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ABSTRACT The problem considered is that of scheduling n preemptable
tasks on m parallel processors, when each task requires for its pro-
cessing a processor and one resource unit from the set of additional
resources. The processing times of a task on different procegsors are
unrelated, We present the method for solving this problem which is com-
posed of two stages, In the first stage, a linear programming problem
is solved giving the minimum schedule length and optimal task proces-
sing times on particular processors. On the basis of this solution, in
the second stage the optimal scheduleé is consitructed taking into ac-~
count the resource constraints., Theorems are proved concerning the fea-
sibility of the second stage algorithm, and the upper bound on the num-
ber of preemptions in the optimal schedule, The cases of independent
and dependent tasks are considered.

1. INTRODUCTION

In recent years we have Dbeen able to observe increased interest in
scheduling problems associated with a certain model of a multiprocessor
computing system /see [7] for a survey/. Much effort has been applied
to problemg concerned with cases where each task only requires one pro-
cespor for its processing., In this paper, we consider an augmented mul-
tiprocessing model which allows for the possibility that certain tasks
may require the use of various limited resources during their proces-~
sing. Some special cases of this model were studied in [2,4,5,6,8] for
various performance measures, However, all the previous studies assumed
the processors to be identical, Even under this assumption, almost all
problems are NP-complete [7] and hence they are computationally intrac-
table. We ghall be concerned with a problem which seems to be also NP-
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complete, where processors are unrelated, i.e. the processing times of
tasks on different processors are arbitrary. This problem, without ad-
ditional resource comstraints, has been considered in [3,9].

In Section 2, we describe the model of the computing system and give
gome bhasic definitions. In Section 3 and 4, a two-stage method for =ol-
ving the problem 1s presented for the cases of independent and depen-
dent tasks, respectively. Also in Section 3, theorems concerning the
feasibility of the second-stage algorithm, and the upper bound on the
number of preemptions in the optimal schedule are proven. Section 5
contains some final remarks,

2, THE MODEL OF THE COMPUTING SYSTEM

Let us describe the model of the computing system considered in this
paper, Three finite sets are given, which are the main components of
the model:

- the set of tasks J = {T1,T2,...,Tn},
- the set of unrelated processors P = {P1,P2,...,Pm},
- the set of additional resources R = {R1,R2,...,Rp}.

Each task Tj requires for its processing a processor and one unit of
a specified resource, Let S. be the set of processors which may execute
Ty Associated with each fask Tj is the vector %j = [tijl, where tij ig
the time required for the execution of T, by processor Pie S., provided
that the specified additional resource unit 1s allotted to T.. The pro-
cessing of each task may be arbifrarily interrupted and restarted later
without any time penalty, possibly on another processor, Moreover, per-
migsible task orderings are determined by a set of precedence con-
straints given in the form of a "itask-on-edge" directed acyclic graph
with only one origin and only one terminal. The graph nodes /events/
are numbered from 1 to N in such a way that node J occurs not later
than node k, if j<k. Such an ordering is always possible but may not
be unique in a given precedence graph, We shall assume that only one
ordering is imposed for a given problem.

Each processor Pi is able to process at most one task at a time,
The set of tasks which may be processed on Pi will be denoted by Cye

For each resocurce Rk there is a bound Bk which gives the total num-
ber of the resource units available at any given time. The set of
tasks which require resource Rk will be denoted by D, .

The objective is to minimize the finishing time /schedule length/ T
of the set of tasks subject to the imposed constraints,
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3., SCHEDULING INDEPENDENT TASES

Let us consider the case of independent tasks, i.e. those which can
be processed simultanecusly.

We shall present a two-stage scheduling method which is a generali-
zation of the method given in [%,9] for the model without additional
resources. In the first stage, we find a generating schedule that is
one which minimizes the schedule length T and gives optimal processing
times of tasks on particular processors, but which does not necessarily
fulfil the feagibility condition that some parts of a task are not
executed simultaneougly on more than one processor. In the second stage,
on the basis of generating schedule, the optimal schedule is constructed
which ensures that the feasibility condition and resource constraints
are satisfied.

THE FIRST STAGE

Let Xije <<O,tij> be the total processing time of task Tj on pro-
cessor Pie 8.y J=15254e+,0. In order to find the generating schedule,
we have to solve bthe following linear programming /LP/ problem,

Minimize T

subject to:

T - %y =0 i21,2,00.,m /1/
TjECi
T - - x4 20 21,2000 ,n /2/
%85
BT - D Y 2,20 ke1,2,.44,D /3/
pied, Peg., 1d
37k TiY
L xij/tij = 1 321,2,000,0 /4/
b
Xgq = 0 for all PiGSj, 351,2,000,0 /5/

Condition /1/ ensures that the active time of any one processor will
not exceed T, condition /2/ - that each task is completed by time T,
and condition /3/ - that the time of using any resource type will no%
exceed T. Condition /4/ ensures that each task is completed.

Solving the above LP problem we obtain the cptimal values of Xij,
Pie S., 3=1,254e4yn,; which minimize T, However, we do not know the
tagk part start times which make the optimal schedule. Below we present
an algorithm which constructs an optimel schedule in polymomial time.
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THE SECOND STAGE

In the second stage, knowing the generating schedule, we shall con-
gtruct the optimal schedule,

Let X denote the ms*n watrix of nonnegative elements which are the
optimal values of Xij’ Pie Sj’ J=1524444,n, obtained in the first
stage. Column j /task T./ of matrix X will be called cgritiecal if

d
}f: x.. = T, Similarly, resource Rk will be called critical if Bk T =
i=t .
=§: E:: Xy 40 Let us also define the mxm diagonal matrix Y of nonne-
D, I= J
gative processor idle times: Vi; = T~ E?: Xij’ 1%1,2 000y,

=

The columns of ¥ will represent dummy tasks which do not require ad-
ditional resources. We shall denote by Z the mx(n+m) matrix composed

of matrices X and Y as indicated below:

G

Let us introduce the set NC, called the generating set, containing m
positive elements of matrix Z which are:

- exactly one element in each critical column,
- exactly one element in each of Bk columns representing tasks requi-
ring the critical resource R, ,

- no more than one element in the remaining rows and columms,

The resource reduirements of tasks represented in NC cannot exceed the
resource congtraints, i.e,

{2, : i}}zia.eNCAmjeDk}fsBk, k=1,2,.00,0.  /6/

For the set NC we have o calculate the parallel processing time DELTA
of the task paris represented in NC,

The construction of the opftimal schedule proceeds in the following
way:
1° Pind the generating set NC,
2° Calculate DELTA from the following formula

DELTA ={Zmin HOT - 25 2 2,0

T - - otherwise, N
where z_. = wuwin [z..] z = max [z.. D> z../B ]
min ijd’ max ij’ 4 ij 7kl

. L€ . . =

Zy 5 NC 213¢Nc ’I}J€Dk i=1

k
3% Decrease T and all Zije NC by DELTA, If T = O +then end the pro-

cedure, otherwise go to step 1°,
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It can be seen that set NC is constructed in such a way that at the
end of each iteration the elements of matrix X, as well as T, fulfil
conditions /1/ - /3/. Let us also note that for each set NC, DELTA is
chogen such that either one of the positive elements in the maitrix Z is
reduced to zero, or one more column or resource type becomes critical.
Each of these events may occur a finite number of times which ensures
that the optimal schedule will be obtained in a finite number of iter-
ations. Hdwever, in order to prove this, we have to demonsirate the ex-
istence of NC for each schedule fulfilling conditiomns /1/ ~ /3/ /in par-
ticular, for the generating schedule/.

THEOREM 1 For each schedule fulfilling conditions /1/ - /3/, n = m and
T > 0, there exists a generating set NC,

PROCF Let us comstruct an (m+n)«(m+n) matrix V as follows

L Y

V =
W xT

i .

where W is an n*n diagonal matrix of nonnegative elements:

m

LTI ST
As can be seen, each row sum and column sum of V is equal to T. Thus,
in matrix %-V; each row sum and column sum is equal to one. Since all
elements of the sguare matrix %-V are nomnegative, this is a doubly
stochagtic matrix which is a convex combination of permutation matrices,
as follows from the Birkhoff - von Neumann theorem [1]. It is evident
that any one of the permutation matrices in such a convex combination
can be identified with a generating set NC if it satisfies the resource
constraints /6/ and contains Bk elements representing tasks Tjé Dk’ for
each critical resource Rk' Condition /3/ ensures that at any time within
the schedule length T, it is possible t¢ find no more than Bk tasks
which use resource Rk; thus, at least one of the permutation matrices
in the above convex combination is identified with a generating set NC. ¢

3=1425000 1

Let us now pass to the problem of the bound on the number of pre-
emptions in the optimal schedule, From the linear programming formula-
tion posed in the first sitage, follows that for m > 2, in the optimel
basic feasible solution, there will be no more than Zn+mt+p positive
variables. In fact, there will be no more than n+v1+v2+v posgitive var-
iables, where v,,V,,Vs are the numbers of inequalities /1/, /2/ and /3/
correspondingly, in which variables transforming them into egualities
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are equal to zero, In other words, vy is the number of processors with
zero idle time, Vo is the number of critical tasks, and A& ig the number
of critical resources. But 1 < vy £m 0< Vs <m-1 and 0 < v3 < g,
where g € m is the maximum nuwmber of resource types for which %;IEK-S e

Hence, in the optimal solution, there will be no more than n+2mt+g-1
positive variables, one of which is T,

Thus, if n > m, there exists a generating schedule with no more than
n+2m+g-2 positive X4 values, If we could construct an optimal schedule
without introducing additional preempitions, then the upper bound on the
nuuber of preemptions in the optimal schedule would be equal to 2m+g-2.
However, the second-stage algorithm generally introduces additional
preeuptions., We shall now establish an upper bound on this number,

First, let us make a certain modification to the matrix Z with the
objective of reducing the number of preemptions in the opiimal schedule,
This modification is also bereficial for the running time of the algo-
rithm for finding the gemerating set NC, which will be discussed later,
The idea of this modification is to replace all the tasks /including
the dummies/ using the same resource type, which are assigned to only
one and the same processor in the generating schedule, by a new task.
At the end of the second stage, we have to create a schedule for the
original set of tasks by reassigning the time intervals DELTA obtained
for the new tasks, to the tasks which they replaced,

THEOREM 2 The upper bound on the number of preemptions in the optimal
schedule is equal to 2m2-4m+m(g-ﬂ-ﬂn(jN-1)+2, where g<m and vy <
< min [ n-2m-g+2, mp].

PROOF The wodified matrix %’ will contain Vot vy columns /tasks/ and
no more than v0+vN+v1+v2+v3~1 positive elements, where Vs is the smal-
lest number of original tasks and Vg - the maximum number of new tasks.
Hence, Vs < v1+v2+v3—1, and AN is bounded by min [n—vo, mp]. Since
each iteration of the schedule construction procedure determines the
parallel processing time of m task parts, the procedure will terminate
with [m (number of iterations) - (v0+vN)] preemptions. Hence, we may
obtain a bound on the number of preemptions by bounding the number of
iterations.

We already know that after each iteration, either one of the posi-
tive elements in the matrix 7% is reduced %o zero, or one more column
becomes critical, or finally, one more of the resource itypes becomes
critical, Exactly m elements become zero in the last iteration. Thus,
there will be no more than vo+v1+v2+v3+vN—m iterations of the first
kind, -~V iterations of the second kind, and g=V3 iterations of
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the third kind, hence at most VotV ety iterations in all.

It is resonable to assume that no one of the new tasks is critical
/if such a task exists, the problem can be reduced to m-1 processors/.
Under this assumption, we can reduce the bound on the number of itera-~
tions by m. In the last iteration, m columns are critical, and some of
them were critical at the beginning /having then at least two non-zero
elements/. If a columm becomes critical, and there exists exactly one
positive element in that column, then at least one element of matrix Z2°
was reduced to gerc in that iteration, If, however, the critical column
hag at leagt two positive elements, then in a certain iteration, when
the number of positive elements in that column is reduced to one, at
least two elements of matrix Z? are reduced to zero simultaneously.
Thus, the total number of iterations is overestimated by at least m.

It follows that the bound on the number of preemptions is egual to
m(v0+v1+g+vNam) - (v0+vN). Since v, < 2m-2+g, v, <m, and nzm,
we obtain the thesis, ¢

Let us now pass to the description of the algorithm for finding the
generating set NC, The algorithm mekes use of the modified matrix Z°.
Let us define a zero-one matrix A of the same size as matrix Z2°:

ST D
otherwise,
For simplicity of computation, it is better fo find the set HC in ma-
trix A. The elements of A selected for the set HC will be marked with
the symbol A, to represent an assignment of the processor in that row
to the task in that column, The block diagram of the algorithm is shown
in Fig.1 and Fig.2.

This algorithm was programmed in Fortran for an ICL 1900 computer
DO]. It may easily be shown that the presented slgorithm finds the set
NC in O(vgu’) time,

EXAMPLE The following example steps through the algorithm for finding
a generating set NC, The following fictitious data are given:

Ry: Ry R, R, Ry R, Ry
1 0 0 0 0 1
01 0 1 1 A % = eritical column /task/
A=111100 0 By =3
0110 0 0 By =2
00 0 1 1 1
* *

The construction of a generating set NC proceeds in the following way:
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START

2

mark this ay 5
with A and ™9
flag row i and
column J

]

1 R
does A contain a row

yes

i with exactly one
unflagged ai.=1
d
o k

3 "
does A contain a column

J with exactly one
unflagged aij=1

noc

C

does A contain rows
with unflagged
non-zero elements

yes
8-21 I

call ASSIGN
L

yes

24 y

ghift the
symbol A in
row i to
element ais=1

|SE—

I
% no

d

for which the assignment

(a

oes A contain a row

) has not been made

)

no

22,
<£;1umn

(A) has not been made

4]

yes

4

mark this aij
with 4 and

flag row i and
column J

L

A

mark an arbitrary
unflagged 8y

and column J

j=1 with

and flag row i

does A contain a critical

g for which the assignme

$.4y€8

23

does A contain a row i

for which ais=1 and

been made in another

\\\the agsignment (A) has not

critical column

¥ no

25

create a submatrix S5SA

of A composed of
eritical columns

v

26

call ASSIGN for A

27

replaced by SAT
i

for rows of A containing
two symbols A cancel A
in the non-critical column

( sToP )

B0

N
/

!

28

have at least
assignments
yes/ D€en made for
the tasks requi
ring critical
resource Rk

29 ,L no
reassign
/shift A/ the

processors whidy
has been as-
signed %o a
non-critical
task using
another non-
critical re-
source to a
task requi-
ring Rk

|

yes

do the tasks indicated by A sa-
\jisfy the resource constraints

5

31

¥ no

reassign /shift A/ the procegsor
which has been assigned to a non-
critical task using R, to a task
which use another non-critical
regource, without violating the
regource constraints

|-

Fig. 1. The block diagram of the algorithm for finding a generating

set NC.
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8

check (v) the columms of A
heving & non~zero element
in the r-th position

9

mark with WB=1 the rows of A
which have symbols A in columns Vv

!

10
does the row marked by WB
yes / contain a non-zero element

belonging to the column
19 without symbol A
mark this element 7 no
with the symbol A check (¥) the columns
of A in which, on

20 positions of rows
shift the second merked by WB, there
symbol A of the are non-zero elements| 18
last consgidered 1 !increase WB by °n9J
row, to the 12 .
element r in mark with WB+1 unmarked
the same column rows of A which have

symbols A in columns Vv
21
{éancel WB anva b doeg the row marked

by WB contain a non-zero no |

element belonging to
the column without
symbolA
y yes
4 mark this element
with the symbol A
15 ¥
shift the second symbol A
of the last considered
row, to the element of the
row marked by WB~1
in the same column

16 i
I decrease WB by onel

17
o< 1B = 1)

no

Fig, 2. The block diagram of procedure ASSIGHN.
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step: 1,3,5,6,1,3,5, 6,1,
A—6—6—0—0—+ A0—60—0—1t
9 1 0 1 1 1 G 0—+—4+—+%
111000 11000
¢ 1100 0 1 0 0 0
0 0 0 1 1 1 0O 1 1 1
step: 4,1,3,5,7, 8,9,10,
v WB
A 60— 0 o—1 A 0o 0 0 0 1
AN—o—4—+—1 o Ao 11 11
+-Ao—6—06 1 1 Ao o o1
q 1 0 0 o0 »f0 1 1 0 0 0O
9—6—0-—A\—1—1 0 0 0 A1 1
gtep: 20,21,7 22,23,
X v WB
A0 0 0 0 1 Ao 0 o0 0 1
o1 0 1A 11 101 0 1A
1 1Aoo0ool1 |1 1A0 00O
rlo A1 0 0 0 o100 0
00 0A 1 1 00 0 A 1 1
8

Finally, NC = {231,z§6,z§3,z12,z55}.

4, SCHEDULING DEPENDENT TASKS

Let us now consider the case where, in the task set T precedence
constraints are given in the form described in Section 2,

Tet Fl denote the set of all tasks which may be processed beitween
the occurence of node 1 and 1+1 in the precedence graph. Sets Fl’ 1=
=1325000 yN~1, will be called the main sets. Since the parts of tasks
performed in particular main sets are independent, we may apply the ap-
proach proposed for the case of independent tasks to them. Let us intro-
duce some additional definitions:

T - the schedule length for the set Ty,

Gj - the set of the numbers of main sets containing task Tj,
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Hl - the set of processors which mey process the tasks from Fl’
Kl ~ the get of resources required by tasks from Fl’

Di - the set of tasks which use resource R in Fl’
131 € <p t > - the total processing tlme of task Ta on processor P
in the main get Fl, P € SJ, le€ GJ, J=1,250 00300
Keeping © for the schedule length, we obtain the following LP problem.

Minimize =1 1
T = 1 T /7/
subject to:
TZG:F %51 > for all P € Hy, 1=1,2,.0.,8-1  /8/
ot - PZS %y57 2 0 for all T, € Fy, 1=1,2,,..,8-1  /9/
€

PZGS x;0 20 for all ReKy, 1=1,2,...,5-1 /10/

ZT:J b N

Xa /ta 1 j=1 2 PRPIPEES i1 /11/
131 lj Y& s y

€G., €3,

1 GJ P sg

%41 2 0 for all 1e<;j, P € sj, 3211250 ee 9t 712/

Conditions /8/ - /10/ correspond to conditions /1/ - /3/ for each Fi.
As the solution of the above IP problem, we obitain a generating
schedule analogous to that obtained in the first stage of the method
described in Section 3, In order to construct the optimal schedule,
the second-stage algorithm for independent tasks should be applied %o
each main set.

5. FINAL REMARKS

Scheduling problems, in which additional resource constraints are
taken into account, are almost all NP-complete, and thus computational-
ly intractable, Models of computer systems Invelving additional resour-
ces, however, are better adapted to practical situations and for this
reason they are worth considering, In this paper one such problem has
been examined, when tasks need a processor and one resource unit from
the set of additional resources for thelr processing., This may be, for
example, a situation in which a task requires a processor and an in-
put/output device.

The method described finds an optimal schedule in two stages: in the

first, an IP problem is solved, and in the second, which is polynomial
in time, an optimal schedule is found. This method can also be applied
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in the case of dependent tasks, when the set of nodes /events/ in the
vrecedence " task-on-edge" graph is ordered.
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