
SCHEDULING PREEMPTABLE TASKS ON ULULATED PROCESSORS

WITH ADDITIONAL RESOURCES TO MINIMIZE SCHEDULE LENGTH

Roman SIowi~ski

Institute of Control Engineering, Technical University of Poznafl,

60-965 Poznan, Poland

ABSTRACT The problem considered is that of scheduling n preemptable

tasks on m parallel processors, when each task requires for its pro-

cessing a processor and one resource unit from the set of additional

resources. The processing times of a task on different processors are

unrelated. We present the method for solving this problem which is com-

posed of two stages. In the first stage, a linear programming problem

is solved giving the minimum schedule length and optimal task proces-

sing times on particular processors. On the basis of this solution, in

the second stage the optimal schedule is constructed taking into ac-

count the resource constraints. Theorems are proved concerning the fea-

sibility of the second stage algorithm, and the upper bound on the num-

ber of preemptions in the optimal schedule. The cases of independent

and dependent tasks are considered.

I. I~TRODUCTION

In recent years we have been able to observe increased interest in

scheduling problems associated with a certain model of a multiprocessor

computing system /see [7] for a survey/. Much effort has been applied

to problems concerned with cases where each task only requires one pro-

cessor for its processing. In this paper, we consider an augmented mul-

tiprocessing model which allows for the possibility that certain tasks

may require the use of various limited resources during their proces-

sing. Some special cases of this model were studied in [2,4,5,6,8] for

various performance measures. However, all the previous studies assumed

the processors to be identical. Even under this assumption, almost all

problems are NP-complete [7] and hence they are computationally intrac-

table. We shall be concerned with a problem which seems to be also NP-

537

complete, where processors are unrelated, i.e. the processing times of

tasks on different processors are arbitrary. This problem, without ad-

ditional resource constraints, has been considered in [3,~.

In Section 2, we describe the model of the computing system and give

some basic definitions. In Section 5 and 4, a two-stage method for sol-

ving the problem is presented for the cases of independent and depen-

dent tasks, respectively. Also in Section 3, theorems concerning the

feasibility of the second-stage algorithm, and the upper bound on the

number of preemptions in the optimal schedule are proven. Section 5

contains some final remarks.

2. THE MODEL OF THE COI~LPUTING SYSTEM

Let us describe the model of the computing system considered in this

paper. Three finite sets are given, which are the main components of

the model:

- the set of tasks 3~= {T I T2,.. T l
' " ' nf'

- the set of unrelated processors ~ = {PI,P2,...,Pm),

- the set of additional resources ~ = {RI,R2,...,Rp}.

Each task Tj requires for its processing a processor and one unit oT

a specified resource. Let S~ be the set of processors which may execute

T j. Associated with each task Tj is the vector ~j = [tij~, where tij is

the time required for the execution of Tj by processor Pi e Sj, provided

that the specified additional resource unit is allotted to Tj. The pro-

cessing of each task may be arbitrarily interrupted and restarted later

without any time penalty, possibly on another processor. Moreover, per-

missible task orderings are determined by a set of precedence con-

straints given in the form of a "task-on-edge" directed acyclic graph

with only one origin and only one terminal. The graph nodes /events/

are numbered from I to N in such a way that node j occurs not later

than node k, if j<k. Such an ordering is always possible but may not

be unique in a given precedence graph. We shall assume that only one

ordering is imposed for a given problem.

Each processor Pi is able to process at most one task at a time.

The set of tasks which may be processed on Pi will be denoted by Ci.

For each resource R k there is a bound ~ which gives the total num-

ber of the resource units available at any given time. The set of

tasks which require resource R k will be denoted by D k-

The objective is to minimize the finishing time /schedule length/ T

of the set of tasks subject to the imposed constraints.

538

3. SCHEDULING III-DEPENDENT TASKS

Let us consider the case of independent tasks, i.e. those which can

be processed simultaneously.

We shall present a two-stage scheduling method which is a generali-

zation of the method given in [3,9] for the model without additional

resources. In the first stage, we find a generating schedule that is

one which minimizes the schedule length T and gives optimal processing

times of tasks on particular processors, but which does not necessarily

fulfil the feasibility condition that some parts of a task are not

executed simultaneously on more than one processor. In the second stage,

on the basis of generating schedule, the optimal schedule is constructed

which ensures that the feasibility condition and resource constraints

are satisfied.

THE FIRST STAGE

Let x.zje <0,tij) be the total ~orocessing time of task T~ on pro-

cessor Pi e Sj, j=1,2,...,n. In order to find the generating schedule,

we have to solve the following linear programming /LP/ problem.

Minimize T

subject to:

T - ~ xij ~ 0 i=1,2,...,m /I/
Tj~C i

T - Z xij ~ 0 j=l,2,...,n /2/
Pi sj

T - Z ~ x i j ~ O k: l ,2 , . . . ,p 131
TjED k Pi~Sj

Z xij/tij = I j=1,2,...,n /4/
~ sj
xij ~ 0 for all PiESj' j=1,2,...,n /5/

Condition /I/ ensures that the active time of any one processor will

not exceed T, condition /2/ - that each task is completed by time T,

and condition /3/ - that the time of using any resource type will not

exceed T. Condition /4/ ensures that each task is completed.

Solving the above LP problem we obtain the optimal values of xij ,

Pi E Sj, j=1,2,...,n, which minimize T. However, we do not know the

task part start times which make the optimal schedule. Below we present

an algorithm which constructs an optimal schedule in polynomial time.

539

THE SECOND STAGE

In the second stage, knowing the generating schedule, we shall con-

struct the optimal schedule.

Let X denote the m~n matrix of nonnegative elements which are the

optimal values of x , P ¢ S , j=1,2,...,n, obtained in the first

stage. Column j /task Tj/ of matrix X will be called critical if
m
i= ~ -- xij = T. Similarly, resource R k will be called critical if BkT =

m
~j~ ~ xij. Let us also define the m~m diagonal matrix Y of nonne-

D k i=I _D_
gative processor idle times: Yii = T - j=1 >' xij' i=1,2,...,m.

The columns of Y will represent dummy tasks which do not require ad-

ditional resources. We shall denote by Z the m~(n+m) matrix composed

of matrices X and Y as indicated below:

Let us introduce the set NC, called the generatin@~ set , containing m

positive elements of matrix z which are:

- exactly one element in each critical column,

- exactly one element in each of B k columns representing tasks requi-

ring the critical resource Rk,

- no more than one element in the remaining rows and columns.

The resource requirements of tasks represented in NC cannot exceed the

resource constraints, i.e.

I{ j ' ^

For the set NC we have to calculate the parallel processing time DELTA

of the task parts represented in NC.

The construction of the optimal schedule proceeds in the following

way:

I ° Find the generating set NC.

2 ° Calculate DELTA from the following formula

f Zmi n if T DELTA = - Zmin Zmax'

T - Zma x otherwise,

where Zmi n min ' Zmax zij#NC z~'

k
3 ° Decrease T and all zijE NC by DELTA. If T = 0

cedure, otherwise go to step I °.

then end the pro-

540

It can be seen that set NC is constructed in such a way that at the

end of each iteration the elements of matrix X, as well as T, fulfil

conditions /I/ - /3/. Let us also note that for each set NC, DELTA is

chosen such that either one of the positive elements in the matrix Z is

reduced to zero, or one more column or resource type becomes critical.

Each of these events may occur a finite number of times which ensures

that the optimal schedule will be obtained in a finite number of iter-

ations. However, in order to prove this, we have to demonstrate the ex-

istence of NO for each schedule fulfilling conditions /I/ - /3/ /in par-

ticular, for the generating schedule/.

THEOREM I For each schedule fulfilling conditions /I/ - /3/, n ~ m and

T > O, there exists a generati~ set NC.

PROOF Let us construct an (re+n)~ (re+n) matrix V as follows

W

where W is an n~n diagonal matrix of nonnegative elements:
m

= T - ~ xij j=1,2,.°°,n. wjj

As can be seen, each row sum and column sum of V is equal to T. Thus,

in matrix ~ V, each row sum and~ column sum is equal to one. Since all

elements of the square matrix ~ V are nonnegative, this is a doubly

stochastic matrix which is a convex combination of permutation matrices,

as follows from the Birkhoff - yon Neumann theorem [I~. It is evident

that any one of the permutation matrices in such a convex combination

can be identified with a generating set NC if it satisfies the resource

constraints /6/ and contains B k elements representing tasks Tj E Dk, for

each critical resource R k. Condition /3/ ensures that at any time within

the schedule length T, it is possible to find no more than B k tasks

which use resource Rk; thus, at least one of the permutation matrices

in the above convex combination is identified with a generating set NC.O

Let us now pass to ~he problem of the bound on the number of pre-

emptions in the optimal schedule. From the linear programming formula-

tion posed in the first stage, follows that for m > 2, in the optimal

basic feasible solution, there will be no more than 2n+m+p positive

variables. In fact, there will be no more than n+v1+v2+v 3 positive var-

iables, where vl,v2,v 3 are the numbers of inequalities /I/, /2/ and /3/

correspondingly, in which variables transforming them into equalities

541

are equal to zero. In other words, v I is the number of processors with

zero idle time, v 2 is the n~mber of critical tasks, and v 3 is the number

of critical resources. But ! ~ v I ~ m, 0 ~ v 2 ~ m-1 and 0 ~ v 3 ~ g,

where g ~ m is the maximum number of resource types for which ~Bk~ m~

Hence, in the optimal solution, there will be no more than n+2m+g-1

positive variables, one of ~nich is T.

Thus, if n > m, there exists a generating schedule with no more than

n+2m+g-2 positive xij values. If we could construct an optimal schedule

without introducing additional preemptions, then the upper bound on the

number of preemptions in the optimal schedule would be equal to 2m+g-2.

However, the second-stage algorithm generally introduces additional

preemptions. We shall now establish an upper bound on this number.

First, let us make a certain modification to the matrix Z with the

objective of reducing the number of preemptions in the optimal schedule.

This modification is also beneficial for the running time of the algo-

rithm for finding the generating set NC, which will be discussed later.

The idea of this modification is to replace all the tasks /including

the dummies/ using the same resource type, which are assigned to only

one and the same processor in the generating schedule, by a new task.

At the end of the second stage, we have to create a schedule for the

original set of tasks by reassigning the time intervals DEZTA obtained

for the new tasks, to the tasks which they replaced.

THEOREM 2 The upper bound on the n~mber of preemptions in the optimal

schedule is equal to 2m2-4m+m~-1)+m(vN-1) +2, where g ~ m and v N

min [n-2m-g+2, rap].

PROOF The modified matrix Z' will contain Vo+V N columns /tasks/ and

no more than Vo+VN+V1+V2+V3-1 positive elements, where v o is the smal-

lest number of original tasks and v N - the maximum number of new tasks.

Hence, v o ~ v1+v2+v3-1 , and v N is bounded by min [n-Vo, mp]. Since

each iteration of the schedule construction procedure determines the

parallel processing time of m task parts, the procedure will terminate

with ~m (number of iterations) - (Vo+VN)] preemptions. Hence, we may

obtain a bound on the number of preemptions by bounding the number of

iterations.

We already know that after each iteration, either one of the posi-

tive elements in the matrix Z' is reduced to zero, or one more column

becomes critical, or finally, one more of the resource types becomes

critical. Exactly m elements become zero in the last iteration. Thus,

there will be no more than Vo+V1+V2+V3+V N-m iterations of the first

kind, m-v 2 iterations of the second kind, and g-v 3 iterations of

542

the third kind, hence at most Vo+V1+g+v N iterations in all.

It is resonable to assume that no one of the new tasks is critical

/if such a task exists, the problem can be reduced to m-1 processors/.

Under this assumption, we can reduce the bound on the number of itera-

tions by m. In the last iteration, m columns are critical, and some of

them were critical at the beginning /having then at least two non-zero

elements/. If a column becomes critical, and there exists exactly one

positive element in that column, then at least one element of matrix Z'

was reduced to zero in that iteration. If, however, the critical column

has at least two positive elements, then in a certain iteration, when

the number of positive elements in that column is reduced to one, at

least two elements of matrix Z' are reduced to zero simultaneously.

Thus, the total number of iterations is overestimated by at least m.

It follows that the bound on the number of preemptions is equal to

m(Vo+V1+g+vN-m) - (Vo+VN). Since v ° ~ 2m-2+g, v I ~ m, and n ~ m,

we obtain the thesis.

Let us now pass to the description of the algorithm for finding the

generating set NC. The algorithm makes use of the modified matrix Z'.

Let us define a zero-one matrix A of the same size as matrix Z':

1 if z~j > O,

aij = 0 otherwise.

For simplicity of computation, it is better to find the set NO in ma-

trix A. The elements of A selected for the set NC will be marked with

the symbol /k, to represent an assignment of the processor in that row

to the task in that column. The block diagram of the algorithm is shown

in Fig. 1 and Fig.2.

This algorithm was programmed in Fortran for an ICL 1900 computer

~0]. It may easily be sho~ that the presented algorithm finds the set

NC in O(vNm2) time.

EXA~LE The following example steps through the algorithm for finding

a generating set NC. The following fictitious data are given:

Rk: R 1 R 2 R 1 R 2 R 1 R 2 Ii0000 I I 0 I I * = critical column /task/

A = 1 1 0 0 B1 = 3

1 1 0 0 B2 = 2

0 0 1 1

The construction of a generating set NC proceeds in the following way:

543

I/does A contain a row\
z ~es ~ i with exactly one
mark this a i- X unflagged ai~=S /

I with & and J I s, ~
I flag row i and I /does A contain a column\
I c°lumn J I / j with exactly one \.~e ~. .

| ~ unflagged aij=1 /4 mark this a~
.... I no l with z~ and ~ I

I I flag row i andl
5 " . column J ~ s A contaln rows\ 1 I

with unflagged)-' ~ L
\ non-zero elements / 6C-"" "." . . I

.- ImarK an aroi~rary I

22
' ~f does A contain a critical

/ <column s for Which the assignment~ no __ d --
....................... ~ (4) has not been made / |

" ' ~ ues 28
23

z~ does A contain a row i X /have at least\
yes / for which ais=1 and X /B~ assignments\

24 $ \ the assignnnent (a) has not /~' b~en made for \
shift the --~ \ been made in another / \ the tasks requi~

k~ critical column / \ring critical/
symbol A in I ~ __ \ resource R k /
row i to | 25 create a submatrix S-~ ' ~no

I element ais=11 of A composed of | 29
critical columns ~ reassign]

_ _ / s h i f t A / the I
I ~6 $ processors whic~

I call ASSIGN for A ~has been as- |
signed to a

replaced by SA T non-critical
2z . [, task using
for rows of A containing I another non-
two symbols A cancel A } critical re-

in the non-critical column I source to a
j task requi-

ring R k
I

So ~-

~e5 /do the tasks indicated byZ~ sa- l
~isfy the resource constraints ~/
~1 ~ o '

reassign /shift Z~/ the processor]
~'hich has been assigned to a non- I
critical task using Rk to a task |
which use another non-critical |
resource, without violating the |
resource constraints |

I

Fig. I. The block diagram of the algorithm for finding a generating
set NC.

544

8

check (~) the columns of A I
heving a non-zero element

in the r-th position

mark with WB=I the rows of A 1
I

which have symbols A in columns q I
ID
'~es the row marked by WB~

yes/ contain a non-zero element \
--\ belonging to the column /

19 ~ s z m ~

m~ark this element7 11 no~-~ --7
lwith the symbol A| I check (q) the columns |
-- | - - - I of A in which, on i |

~ ' ::"r 1 positions of rows I |
I shift the secondl I marked by WB, there I |

IS I symbol A of the are non-zero elements~ |
l last considered I ' ~ l increase WB by
I row, to the 1 2 ~ ~ ~ - ~ L
~A~A~ ~ -- :-- 1 Imar~ with WB+~ unmarked
I ~hems~e~co~umn I I rows of A which have
' "-" ! ' Isymb°ls A in columns W

'~ does the row marked -~ [cancel WB andgj IS
/ by WB contain a non-zero \

element belonging to) no
\ the column without /
\ symbol a_ ___/

vl yes
14 [mark this element
~ith the symbol A

shift the second symbol ~ }
of the last considered I

row, to the element of the 1
row marked by WB-I
in the same column

I decrease WB by one,I

:1)

onej

Fig. 2. The block diagram of procedure ASSIGN.

545

step: 1,3,5,6,1,3,5,

1 0 1 1 1

1 1 0 0

1 1 0 0

0 0 1 1

step: 4,1,3,5,7,

/~ ,k L-~ ~ O I

Z~ 0 0 z_..k

0 0

' Z • 1 1

step: 20,21 ,7

1 0 l Z ~ 1

1 / ~ 0 0 0

r Z ~ 1 0 0 0

o 0 /k,,,! I

step: 31,30,stop.

r°°°° 1
0 1 0 1 1 /~

1 / ~ 0 0 0
Z~ 1 0 0 0

o o 1 zh,,,,,!,

WB

1

1

6,1 ,

I i o --o o ~ 0 - - 1 - 1 1

1 0 0 0

1 0 0 0

0 1 1 1

8,9,10,
v" v"

0 1 1 1

I! 1 Z ~ O 0 0

r I I 0 0 0

0 0 Z~ 1 1

22,23,

i
0 o o o i

iO 1 0 l z ~ 1
1 Z ~ O 0 0

Z ~ 1 0 0 0

0 0 Z~ 1 1

Finally,

2,3,1,

I I - t - , o o o

I? I I °°°
le 0 e 11 I

19,
WB W ~ ioooo d I ~ o I ~ I

I I~0 0 1
r I I 0 0

, 0 0 ~ 1

24,22,28,30, 1 OOO011 0 1 0 1 t Z~

1 1Z~ 0 0 o
0 Z ~ 1 0 0

0 0 0 Z~ 1

4. SCHEDULING DEPENDENT TASKS

Let us now consider the case where, in the task set • precedence

constraints are given in the form described in Section 2.

Let F 1 denote the set o£ all tasks which may be processed betw~een

the occurence of node 1 and]+I in the precedence graph. Sets F1, l=

=1,2,°.o,N-I, will be called the main sets. Since the parts of tasks

performed in particular main sets are independent, we may apply the ap-

proach proposed for the case of independent tasks to them. Let us intro-

duce some additional definitions:

T 1 - the schedule length for the set F1,

Gj _ the set of the numbers of main sets containing task T4,j

546

H 1 - the set of processors which may process the tasks from F1,

K 1 - the set of resources required by tasks from F1,

Dlk - the set of tasks which use resource R k in F1,

<O,tij > - the total processing time of task T~ ~ on processor Xijl Pi
in the main set F1; PiE Sj, 1EGj, j=1,2,...,n.

Keeping T for the schedule length, we obtain the following LP problem.

Minimize
= 171

subject to:

T1 - Tj~-l xijl ~ 0 for all Pie H1, 1=1,2,...,N-I /8/

T 1 - ~ xij I ~ 0 for all Tj ~ F1, 1=1,2,o..,N-I /9/
Pi¢Sj

T l ~ - ~" 1 ~ X i j l ~ 0 for a l l Rk e K1, 1=1,2,...,N-1 / I 0 /
Tj~Dk Pi Sj

xijJtij = 1 1 1 1 /
l~Gj i j

j=1,2,...,n /12/ xij I ~ 0 for all l~Gj, Pie Sj,

0onditions /8/ - /10/ correspond to conditions /I/ - /3/ for each F 1.

As the solution of the above LP problem, we obtain a generating

schedule analogous to that obtained in the first stage of the method

described in Section 3. In order to construct the optimal schedule,

the second-stage algorithm for independent tasks should be applied to

eachmain set.

5. FINAL H~,~RKS

Scheduling problems, in which additional resource constraints are

taken into account, are almost all NP-complete, and thus computational-

ly intractable. Models of computer systems involving additional resour-

ces, however, are better adapted to practical situations and for this

reason they are worth considering. In this paper one such problem has

been examined, when tasks need a processor and one resource unit from

the set of additional resources for their processing. This may be, for

example, a situation in which a task requires a processor and an in-

put/output device.

The method described finds an optimal schedule in two stages: in the

first, an LP problem is solved, and in the second, which is polynomial

in time, an optimal schedule is found. This method can also be applied

547

in the case of dependent tasks, when the set of nodes /events/ in the

precedence " task-on-edge" graph is ordered.

REFERENOES

I. C. Berge: Th6orie des graphes et ses applications, C~pt. X, Dunod,
Paris 1958o

2. J. B~aBewicz: Mean flow time scheduling under resource constraints,
Preliminary Report PR-19/77, Technical University of Pozna~ /Poland/
March 1977.

3. J. B~aBewicz, W. Cellary, 2. S~owi~ski, J° W~glarz: Deterministic
problems of scheduling tasks on ~arallel processors. Part I. Sets
of independent tasks, /in Polish7 Podstawy Sterowania 6, June 1976,
155-178.

4. M.Ro Garey, R.L. Graham: Bounds for multiprocessor scheduling with
resource constraints, SIaM J. on Computing 4, 1975, 187-200o

5, M.R. Garey, R.Z. Graham, D,S. Johnson, A.C.-C. Yao: Resource con-
strained scheduling as generalized bin packing, J. Combinatorial
Theory Set. A, 21, 1976, 257-298.

6. M.R. Garey, D.S. Johnson: Complexity results for multiprocessor
scheduling under resource constraints, SIAM J° on Computing 4, 1975,
397-411.

7. R°~. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan: Optimi-
zation and approximation in deterministic sequencing and scheduling:
a survey, Report ~ 82/77, Mathematisch Centr~m, Amsterdam, October
1977.

8. K.L. Krause, V,Y. Shen, H.D. Schwetman: Analysis of several task-
scheduling algorithms for a model of multiprogramming computer sys-
tem, J.ACM 22, 1975, 522-550, 24, 1977, 527.

9. E.L° Lawler, J. Zabetoulle: Scheduling of parallel machines with
preemptions, Proc. of the IXth Internat. S~gnp° on I~thematical Pro-
gramming, Budapest, August 1976 /to appear/.

I0° R. S~owi~ski: Algorithm FEASCHE - computer program in Fortran,
Preliminary Report PR 10/77, Technical University of Pozn~,/Poland/
May 1977.

