

ECPOP

(d)

 0

 2

 4

 6

 8

 10

 12

 14

5 10 15

A
ve

ra
ge

 E
C

R
 o

f G
E

Matrix size

HEFT
EHEFT
CPOP

ECPOP

(e)

 0

 2

 4

 6

 8

 10

 12

 14

4 8 16

A
ve

ra
ge

 E
C

R
 o

f F
I-

G
ro

w
th

Number of input data

HEFT
EHEFT
CPOP

ECPOP

(f)

Fig.5: Average SLR and ECR of FFT, GE and FI-Growth

SLR value as HEFT algorithm for FFT, GE, and FI-
Growth applications. From Table 6, and Fig. 5(d),
5(e) and 5(f), the average value of ECR obtained
from the task graph of FFT, GE, and FI-Growth
decreases substantially in comparison to HEFT and
CPOP. Therefore, one can see that the proposed algo-
rithms can reduce the energy consumption for these
three real world applications. Anyway, the makespan
increases slightly due to the attempt to reschedule
task for energy saving. In addition, the energy can
be saved as much as 19 % but the average makespan
increases is less than 8 %. Finally, the results for

our study are summarized in Table 6. It can be seen
that EHEFT algorithm mostly outperformed HEFT
with communication intensive application. Anyway,
EHEFT result in a makespan increases for computa-
tion intensive application. For EHEFT, ECR value
decreases substantially compared to the three others
scheduling algorithms (ECPOP, HEFT, and CPOP).
However, EHEFT does not maintain the scheduling
makespan for compute intensive application. Thus,
ECPOP is a better choice when the preservation of
the makespan is needed.

For the complexity of the proposed algorithms, the



Scheduling Parallel Workflow Applications with Energy-Aware on a Cloud Platform 19

analysis is as follows. For a task graph with T tasks
and P processors:
1. First, HEFT or CPOP is applied, the complexity
of the algorithm is T1 = O(T × P).
2. The RE metric is used to evaluate all processors,
this is process is T2 = O(P).
3. Task graph is rescheduled again on a selected set
of processors using either HEFT or CPOP. Thus, the
complexity of this phase is the same as the first phase
T3 = O(T × P).

From these results, the complexity of both EHEFT
and ECPOP is given by Ttotal = O(T ×P)+O(P)+
O(T × P) or Ttotal = O(T × P) . The complexity
of these proposed algorithms depends on the number
of tasks and processors used. As the number of task
increased, the time spent will depends more on the
number of tasks.

In this work, the energy consumed by a server at
boot up or shut down time is not considered. Al-
though, the booting up or shutting down of a com-
puting server can consume some energy, the energy
saved by turning off the system is usually greater.
The attainable benefit is even greater a long run-
ning time task which is the target of this work. If
the power consumption at the boot up and shutdown
time is consider, the total power consumption of the
system will be slightly increased from the analysis.
Let n depicts the number of server being turn off ac-
cording to the proposed algorithms. The booting up
process consumes energy equal to Eboot and shutting
down process consumes energy equal to Eshutdown.
Then, the additional power consumption is given by
n(Eboot + Eshutdown). This energy consumption will
slightly increase the total energy consumption ob-
tained from the previous analysis. But there is no
impact to the key concept of the algorithms proposed.

6. CONCLUSION

In this paper, two energy aware scheduling for the
cloud application called EHEFT and ECPOP are
proposed. The goal is to reduce energy consumption
while maintaining the performance of scheduling as
much as possible. The proposed algorithms use per-
formance metric called RE to identify inefficient pro-
cessors. The first algorithm, EHEFT, focuses on re-
ducing the energy usage but allow the task makespan
to increases when necessary. The second algorithm,
ECPOP, takes into account the makespan conserva-
tion and energy consumption reduction. Thus, the
energy reduction is less than EHEFT but the schedul-
ing are more efficient. The simulation results of syn-
thesis and real world task graphs show that the pro-
posed algorithms help reduce the energy consumption
substantially. In addition, the experimental results
show that EHEFT and ECPOP can reduce the power
consumption for many different classes of parallel ap-
plications. The result of this work can be applied

to reduce the operation cost of a large cloud data
center. In the future, improving a quality of schedul-
ing in certain complex applications can be investigate
along with how to create a more efficient use of dif-
ferent techniques such as task duplication and task
clustering.

References

[1] J. G Koomey, “ Worldwide electricity used in
data centers,” Environmental Research Letters,
Vol.3, No.3, pp.973-994, 2008.

[2] J. G. Koomey, “Estimating total power con-
sumption by servers in the U.S. and the world,”
Technical report, Lawrence Derkley National
Laboratory, 2007.

[3] J. Shuja and S. A. Madani and K. Bilal and K.
Hayat and S. U. Khan and S. Sarwar,“Energy-
efficient data centers,” Journal of Computing,
Vol. 94, No. 12, pp.973-994 ,2012.

[4] G. Valentini, W. Lassonde, S. U. Khan, M.-
A. Nasro, S. A. Madani, J. Li, L. Zhang, L.
Wang, N. Ghani, J. Kolodziej, H. Li, A. Y.
Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu, F.
Pinel, J. E. Pecero, D. Kliazovich, and P. Bou-
vry, “An overview of energy efficiency techniques
in cluster computing systems,” Journal of Clus-
ter Computing , Vol.16, No. 1, pp.3-15, 2013.

[5] J. Mei, K. Li, and K. Li, “Energy-aware task
scheduling in heterogeneous computing environ-
ments, ”Journal of Cluster Computing , Vol.17,
No.2, pp.537-550, 2014.

[6] C.-M. Wu, R.-S. Chang, and H.-Y. Chan, “A
green energy-efficient scheduling algorithm us-
ing the DVFS technique for cloud datacenters,”
Future Generation Computer Systems, Vol. 37,
No.1, pp. 141-147, 2014.

[7] Y.C. Lee, and A.Y. Zomaya, “Energy efficient
utilization of resources in cloud computing sys-
tems,” The Journal of Supercomputing, Vol.60,
No.2 , pp.268-280, 2012.

[8] Y. Ma, B. Gong, R. Sugihara, and R. Gupta,
“Energy-efficient deadline scheduling for het-
erogeneous systems,” Journal of Parallel Dis-
tributed Computing, Vol. 72, No. 12 , pp. 1725-
1740, 2012.

[9] M. Cosnard, M. Marrakchi, Y. Robert and D.
Trystram,“Parallel Gaussian elimination on an
MIMD computer,” Journal of Parallel Comput-
ing, Vol. 6, No. 3, pp. 275-296, 1988.

[10] T. D. Burd and R. W. Brodersen,“Energy effi-
cient CMOS microprocessor design,” Proceed-
ings of the 28th Hawaii International Confer-
ence on System Sciences (HICSS ’95), Jan. 1995,
Hawaii, pp.288-297 .

[11] L. Wang,G. v. Laszewski,J. Dayal, F. Wang,
“Towards Energy Aware Scheduling for Prece-
dence Constrained Parallel Tasks in a Cluster
with DVFS,” Proceedings of the 2010 The 10th



20 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

IEEE/ACM International Conference on Clus-
ter, Cloud and Grid Computing (CCGrid’10),
May. 2010, Melbourne ,pp.368-377.

[12] V. Venkatachalam and M. Franz,“ Power re-
duction techniques for microprocessor systems.
”ACM Computing Surveys , Vol. 37, No. 3,
pp.195-237, 2005.

[13] D. Zhu, R. Melhem, and B. R. Childers,“
Scheduling with Dynamic Voltage/Speed Ad-
justment Using Slack Reclamation in Multipro-
cessor Real-Time Systems,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 14, No.
7, pp. 686-700, 2003.

[14] P. Pillai and K. G. Shin, “Real-time dynamic
voltage scaling for low-power embedded operat-
ing systems,” SIGOPS Operating Systems Re-
view, Vol. 35, No.5, pp. 89-102, 2001.

[15] K. Hoon Kim, R. Buyya, and J. Kim,“ Power
Aware Scheduling of Bag-of-Tasks Applications
with Deadline Constraints on DVS-enabled Clus-
ters.” Proceedings of the Seventh IEEE Interna-
tional Symposium on Cluster Computing and the
Grid (CCGRID ’07), May.2007, Rio de Janeiro,
pp.541-548.

[16] Q. Huang, Sen Su, J. Li, P. Xu, K. Shuang, and
X. Huang, “Enhanced Energy-Efficient Schedul-
ing for Parallel Applications in Cloud,” Proceed-
ings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Comput-
ing (CCGRID ’12), May. 2012, Washington DC,
pp.781-786.

[17] Y. C. Lee and A. Y. Zomaya, “Energy Conscious
Scheduling for Distributed Computing Systems
under Different Operating Conditions.” IEEE
Transactions on Parallel and Distributed Sys-
tems, Vol. 22,No. 8, pp. 1374-1381, 2011.

[18] Y. C. Lee and A. Y. Zomaya,“ Minimizing En-
ergy Consumption for Precedence-Constrained
Applications Using Dynamic Voltage Scaling.”
Proceedings of the 2009 9th IEEE/ACM Interna-
tional Symposium on Cluster Computing and the
Grid (CCGRID ’09),May 2009, Shanghai, pp.92-
99 .

[19] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee,
E.-G. Talbi, A.Y. Zomaya, and D. Tuyttens,“
A parallel bi-objective hybrid metaheuristic for
energy-aware scheduling for cloud computing
systems,” Journal of Parallel and Distributed
Computing, Vol. 71, No. 11, pp. 1497-1508, 2011.

[20] F. Gruian, and K. Kuchcinski,“ LEneS: task
scheduling for low-energy systems using vari-
able supply voltage processors,” Proceedings
of the ASP-DAC 2001. Asia and South Pacific
Design Automation Conference ,Feb. 2001,New
York ,pp.449-455.

[21] Y. Zhang, X. Hu and D.Z.Chen, “Task schedul-
ing and voltage selection for energy minimiza-
tion,” Proceedings 39th Design Automation

Conference, Jun. 2002, Louisiana ,pp.183-188 .

[22] X. Zhong, and C.-Z. Xu, “Energy-Aware Mod-
eling and Scheduling for Dynamic Voltage
Scaling with Statistical Real-Time Guarantee,”
IEEE Transactions on Computers, Vol.56, No.3,
pp.358-372, 2007.

[23] Y.K. Kwok and I. Ahmad, “Static scheduling
algorithms for allocating directed task graphs
to multiprocessors,” ACM Computing Surveys ,
Vol. 31, No.4, pp.406-471, 1999.

[24] S. Darbha and D. P. Agrawal,“ Optimal Schedul-
ing Algorithm for Distributed-Memory Ma-
chines, ” IEEE Transactions on Parallel and
Distributed Systems, Vol. 9,No. 1,pp.87-95, 1998.

[25] H. Topcuouglu, S. Hariri, and M.Y. Wu,
“Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing,”
IEEE Transactions on Parallel and Distributed
Systems, Vol. 13, No. 3 , pp.260-274, 2002.

[26] T. D. Braun, H.J. Siegel, N. Beck, L. L. Blni,
M. Maheswaran, A.I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund,“A comparison of eleven static heuristics
for mapping a class of independent tasks onto
heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing,
Vol. 61,No. 6 , pp. 810-837, 2001.

[27] P.F. Dutot, Tchimou N’Takpe, F. Suter, and H.
Casanova,“ Scheduling Parallel Task Graphs on
(Almost) Homogeneous Multicluster Platforms,”
IEEE Transactions on Parallel and Distributed
Systems, Vol. 20,No. 7, pp. 940-952, 2009.

[28] Z. Shi and J. J. Dongarra, “Scheduling workflow
applications on processors with different capa-
bilities,” Future Generation Computer Systems,
Vol. 22, No. 6, pp.665-675, 2006.

[29] A. Y. Zomaya, C. Ward, and B. Macey, “Ge-
netic Scheduling for Parallel Processor Systems:
Comparative Studies and Performance Issues,”
IEEE Transactions on Parallel and Distributed
Systems, Vol.10,no. 8 , pp.795-812, 1999.

[30] M. Sharifi, S. Shahrivari, and H. Salimi,
“PASTA: a power-aware solution to schedul-
ing of precedence-constrained tasks on heteroge-
neous computing resources,” Journal of Com-
puting, Vol.95, No. 1 , pp. 67-88, 2013.

[31] A. Salman, I. Ahmad, A.-M. Sabah, “Particle
swarm optimization for task assignment prob-
lem,” Journal of Microprocessors and Microsys-
tems, Vol. 26, No. 8, pp. 363-371, 2002.

[32] Z. Mousavinasab, E.-M. Reza and A. Movaghar
,“A Bee Colony Task Scheduling Algorithm in
Computational Grids,” Proceedings of Interna-
tional Conference ICDIPC 2011, Jul. 2011,Os-
trava, pp.200-210.

[33] R. Deng, C. Jiang, and F. Yin, “Ant colony
optimization for precedence-constrained hetero-
geneous multiprocessor assignment problem,”



Scheduling Parallel Workflow Applications with Energy-Aware on a Cloud Platform 21

Proceedings of the first ACM/SIGEVO Sum-
mit on Genetic and Evolutionary Computation
(GEC ’09), 2009, New York, pp. 89-96.

[34] S. Baskiyar and A.-K. Rabab , “Energy aware
DAG scheduling on heterogeneous systems,”
Journal of Cluster Computing, Vol. 13, No. 4 ,pp.
373-383, 2010.

[35] J.-C. Liou and M. A. Palis,“An Efficient Task
Clustering Heuristic for Scheduling DAGs on
Multiprocessors,” Proceedings of The 8th IEEE
Symposium On Parallel And Distributed Pro-
cessing ,Oct. 1996, Louisiana, pp.152-156.

[36] J. Zhuo and C. Chakrabarti,“Energy-efficient
dynamic task scheduling algorithms for DVS sys-
tems,” ACM Transaction on Embedded Comput-
ing, Vol.7, No. 2, pp.1-25, 2008.

[37] N. Benjamas and P. Uthayopas, “Enhancing
Parallel Data Mining Performance on a Large
Cluster by Using UCE Scheduling,” JNIT: Jour-
nal of Next Generation Information Technology,
Vol. 2, No. 4, pp. 69 - 77, 2011.

[38] T. H. Cormen, C. Stein, R. L. Rivest, and C.
E. Leiserson, Introduction to Algorithms , MIT
Press, 2009, Massachusetts, ch.30.

Thanawut Thanavanich received his
bachelor in computer science from
Ramkhamhaeng University in 2001 and
received master degree in computer en-
gineering from Kasetsart University in
2005. He is currently a Ph.D student in
computer engineering at Kasetsart Uni-
versity and a lecturer of computer engi-
neering program at Chiang Rai Rajab-
hat University. His main areas of re-
search interests include parallel comput-

ing and distributed computing.

Putchong Uthayopas received his
bachelor and master degree in electri-
cal engineering from Chulalongkorn Uni-
versity in 1984 and 1988. He received
master and PhD in computer engineer-
ing from University of Louisiana in 1994
and 1996 accordingly. His research in-
terest is in cluster computing, grid and
cloud computing system and tools. He
published more than 130 refereed pub-
lication in conferences and Journals.

Putchong Uthayopas is a co-founder of the Thai National Grid
project. In 2012, he received a distinguish computer engineer
award in system integration from the Engineering Institute of
Thailand.


