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ABSTRACT The problem considered is that of scheduling n preemptable 

tasks on m parallel processors, when each task requires for its pro- 

cessing a processor and one resource unit from the set of additional 

resources. The processing times of a task on different processors are 

unrelated. We present the method for solving this problem which is com- 

posed of two stages. In the first stage, a linear programming problem 

is solved giving the minimum schedule length and optimal task proces- 

sing times on particular processors. On the basis of this solution, in 

the second stage the optimal schedule is constructed taking into ac- 

count the resource constraints. Theorems are proved concerning the fea- 

sibility of the second stage algorithm, and the upper bound on the num- 

ber of preemptions in the optimal schedule. The cases of independent 

and dependent tasks are considered. 

I. I~TRODUCTION 

In recent years we have been able to observe increased interest in 

scheduling problems associated with a certain model of a multiprocessor 

computing system /see [7] for a survey/. Much effort has been applied 

to problems concerned with cases where each task only requires one pro- 

cessor for its processing. In this paper, we consider an augmented mul- 

tiprocessing model which allows for the possibility that certain tasks 

may require the use of various limited resources during their proces- 

sing. Some special cases of this model were studied in [2,4,5,6,8] for 

various performance measures. However, all the previous studies assumed 

the processors to be identical. Even under this assumption, almost all 

problems are NP-complete [7] and hence they are computationally intrac- 

table. We shall be concerned with a problem which seems to be also NP- 



537 

complete, where processors are unrelated, i.e. the processing times of 

tasks on different processors are arbitrary. This problem, without ad- 

ditional resource constraints, has been considered in [3,~. 

In Section 2, we describe the model of the computing system and give 

some basic definitions. In Section 5 and 4, a two-stage method for sol- 

ving the problem is presented for the cases of independent and depen- 

dent tasks, respectively. Also in Section 3, theorems concerning the 

feasibility of the second-stage algorithm, and the upper bound on the 

number of preemptions in the optimal schedule are proven. Section 5 

contains some final remarks. 

2. THE MODEL OF THE COI~LPUTING SYSTEM 

Let us describe the model of the computing system considered in this 

paper. Three finite sets are given, which are the main components of 

the model: 

- the set of tasks 3~= {T I T2,.. T l 
' " '  nf' 

- the set of unrelated processors ~ = {PI,P2,...,Pm), 

- the set of additional resources ~ = {RI,R2,...,Rp}. 

Each task Tj requires for its processing a processor and one unit oT 

a specified resource. Let S~ be the set of processors which may execute 

T j. Associated with each task Tj is the vector ~j = [tij~, where tij is 

the time required for the execution of Tj by processor Pi e Sj, provided 

that the specified additional resource unit is allotted to Tj. The pro- 

cessing of each task may be arbitrarily interrupted and restarted later 

without any time penalty, possibly on another processor. Moreover, per- 

missible task orderings are determined by a set of precedence con- 

straints given in the form of a "task-on-edge" directed acyclic graph 

with only one origin and only one terminal. The graph nodes /events/ 

are numbered from I to N in such a way that node j occurs not later 

than node k, if j<k. Such an ordering is always possible but may not 

be unique in a given precedence graph. We shall assume that only one 

ordering is imposed for a given problem. 

Each processor Pi is able to process at most one task at a time. 

The set of tasks which may be processed on Pi will be denoted by Ci. 

For each resource R k there is a bound ~ which gives the total num- 

ber of the resource units available at any given time. The set of 

tasks which require resource R k will be denoted by D k- 

The objective is to minimize the finishing time /schedule length/ T 

of the set of tasks subject to the imposed constraints. 
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3. SCHEDULING III-DEPENDENT TASKS 

Let us consider the case of independent tasks, i.e. those which can 

be processed simultaneously. 

We shall present a two-stage scheduling method which is a generali- 

zation of the method given in [3,9] for the model without additional 

resources. In the first stage, we find a generating schedule that is 

one which minimizes the schedule length T and gives optimal processing 

times of tasks on particular processors, but which does not necessarily 

fulfil the feasibility condition that some parts of a task are not 

executed simultaneously on more than one processor. In the second stage, 

on the basis of generating schedule, the optimal schedule is constructed 

which ensures that the feasibility condition and resource constraints 

are satisfied. 

THE FIRST STAGE 

Let x.zje <0,tij ) be the total ~orocessing time of task T~ on pro- 

cessor Pi e Sj, j=1,2,...,n. In order to find the generating schedule, 

we have to solve the following linear programming /LP/ problem. 

Minimize T 

subject to: 

T - ~ xij ~ 0 i=1,2,...,m /I/ 
Tj~C i 

T - Z xij ~ 0 j=l,2,...,n /2/ 
Pi sj 

T - Z ~ x i j ~ O  k: l ,2 , . . . ,p  131 
TjED k Pi~Sj 

Z xij/tij = I j=1,2,...,n /4/ 
~ sj 
xij ~ 0 for all PiESj' j=1,2,...,n /5/ 

Condition /I/ ensures that the active time of any one processor will 

not exceed T, condition /2/ - that each task is completed by time T, 

and condition /3/ - that the time of using any resource type will not 

exceed T. Condition /4/ ensures that each task is completed. 

Solving the above LP problem we obtain the optimal values of xij , 

Pi E Sj, j=1,2,...,n, which minimize T. However, we do not know the 

task part start times which make the optimal schedule. Below we present 

an algorithm which constructs an optimal schedule in polynomial time. 
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THE SECOND STAGE 

In the second stage, knowing the generating schedule, we shall con- 

struct the optimal schedule. 

Let X denote the m~n matrix of nonnegative elements which are the 

optimal values of x , P ¢ S , j=1,2,...,n, obtained in the first 

stage. Column j /task Tj/ of matrix X will be called critical if 
m 
i= ~ -- xij = T. Similarly, resource R k will be called critical if BkT = 

m 
~j~ ~ xij. Let us also define the m~m diagonal matrix Y of nonne- 

D k i=I _D_ 
gative processor idle times: Yii = T - j=1 >' xij' i=1,2,...,m. 

The columns of Y will represent dummy tasks which do not require ad- 

ditional resources. We shall denote by Z the m~(n+m) matrix composed 

of matrices X and Y as indicated below: 

Let us introduce the set NC, called the generatin@~ set , containing m 

positive elements of matrix z which are: 

- exactly one element in each critical column, 

- exactly one element in each of B k columns representing tasks requi- 

ring the critical resource Rk, 

- no more than one element in the remaining rows and columns. 

The resource requirements of tasks represented in NC cannot exceed the 

resource constraints, i.e. 

I{ j ' ^ 

For the set NC we have to calculate the parallel processing time DELTA 

of the task parts represented in NC. 

The construction of the optimal schedule proceeds in the following 

way: 

I ° Find the generating set NC. 

2 ° Calculate DELTA from the following formula 

f Zmi n if T DELTA = - Zmin Zmax' 

T - Zma x otherwise, 

where Zmi n min ' Zmax zij#NC z~' 

k 
3 ° Decrease T and all zijE NC by DELTA. If T = 0 

cedure, otherwise go to step I °. 

then end the pro- 
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It can be seen that set NC is constructed in such a way that at the 

end of each iteration the elements of matrix X, as well as T, fulfil 

conditions /I/ - /3/. Let us also note that for each set NC, DELTA is 

chosen such that either one of the positive elements in the matrix Z is 

reduced to zero, or one more column or resource type becomes critical. 

Each of these events may occur a finite number of times which ensures 

that the optimal schedule will be obtained in a finite number of iter- 

ations. However, in order to prove this, we have to demonstrate the ex- 

istence of NO for each schedule fulfilling conditions /I/ - /3/ /in par- 

ticular, for the generating schedule/. 

THEOREM I For each schedule fulfilling conditions /I/ - /3/, n ~ m and 

T > O, there exists a generati~ set NC. 

PROOF Let us construct an (re+n)~ (re+n) matrix V as follows 

W 

where W is an n~n diagonal matrix of nonnegative elements: 
m 

= T - ~ xij j=1,2,.°°,n. wjj 

As can be seen, each row sum and column sum of V is equal to T. Thus, 

in matrix ~ V, each row sum and~ column sum is equal to one. Since all 

elements of the square matrix ~ V are nonnegative, this is a doubly 

stochastic matrix which is a convex combination of permutation matrices, 

as follows from the Birkhoff - yon Neumann theorem [I~. It is evident 

that any one of the permutation matrices in such a convex combination 

can be identified with a generating set NC if it satisfies the resource 

constraints /6/ and contains B k elements representing tasks Tj E Dk, for 

each critical resource R k. Condition /3/ ensures that at any time within 

the schedule length T, it is possible to find no more than B k tasks 

which use resource Rk; thus, at least one of the permutation matrices 

in the above convex combination is identified with a generating set NC.O 

Let us now pass to ~he problem of the bound on the number of pre- 

emptions in the optimal schedule. From the linear programming formula- 

tion posed in the first stage, follows that for m > 2, in the optimal 

basic feasible solution, there will be no more than 2n+m+p positive 

variables. In fact, there will be no more than n+v1+v2+v 3 positive var- 

iables, where vl,v2,v 3 are the numbers of inequalities /I/, /2/ and /3/ 

correspondingly, in which variables transforming them into equalities 
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are equal to zero. In other words, v I is the number of processors with 

zero idle time, v 2 is the n~mber of critical tasks, and v 3 is the number 

of critical resources. But ! ~ v I ~ m, 0 ~ v 2 ~ m-1 and 0 ~ v 3 ~ g, 

where g ~ m is the maximum number of resource types for which ~Bk~ m~ 

Hence, in the optimal solution, there will be no more than n+2m+g-1 

positive variables, one of ~nich is T. 

Thus, if n > m, there exists a generating schedule with no more than 

n+2m+g-2 positive xij values. If we could construct an optimal schedule 

without introducing additional preemptions, then the upper bound on the 

number of preemptions in the optimal schedule would be equal to 2m+g-2. 

However, the second-stage algorithm generally introduces additional 

preemptions. We shall now establish an upper bound on this number. 

First, let us make a certain modification to the matrix Z with the 

objective of reducing the number of preemptions in the optimal schedule. 

This modification is also beneficial for the running time of the algo- 

rithm for finding the generating set NC, which will be discussed later. 

The idea of this modification is to replace all the tasks /including 

the dummies/ using the same resource type, which are assigned to only 

one and the same processor in the generating schedule, by a new task. 

At the end of the second stage, we have to create a schedule for the 

original set of tasks by reassigning the time intervals DEZTA obtained 

for the new tasks, to the tasks which they replaced. 

THEOREM 2 The upper bound on the n~mber of preemptions in the optimal 

schedule is equal to 2m2-4m+m~-1)+m(vN-1 ) +2, where g ~ m and v N 

min [ n-2m-g+2, rap]. 

PROOF The modified matrix Z' will contain Vo+V N columns /tasks/ and 

no more than Vo+VN+V1+V2+V3-1 positive elements, where v o is the smal- 

lest number of original tasks and v N - the maximum number of new tasks. 

Hence, v o ~ v1+v2+v3-1 , and v N is bounded by min [n-Vo, mp]. Since 

each iteration of the schedule construction procedure determines the 

parallel processing time of m task parts, the procedure will terminate 

with ~m (number of iterations) - (Vo+VN) ] preemptions. Hence, we may 

obtain a bound on the number of preemptions by bounding the number of 

iterations. 

We already know that after each iteration, either one of the posi- 

tive elements in the matrix Z' is reduced to zero, or one more column 

becomes critical, or finally, one more of the resource types becomes 

critical. Exactly m elements become zero in the last iteration. Thus, 

there will be no more than Vo+V1+V2+V3+V N-m iterations of the first 

kind, m-v 2 iterations of the second kind, and g-v 3 iterations of 
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the third kind, hence at most Vo+V1+g+v N iterations in all. 

It is resonable to assume that no one of the new tasks is critical 

/if such a task exists, the problem can be reduced to m-1 processors/. 

Under this assumption, we can reduce the bound on the number of itera- 

tions by m. In the last iteration, m columns are critical, and some of 

them were critical at the beginning /having then at least two non-zero 

elements/. If a column becomes critical, and there exists exactly one 

positive element in that column, then at least one element of matrix Z' 

was reduced to zero in that iteration. If, however, the critical column 

has at least two positive elements, then in a certain iteration, when 

the number of positive elements in that column is reduced to one, at 

least two elements of matrix Z' are reduced to zero simultaneously. 

Thus, the total number of iterations is overestimated by at least m. 

It follows that the bound on the number of preemptions is equal to 

m(Vo+V1+g+vN-m ) - (Vo+VN). Since v ° ~ 2m-2+g, v I ~ m, and n ~ m, 

we obtain the thesis. 

Let us now pass to the description of the algorithm for finding the 

generating set NC. The algorithm makes use of the modified matrix Z'. 

Let us define a zero-one matrix A of the same size as matrix Z': 

1 if z~j > O, 

aij = 0 otherwise. 

For simplicity of computation, it is better to find the set NO in ma- 

trix A. The elements of A selected for the set NC will be marked with 

the symbol /k, to represent an assignment of the processor in that row 

to the task in that column. The block diagram of the algorithm is shown 

in Fig. 1 and Fig.2. 

This algorithm was programmed in Fortran for an ICL 1900 computer 

~0]. It may easily be sho~ that the presented algorithm finds the set 

NC in O(vNm2 ) time. 

EXA~LE The following example steps through the algorithm for finding 

a generating set NC. The following fictitious data are given: 

Rk: R 1 R  2 R 1 R  2 R 1 R  2 Ii0000 I I 0 I I * = critical column /task/ 

A = 1 1 0 0 B1 = 3 

1 1 0 0 B2 = 2 

0 0 1 1 

The construction of a generating set NC proceeds in the following way: 
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I/does A contain a row\ 
z ~es ~ i with exactly one 
mark this a i- X unflagged ai~=S / 

I with & and J I s, ........ ~ 
I flag row i and I /does A contain a column\ 
I c°lumn J I / j with exactly one \.~e ~. . 

| ~ unflagged aij=1 /4 mark this a~ 
.... I no l with z~ and ~ I 

I I flag row i andl 
5 " . column J ~ s  A contaln rows\ 1 I 

with unflagged )-' ~ L ....... 
\ non-zero elements / 6C-"" "." . . I 

.- ImarK an aroi~rary I 

22 
' ~f does A contain a critical 

/ <column s for Which the assignment~ no __ d -- 
....................... ~ (4) has not been made / | 

" ' ~ ues 28 
23  . . . . . .  

z~ does A contain a row i X /have at least\ 
yes / for which ais=1 and X /B~ assignments\ 

24 .... $ ........... \ the assignnnent (a) has not /~' b~en made for \ 
shift the --~ \ been made in another / \ the tasks requi~ 

k~ ......... critical column / \ring critical/ 
symbol A in I ~ __ \ resource R k / 
row i to | 25 create a submatrix S-~ ' ~no 

I element ais=11 of A composed of | 29 
critical columns ~ reassign ] 

_ _  / s h i f t  A /  the I 
I ~6 ......... $ processors whic~ 

I call ASSIGN for A ~has been as- | 
signed to a 

replaced by SA T non-critical 
2z . [ ,  task using 
for rows of A containing I another non- 
two symbols A cancel A } critical re- 

in the non-critical column I source to a 
j task requi- 

ring R k 
I 

So ~- 

~e5 /do the tasks indicated byZ~ sa- l 
~isfy the resource constraints ~/ 
~1 ~ o '  

reassign /shift Z~/ the processor ] 
~'hich has been assigned to a non- I 
critical task using Rk to a task | 
which use another non-critical | 
resource, without violating the | 
resource constraints | 

I ..... 

Fig. I. The block diagram of the algorithm for finding a generating 
set NC. 
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8 

check (~) the columns of A I 
heving a non-zero element 

in the r-th position 

mark with WB=I the rows of A 1 
I 

which have symbols A in columns q I 
ID 
'~es the row marked by WB~ 

yes/ contain a non-zero element \ 
--\ belonging to the column / 

19 ~ s z m ~  

m~ark this element7 11 no~-~ --7 
lwith the symbol A| I check (q) the columns | 
-- | - - -  I of A in which, on i | 

~ ' ::"r 1 positions of rows I | 
I shift the secondl I marked by WB, there I | 

IS I symbol A of the are non-zero elements~ | 
l last considered I ' ~ l increase WB by 
I row, to the 1 2 ~ ~ ~ - ~  L 
~A~A~ .... ~ -- :-- 1 Imar~ with WB+~ unmarked 
I ~hems~e~co~umn I I rows of A which have 
' "-" ! ............ ' Isymb°ls A in columns W 

'~ does the row marked -~ [cancel WB andgj IS 
/ by WB contain a non-zero \ 

element belonging to ) no 
\ the column without / 
\ symbol a_ ___/ 

vl yes 
14 [mark this element 
~ith the symbol A 

shift the second symbol ~ } 
of the last considered I 

row, to the element of the 1 
row marked by WB-I 
in the same column ............ 

I decrease WB by one,I 

:1) 

onej 

Fig. 2. The block diagram of procedure ASSIGN. 
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step: 1,3,5,6,1,3,5, 

1 0 1 1 1 

1 1 0 0 

1 1 0 0 

0 0 1 1 ...... 

step: 4,1,3,5,7, 

/~ ,k L-~ ~ O I 

Z~ 0 0 z_..k 

0 0 

' Z •  1 1 

step: 20,21 ,7  

1 0 l Z ~  1 

1 / ~  0 0 0 

r Z ~  1 0 0 0 

o 0 /k,,,! ....... I 

step: 31,30,stop. 

r°°°° 1 
0 1 0 1 1 /~  

1 / ~  0 0 0 
Z~ 1 0 0 0 

o o  1 zh,,,,,!, 

WB 

1 

1 

6,1 ,  

I i o --o o ~ 0 - - 1 - 1  1 

1 0 0 0 

1 0 0 0 

0 1 1 1 

8,9,10, 
v" v" 

0 1 1 1 

I! 1 Z ~ O  0 0 

r I I 0 0 0 

0 0 Z~ 1 1 

22,23, 

i 
0 o o o  i 

iO 1 0 l z ~  1 
1 Z ~ O  0 0 

Z ~  1 0 0 0 

0 0 Z~ 1 1 

Finally, 

2,3,1, 

I I - t - ,  o o o 

I? I I °°° 
le 0 e 11 I 

19, 
WB W ~ ioooo d I ~ o I ~  I 

I I~0 0 1 
r I I 0 0 

, 0 0 ~ 1  

24,22,28,30, 1 OOO011 0 1 0 1 t Z~ 

1 1Z~ 0 0 o 
0 Z ~  1 0 0 

0 0 0 Z~ 1 

4. SCHEDULING DEPENDENT TASKS 

Let us now consider the case where, in the task set • precedence 

constraints are given in the form described in Section 2. 

Let F 1 denote the set o£ all tasks which may be processed betw~een 

the occurence of node 1 and ]+I in the precedence graph. Sets F1, l= 

=1,2,°.o,N-I, will be called the main sets. Since the parts of tasks 

performed in particular main sets are independent, we may apply the ap- 

proach proposed for the case of independent tasks to them. Let us intro- 

duce some additional definitions: 

T 1 - the schedule length for the set F1, 

Gj _ the set of the numbers of main sets containing task T4,j 
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H 1 - the set of processors which may process the tasks from F1, 

K 1 - the set of resources required by tasks from F1, 

Dlk - the set of tasks which use resource R k in F1, 

<O,tij > - the total processing time of task T~ ~ on processor Xijl Pi 
in the main set F1; PiE Sj, 1EGj, j=1,2,...,n. 

Keeping T for the schedule length, we obtain the following LP problem. 

Minimize 
= 171  

subject to: 

T1 - Tj~-l xijl ~ 0 for all Pie H1, 1=1,2,...,N-I /8/ 

T 1 - ~ xij I ~ 0 for all Tj ~ F1, 1=1,2,o..,N-I /9/ 
Pi¢Sj 

T l ~  - ~" 1 ~ X i j l  ~ 0 for a l l  Rk e K1, 1=1,2,...,N-1 / I 0 /  
Tj~Dk Pi Sj 

xijJtij = 1 1 1 1 /  
l~Gj i j 

j=1,2,...,n /12/ xij I ~ 0 for all l~Gj, Pie Sj, 

0onditions /8/ - /10/ correspond to conditions /I/ - /3/ for each F 1. 

As the solution of the above LP problem, we obtain a generating 

schedule analogous to that obtained in the first stage of the method 

described in Section 3. In order to construct the optimal schedule, 

the second-stage algorithm for independent tasks should be applied to 

eachmain set. 

5. FINAL H~,~RKS 

Scheduling problems, in which additional resource constraints are 

taken into account, are almost all NP-complete, and thus computational- 

ly intractable. Models of computer systems involving additional resour- 

ces, however, are better adapted to practical situations and for this 

reason they are worth considering. In this paper one such problem has 

been examined, when tasks need a processor and one resource unit from 

the set of additional resources for their processing. This may be, for 

example, a situation in which a task requires a processor and an in- 

put/output device. 

The method described finds an optimal schedule in two stages: in the 

first, an LP problem is solved, and in the second, which is polynomial 

in time, an optimal schedule is found. This method can also be applied 
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in the case of dependent tasks, when the set of nodes /events/ in the 

precedence " task-on-edge" graph is ordered. 
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