
?

. Y a

I'

.
Scheduling Real-Time, Periodic Jobs Using Imprecise Results

Jane W. S. Liu
Kwei-Jay Lin

Swarninathan Natarajan

1304 West Springfield -Avenue
Department of Computer Science

University of Illinois
Urbana, Illinois 61801

(217) 333-0135

This work was partially supported by the NASA Contract NAG 1 613.

I Ei AS A-CR- 1805 6 2)
F d R I O O I C JOBS CSIbiG XHERECfSE BESULTS
(1Uino i s Uniu.) 2 2 I: A v a i l : b l l S HC
AC2/fiF A01 CSCL 05A Unclas

SCH ECULI UG 6 E A L-TIME. N 8 7-2 7 5 47

63/81 0069611

Scheduling Real-Time, P e r i o d i c Jobs Using Imprecise Results

ABSTRACT

A process is called a monotone process if the accuracy of its intermediate result is

non-decreasing as more time is spent t o obtain the result. The result produced by a

monotone process upon its normal termination is the desired result; the error in this result

is zero. External events such as timeouts or crashes may cause the process to terminate

prematurely. If the intermediate result produced by the process upon its premature

termination is saved and made available. the appiication may still find the resuit usable

and, hence, acceptable; such a result is said to be an imprecise one. The error in an

imprecise result is nonzero. This paper discusses the problem of scheduling periodic jobs to

meet deadlines on a system that provides the necessary programming language primitives

and run-time support for processes to return imprecise results. This problem differs from

the traditional scheduling problems since the scheduler may choose to terminate a task

before it is completed, causing it to produce an acceptable but imprecise result.

Consequently, the amounts of processor time assigned to tasks in a valid schedule can be

less than the amounts of time required to complete the tasks. A meaningful formulation of

this problem taking into account the quality of the overall result is discussed. Three

algorithms for scheduling jobs for which the effects of errors in results produced in different

periods are not cumulative are described, and their relative merits are evaluated.

I. Introduction

A real-time task must be completed by its deadline. In a hard real-time system [I] , a

timing fault is said to occur when a real-time process delivers its result too late. Often, one is

willing to accept approximate, poorer quality results that can be produced on time in order to

avoid timing faults.

This paper describes an approach to avoid timing faults in hard real-time systems. To

motivate this approach, we note tha t for many applications, the quality of the result produced by

a process improves with the length of time invested t o produce it. For example, this is true of

most iterative processes :2-4]. The result produced by an iterative process can be viewed as

consisting of two components: the returned value(s) and the tolerance (a measure of error) in the

value. The tolerance usually decreases as more iterations are carried out. Ideally, the process

executes until a result with a desirably small tolerance has been obtained. When time is limited,

it may be necessary to terminate the process before it completes a sufficient number of iterations.

The result produced by a prematurely terminated process may be not as precise as desired, but it

may still be acceptable, and therefore, can be used by the application. Other examples of

applications where the precision of the intermediate result improves as execution progresses

include dynamic programming, statistical programming techniques, and multi-phase processes

[5- lo].

We call a process a monotone process if the accuracy of its intermediate result is non-

decreasing as more time is spent to obtain the result. For the sake of discussion here, it is

reasonable to assume that the result produced by a monotone process upon its normal

termination is the desired result; this result is said to be a precise one. External events such as

timeouts, interruptions, or crashes may cause the process to terminate prematurely. If the

intermediate result produced by the process upon its premature termination is saved and made

available, the application may still find the result usable and, hence, acceptable; such a result is

said t o be an imprecise one. Concord is a system tha t provides the necessary programming

language primitives and system support for processes to return imprecise results : l l , l 2] .

Specifically, real-time processes on Concord are either iterative or multi-phased. Concord allows

the programmer to specify the intermediate result variables to be recorded and the times to

record them so tha t the resultant process is monotone. It also allows the programmer to define a

set of error indicators. The values of the error indicators are made available to the application

process along with the intermediate results. By examining these error indicators, the application

process can decide whether an intermediate result is acceptable when the desired precise result

cannot be obtained in time.

The capability to return imprecise results can be used to ensure timeliness of system

responses in hard real-time systems. In particular, deadline mechanisms based on the use of

prirr?sry a d a!ter?.ate versions [!3j ca:: be easi!y imp!emested OR Concijrd. An iteiiitive (or

multi-phase) process returning an intermediate result after each iteration (or phase) accomplishes

similar objectives as a set of multi-version processes tha t have different execution times. In both

cases, the intent is to provide timely, but possibly degraded. services by making results that are

of poorer quality available when the desired results cannot be obtained in time. However, since

only one process for all versions is executed on Concord rather than one process per version, the

overhead of coordinating multiple processes is avoided. Furthermore, our approach allows

dynamic scheduling of real-time processes to meet deadlines with processors fully utilized to

make the results as precise as possible.

This paper is concerned with the problem of scheduling periodic jobs to meet deadlines on a

system such as Concord. This problem differs from traditional scheduling problems 114-161 for

the following two reasons: (1) The scheduler may choose to terminate a task before i t is

completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts

of processor time assigned to tasks in a valid schedule can be less than the amounts of time

required to complete the tasks. (2) A meaningful formulation of this problem must take into

account the qualities of the results. For these reasons, we seek to find algorithms tha t will give

us schedules in which all tasks meet their deadlines while some cost function of the result errors

is kept small.

The rest of the paper is organized as follows. Section I1 discusses the structure of the

Concord prototype system. Similarities between Concord and well-known systems such as SIFT

2

[17! and Argus 118,191 are summarized. A formal model of imprecise computations is discussed

in Section I11 to provide a theoretical basis. Section IV discusses the problem of scheduling

periodic jobs to meet deadlines making use of imprecise results. Three heuristic scheduling

algorithms are described in Section V, along with their performance. Section VI is a short

summary .

II. The Concord System

The general process str cture of Concord is based on a variation of th client-server model

[20,21]. Each

(instance of a) server (type) is split into a caflee and a supervisor. X client (caller) invokes a

service by sending an invocation request to the supervisor of the server providing the service.

When the supervisor receives the invocation request, it initializes the callee and requests the

system to schedule the callee’s execution. The supervisor executes concurrentiy with and

monitors the progress of the callee. In particular. the supervisor records intermediate results

produced by the callee at appropriate instances of callee’s execution. It also records the values of

those variables specified by the programmer as error indicators. When the callee terminates

normally, the result produced by i t is passed to the client through the supervisor. If the callee

crashes or if its execution is terminated by the scheduler, the supervisor passes to the client the

latest recorded values of the result and error indicator variables. Based on the values of error

indicators, the client can decide whether the intermediate result is acceptable.

A server type is defined for each real-time service provided by the system.

There are two Concord programming language primitives: impreturn is used in the callee

procedure to return imprecise results. impresult is used in the caller procedure to accept

imprecise results. An imprecise result along with error indicators is recorded by the supervisor in

the server whenever an impre turn statement is executed. The example shown in Figure 1

illustrates the use of this statement. The iterative procedure implements Newton’s method for

finding roots of an equation. The use of the impreturn statement allows the result variable

zguess and error indicators change and error be easily identified at compile time. These variables

are recorded each time the impre turn statement is executed. Iteration continues till the scheduler

terminates the procedure or the tolerance is satisfied. The value of the result variable recorded

3

/ * Error indicators are change and error. * I
while (abs(xnew - xguess) > tolerance) do
I
I

xguess = xnew;
xnew = xguess - f(xguess)/fprime(xguess);
change = xnew - xguess;
error = f(xnew)/f(xguess) * (xnew-xguess);
if (f(xnew)/f(xguess)*(xnew-xguess) < precision)

impreturn(xguess, change, error);
I
I

retur n(xnew);

Figure 1. Example of the impreturn construct

at the end of an iteration is the result returned to the c!ient if the procedure terminates before

the completion of the next iteration.

The semantics of the impresult statement is similar to that of the exception handling

mechanisms supported by many programming languages. The impresult construct introduces an

imprecise result handler. A client requesting an imprecise service attaches an impresult construct

to its call statement. When an imprecise result is received from the server, it is treated as an

exception condition. The imprecise result handler is invoked t o evaluate the result. When the

imprecise result is acceptable, the client resumes its execution as if it had received a final result.

The callee is terminated after the result is returned.

The prototype Concord system has two components: the language processor and the run-

time system. The Concord language processor has a compiler that converts impreturn and

impresult primitives into run-time system calls and creates a supervisor for each procedure that

will return imprecise results. The language processor also has a loader which can distribute a

concurrent program in a distributed environment. Currently, each program is divided into

modules for distribution among processors by the programmer. The general Concord run-time

support is a layered distributed system. The prototype Concord system makes use of the run-

time system designed for the Resilient Procedure (RP) project 1221. The RP supports imprecision

4

arising from multi-version software [23] and hardware.

In this paper, we are concerned only with the portion of Concord that runs on the

multiprocessor system Encore Multimax. Communication delays between clients and servers on

this tightly-coupled system are negligibly small. The task of assigning processors to execute

invoked procedures is carried out by a scheduler. When the execution of a procedure is

preempted by the scheduler t o be resumed later, no result is returned t o the client. A result is

returned only when the callee procedure terminates either normally or involuntarily. The latter

occurs when the scheduler terminates the callee procedure.

We note that Concord servers as described above can be naturally implemented as objects

in object-based systems [17,18,24,25]. The callee procedure in a server implements an operation

of the object. The supervisor, being a process that executes in parallel with the execution of the

invoked operation, is the handler of the server object. Since each object contains more than one

concurrently executing process, the Concord server objects must include explicit constructs for

handling concurrency. In this way, Concord servers resemble Emerald objects :?SI. Some of the

functions of supervisors in Concord servers are the same as the functions of guardians in the MIT

Argus system [16,17j.

Both SIFT il5j and Concord rely on the iterative nature of the tasks. On the SIFT system,

each task is a sequence of iterations. Each iteration is executed on a number of processors. The

result produced by each processor is recorded at the end of the iteration. The intermediate result

of the iteration is obtained by majority voting on the results recorded by different processors.

Thus, error masking is achieved. Recording results of individual iterations makes i t possible for

voting to be carried out only at the beginning of each iteration. However, the intermediate

results are not intended to be used as substitutes of the final results on SIFT as in the case of

Concord.

III. Model of Imprecise Computations

The Concord system

rigorously the correctness

imprecise computations.

is based on the notion of imprecise computations. This section defines

of (and error in) computation results and describes a formal model of

Again, we are particularly concerned with processes that have the

5

monotone property: the precision of the result produced by the continued execution of a process

with this property is monotonically non-decreasing.

More specifically, we define the correctness C of the result R produced by a process P to be

the extent to which the execution of P has progressed to produce the result. When R is not

acceptable, C has a value of 0. When the process executes to its normal termination, C is 1. Let

7 be the time required for the process to terminate normally and t, be the minimum time

required to produced an acceptable result. When a monotone process has executed for t units of

time, the correctness function C of its result is given by

if t < t ,
if t , < t S T

if t > T

where c (t) is in the range (0,l) and c j t l j 5 C(t2 j for t , 5 t , 5 t , 5 T.

To model computations that sometimes return imprecise results, we note that if the

computation environment is perfect, an independent computation P can be viewed as a

transformation function:

where S is the set of states of a state machine M , I is set of input values, and 0 is the set of

output values [26-29!. In other words, for an initial state S and input value I , the output value

0 and the new state S' are given by

(0 , s ') = P (I , S)

We call this model the precise computation model.

In practice, a program may produce any of several different acceptable results depending on

the environment. We are particularly concerned with the case when time constraints may cause

a procedure to terminate prematurely. Allowing different amounts of time for execution will

produce different results given the same input and initial state. When these results can be

regarded as approximations to the desired resuit, the original program does not define uniquely

the computation that will be performed. Rather, it defines a set of possibilities, or imprecise

computations.

For our purposes, i t suffices to model imprecise computations as follows: Let W be the set

of states of the computation environment of P . We model an independent imprecise

computation P by the following transition function:

P : I x s x w -+ 0 x s (2)

In other words, given an initial state S, input values I , and an environment s ta te W , we have

(0 , St) = P (I , s , w) (3)

This model allows us to state the notion of imprecision more rigorously. For example, an

independent, iterative (or multi-phase) Computation P that terminates normally after n

iterations (phases) can be decomposed into n subcomputations. Let Pi be the transformation

function performed by the i t h iteration (phase) which is a precise computation modeled by (1). If

P is allowed to execute until normal termination, its output and final s ta te are given by

(0 , s ') = P (I , S) = P , P , _ , P,P,(I,S) (4)

To model a corresponding imprecise iterative (multi-phase) computation, let W,,, be an

environment s ta te that will allow the first rn iterations (phases) t o complete but not the (rn +l) th

iteration (phase) for some 15 rn L n . The output value and the final s ta te of the imprecise

computation is

(O,,S',) = P (I , S , W,) = P,,,P,,,-, P,P,(1 , s) (5)

Typically, W,,, is not known. Hence, the result (Om, St,) is one of n results defined by (5).

Thus, we can model the multiple possibilities for program executions.

This model also allows us to define monotone property so tha t it can be formally treated.

We have used the approach in [26,28,29! to specify Concord servers. In this approach, each

computation object is modeled as a state machine M . The state machine is specified by two

7

basic types of functions: V-functions and O-functions. Associated with each state variable in the

state space of M is a primitive V-function. The s ta te of iM at a particular moment is specified

by the values of all primitive V-functions. Each O-function performs an operation that changes

the state of M. State transitions, called effects, are specified by assertions relating new values of

primitive V-functions to their prior values. The set of transition operations of iM is the set of

O-functions defined for the object. The interface to iM consists of a set of derived V-functions

(each of which returns a value computed from the values of primitive V-functions) and all the

O-functions of iM. Using this approach, each Concord server is an object whose interface

contains one O-function and one or more derived V-functions (one for each result and error

indicators). In the interface of the callee, which is accessed only by the supervisor in the server,

this O-function corresponds to a sequence of consecutively invoked sub-O-functions (as in

Eq.(4)). The values of the result and error indicator variables (Le., derived V-functions) are

changed by the invocations of these sub-0-functions. The monotone property can be stated in

terms of assertions relating the values of error indicators before and after the invocation of each

sub-O-function. The supervisor will record the new result and error indicators only when these

assertions are true. Thus, intermediate results with increasing correctness can be obtained even

when a computation does not have the monotone property naturally.

W . Scheduling Periodic Jobs to Meet Deadlines

We adopt here the periodic-job workload model commonly used in studies on scheduling

hard real-time jobs 130-391. (From this point on, the terminology commonly used in studies on

scheduling disciplines are used.) In this model, we are given a set J = [Jk I of K jobs. Each j ob is

a.unit of computation that can be scheduled independently from other jobs. The job Jk consists

of a periodic sequence of tusks T k , j for j = l , 2 , 3 , The execution time of any task T k , j in J k ,

denoted by T f , is the amount of processor time required t o complete the task, i.e. for the task t o

execute until its normal termination. Let Q k , j be its ready t ime before which its execution cannot

begin. Its deadline is the time instant at or prior to which i t must produce an acceptable result.

In particular, the deadline of the task Tk,, is the ready time of the task T,,,,,. Let

P k = a ! k , j + l - CY^,^ be the repeti t ion periodof the job Jk and rk = l/pk be its repeti t ion rate. (We

choose to use this term instead of the more commonly used term iteration rate to avoid possible

8

confusion due to overloading the word “iteration”.) The job fk is, therefore, specified by the 2-

tuple (p k , rk). Let p be the least common multiple of the periods p k for k = 1,2, * * K , and

r = 1 / p .

The problem of scheduling tasks to meet deadlines on a system such as Concord differs from

traditional scheduling problems in the following way: h task may be terminated before i t is

completed, producing an imprecise result. Consequently, it is possible for the total processor

time assigned to a task in a valid schedule, referred to as its assigned t ime. t o be less than its

execution time. Hereafter, by a schedule we mean one in which the assigned time of every task

,,,,ts of +:..... sa.-... : - - A e % is 3t !e& equa! tc t , f k) , the ,?.,inimL;m **..: u i i u c icyuiicu t~ PiiAtice afi .~ceptab:e

result. We refer to t , (k) as the minimal ezecution time of the tasks in job fk. .I schedule in

which the assigned time of every task is equal to its execution time i s called a precise schedule.

(We note that only precise schedules are valid schedules in the traditional sense.) If the assigned

time ~7 of a task is equal to its execution time r, the result produced by the task is of the desired

quality; the error in the result is zero. If its assigned time is less than its execution time

(corresponding to involuntary termination of the task), the error E (O) in its result is a non-

increasing function of n. We consider here only preemptive schedules. The result produced by

any task is returned to the client only at the time when the task terminates. either normally

when it attains r units of processor time, or involuntarily when its deadline is reached.

The term feasible schedule of the job set J refers to a schedule in which every task meets its

deadline. In a feasible schedule, the total processor time assigned to every task prior to its

deadline is equal to or larger than its minimal execution time. The problem of finding a feasible

schedule of periodic jobs without regard to errors in the results is a relatively easy one. - Given

a job set J, we define a periodic job set F = (Fk in which the job Fk is specified by (P k , t m (k)) . In

other words, Fk has the same repetition rate as f k but consists of tasks with execution time

t , (k) . The problem of finding a feasible schedule of the job set J is the same as the problem of

finding a precise feasible schedule of the job set F. Known results 130-391 can be applied directly

here.

9

A more meaningful formulation of the scheduling problem on a system tha t supports

imprecise computations must take into consideration the quality of the results produced by the

tasks. For this reason, we want t o find algorithms leading to feasible schedules tha t keep some

functions of errors small.

T o motivate our choices of performance measures, we note tha t for different types of jobs,

errors in the results cause different undesirable effects. As an example, consider a job consisting

of tasks that periodically receive, enhance, and transmit frames of video images. The effect of

errors in imprecise results is a reduction in the quality of the transmitted video, which is

tolerable for many applications. Hence, no tlrr?ir?g fau!t OCF,I?TS as ! c g as su%cient piocessor

time is assigned to every task before i ts deadline so that an enhanced frame of accepcable quality

is transmitted on time. For applications such as this one, errors in results produced in different

periods are not accumulative. We referred jobs of this type as type N(on-accumulative) jobs.

A reasonable performance measure for type N jobs is the average error of all results. Given

a feasible schedule of the job set J, the average error is defined as follows: Let the error in the

result produced by the task Tk,] when its assigned time is ukl be denoted by E k (b k]) . Let iVk be

the number of consecutive periods over which the average error in job Jk is computed. At any

time s beyond the deadline of the (lVk+-l)th task but, before the deadline r?f the (-V,--I)th task

in Jk for some i, the average error in job Jk is

where gke is the processor time attained by the current task at time s . Let E k (s -) be the

contribution to the average error of Jk by errors in the results produced during the Nk-1 periods

prior t o s. This equation can be rewritten as

We may choose to compute the average error over a t ime interval of duration p , the least

common multiple of all periods. In this case, the average error of Jk is approximately equal to

10

j = l + p r ,

j =1
Ek = ‘ P k E k (b k j) (7)

The average error over all jobs in J is

K

k = l
where wk are constant weights and c w k = K . (These weights reflect the relative importance of

different jobs.) Given a set of type N jobs, we want to find feasible schedules that minimize the

average error E among all feasible schedules of J .

As an example of a different type of applications, suppose that we have a periodic job in

which each task processes the returned signals from an air traffic control radar and to generate

the coordinates and the velocity of a tracked target for display purposes. When a task

terminates prematurely, it produces coarse estimates of the target position and velocity in that

period. For

example, the position of the target must be accurately displayed every 30 seconds. Hence, if the

results produced by the position computation tasks in several consecutive periods are imprecise,

the task in the next period must complete normally and produce a precise result. Otherwise. a

timing fault occurs. We referred t o jobs of this type as type A(ccumulatiue) j obs . One

formulation of the scheduling problem for type A jobs is as follows: Let the cost ,8(ek(oky)) be a

monotone non-decreasing function of the error E k (a k ,) . .kt any time s between the deadlines of

Tk

Typically, it is essential that a precise result be obtained every now and then.

and Tk(n+L) , let the cumulative cost due to errors in job Jk be

where T k l (l < n) was the last task in Jk that terminated normally and produced zero error. A

timing fault occurs if the assigned time of any task is less than tk(m) and if when the cumulative

cost rk exceeds an upper limit, the deadline of current task Tk(n+l) is reached before it at tains Tk

units of processor time. The scheduling problem we want t o consider is: given a set of jobs. find

a schedule which guarantees no timing fault while keeping the average error small.

V. Heuristic Scheduling Algorithms for Type N Jobs

We consider here a class of heuristic algorithms based on the rate-monotone algorithms

130,311. This section describes three algorithms for type N jobs.

Given a set J of type N jobs, we first use either the rate-monotonic next-fit algorithm or

the rate-monotonic first-fit algorithm [31] to assign individual jobs to processors. According to

these algorithms, jobs in J are sorted in the order of increasing period lengths and are assigned to

processors on next-fit or first-fit basis. In deciding whether a job can be assigned to a processor,

we use the minimal execution time of its tasks instead of the execution time to compute the

utilization factors. More specifically, the minimal utilization factor of job Jk is U k = ‘ k t , (k) .

Suppose that n jobs with a total minimal utilization factor u are already assigned to a processor.

If an addition job with repetition rate r , execution time r, and minimal execution time t is

assigned on this processor, the total minimal utilization factor of the n7-1 jobs is u + - r t . This job

is assigned to the processor only if

We note that these jobs are not precisely schedulable in general. However, they are schedulable

if the assigned time of every task is equal to its minimal execution time (31j.

We now assume that jobs are assigned to processors as described above and confine our

attention of the problem of how to schedule periodic jobs on a single processor to meet a!l

deadlines while keeping the average error of all jobs on the processor small. The mixed

scheduling algorithms described below use the rate-monotone algorithm to ensure that all

deadlines are met but use different strategies to improve result quality. They work as follows:

Given a job set J of K jobs t o be scheduled, we define two job sets, the f irs t set , F, and the last

set, L. For each job Jk = (p k , r k) in J, there is a job Fk = (p k , t , (k)) in the first set F. In

particular, the task T k , , (F) in the job Fk is the first portion of the task Tk, , in J k , and the

execution time of T k , j (F) is t , (k) for all j. Similarly, for each job Jk in J, there is a job

Lk = (p k 9 r k - t , , , (k)) in the last set L. The task Tk, ; (L) in the job Lk is the last portion of the

task Tk,; in J k , and the execution time of T k , j (L) is r k - t m (k) . Furthermore, the ready times and

12

deadlines of the tasks T k , j , T k , , (F) , and r k , j (L) are the same. Instead of the job set J, we

schedule the sets F and L using the following preemptive, priority-scheduling strategy: All jobs

in F are given higher priorities than jobs in L and are precisely scheduled according to the rate-

monotone algorithm. Again, by being precisely scheduled, we mean that the assigned processor

time of every task is equal to its execution time. Because

k = l

this strategy ensures tha t all tasks in F complete before their deadlines independent of how tasks

in L are scheduled Since, for every schdn!e c?f F .Ed L nbt&r?ed ir? this rn"E"Pf, there is 'E

equivalent schedule of jobs in J in which the assigned time of every task is a t least equal t o its

minimal execution time, this strategy allows us to schedule jobs in J such tha t all deadlines are

met. Moreover, only a fraction K(2 -1) je.g, 0.82 for K=l and in 2 for iarge K) of processor

time is used to execute tasks in F. Whenever there is no task in F to be executed, the spared

processor time can be used to execute tasks in L. Thus, quality of the results can be improved.

The algorithms described below differ in how priorities are assigned to jobs in L.

1 -

V.1. The Least Utilization Algorithm

To see how priorities should be assigned to jobs in L so that the average error is kept small,

let us first consider the special case of linear error functions given by

From Eq.(7) and (8), the average error of the job set J over a time interval of length p is given

by

' + P 7 k

where b k =

uk = rk Tk is the utilization fac tor of Jk.

b k . is the total processor time assigned to all tasks in Jk over prk periods, and
1 5 1

i a

Equation (11) suggests the following algorithm, referred to as least utilization algorithm. It

is preemptive and priority-driven. Given a job set J, we divide i t up into a first set F and a last

set L as defined above. A11 jobs in F are assigned higher priorities than the jobs in the L.

Priorities of the individual jobs in F are assigned statically on rate monotone basis, Le., jobs with

higher repetition rates are assigned higher priorities. Priorities of jobs in L are assigned also

statically but according to their values of the ratio W k / U k . The larger this ratio is, the higher

the priority. (When the constant w k for all jobs are the same, jobs with smaller utilization

factors are assigned higher priorities, and hence the name of this algorithm.) Without loss of

generality, let

w 1 w2 W K - > - > > -
CJI (72 UK

At any time when there is no task in F to be executed, the processor is asigned to execute the

current task in L, until i t is completed. If the processor is free after the current task in L , is

completed, i t is asigned to execute the current task in L,, and so on. As shown above, the least

utilization algorithm ensures that all deadlines are met. Furthermore, when the errors are linear

functions of the assigned time as in Eq.(lO), the average error E is minimized when jobs are

scheduled according to the least utilization algorithm.

V.2. Other Heuristic Algorithms

In general, the underlying procedure may not converge linearly, and the error in the result

produced by a task does not decrease linearly as its execution continues. When the errors are not

linear functions of assigned times, the least utilization algorithm does not minimize the average

error. We consider two additional algorithms that keep the' average error small for general error

functions. Again, they differ from the least utilization algorithm only in how priorities are

assigned to jobs in the last set L.

According to the least attained time algorithm, priorities are assigned to jobs in L

dynamically in the following manner: At any time when the processor is free from executing

tasks in F, the highest priority is assigned to the job whose current task has the least attained

processor time. In other words, tasks in the last set L are scheduled on the shortest-elapse-

14

time-first basis until their deadlines are reached. Many iterative procedures converges faster

during earlier iterations than later iterations; the error decreases faster during earlier iterations

and slower during later iterations. In this case, the least attained time algorithm yields smaller

average error than the least utilization algorithm.

T o see how the performance of least attained time algorithm depends on the behavior of the

the error function fk, we examine the average error of Jk given by Eq.(6) a t time s when the

attained processor time of the current task of Jk is less than its execution time, i.e. b k c < r k . If

additional processor time of duration 6 is assigned to this task, the average error of Jk is

.,,,.,":,"t,l.r .r:.rnn L., " y y " "*\IIIIc&"lrl, 6'. L L I ",

where ~ ~ ' (2) and E k " (2) are the first and second derivatives of the function E ~ (z) , respectively.

The former is always negative (due to monotone property.) However, for a large class of error

functions of practical interest, the second derivative of 6 k (b k c) is positive; the error functions are

convex. In this case? the optimality of the least attained time algorithm depends on the relative

values of these derivatives and the ratio ujk /Nk. An algorithm that assigns higher priorities t o

jobs with higher values of

would achieve the smallest average error. However, this algorithm is not a practical one. The

exact behavior of the error functions are typically not known making it impossible to compute

their derivatives statically. Computing the derivatives on dynamically basis would introduce

unacceptably high overhead.

When the behavior of the error function is not known, we may want to use an algorithm

that attempts to keep the average error small by making good use of slack time between the t ime

instant at which the task in the current period first attains tk(m) units of processor time to the

beginning of the next period, the ready time of the next task. The lower bound on slack times

derived in [35] provides the basis of the best slack time algorithm. It has been shown tha t after

16

the completion of the task T k , j (F) , the slack time to the ready time of the task T k , j + l (F) is a t

least equal to the O.207qk,, where q k . j is the length of the last quantum of processor time assigned

to the task Tk, , (F) . This lower bound on slack times of individual jobs allows us to bound the

slack times sk between the instant when the processor becomes free from executing tasks in F

and the ready times of the next tasks in F. At the time when the processor is free to execute

tasks in L, the best slack time algorithm assigns the highest priority to the job with the largest

slack time. We are currently evaluating the performance of this algorithm.

VI. Summary

This paper discusses the problem of scheduling periodic jobs on a system that allows tasks

to terminate prematurely and produce imprecise results. When a task terminates normally after

it is completed, the error in the result produced by it is zero. When it terminates prematurely,

the result produced by it is acceptable as long as the duration of its execution is equai to or

longer than its minimal execution time. Hence, for all deadlines to be met, it is only necessary

for the amounts of processor time assigned to all tasks prior to their deadlines be a t least equal

to their minimal execution time. A good scheduling algorithm should allow us to find feasible

schedules in which all deadlines are met and errors in the results are kept small.

Depending on the different types of undesirable effects caused by errors, jobs are classified as

type X or type A. For type N jobs, the effects caused errors in results produced in different

periods are not cumulative. A reasonable performance measure is the average error over all jobs

to be scheduled. Three algorithms that lead to feasible schedules with small average error for

type N jobs are described. Their performance in terms of average error depend on how errors as

functions of the assigned times vary. The least utilization algorithm minimizes the average error

when errors for all jobs are linearly dependent on assigned times. The least attained time

algorithm achieves less average error for the case when errors are convex functions of assigned

times.

For type A jobs, the undesirable effects of errors produced in different periods are

cumulative. One special case of practical interest is when the cost function a(z) in Eq.(9) is equal

t o 1 for z > o and is equal to zero for z =O. In this case, requiring the cumulative cost be under

16

an acceptable upper limit is the same as requiring that at least one task among ibfk tasks in each

job Jk be completed normally and produce zero error. Known algorithms such as the rate-

monotone algorithm and earliest deadline algorithm can be used to schedule this type of job to

meet deadlines. Criteria of schedulability for type A jobs will be presented in a future paper.

References

Kligerman, E. and A. D. Stoyenko ”Real-time Euclid: a language for reliable real-time

systems,” IEEE Trans. on Software Eng. vol. SE-12. No. 9, pp. 941-949, Sep. 1986.

Basu. .4.K.: “On development of iterative programs from funct ion speciticat,ions;” 1EEE

Trans. Software Eng., vol. SE-6, pp. 170-182, Mar. 1980.

Pizer, S.M., To Compute Numerically, Little, Brown and Co., Boston, MA, 1983.

Turski, W.M., “On programming by iterations.” IEEE Trans. Software Engineering, vol.

SE-10, pp. 175-178, Mar. 1984.

Dolev, D., M. Klawe, and M. Rodeh, “.4n O(n1ogn) unidirectional distributed algorithm for

extrema finding in a circle,” Journel of Algorithms, vol. 3, pp. 245-260, 1982.

Lampson, B.W., and H.E. Sturgis, “Crash recovery in a distributed storage system,”

unpublished paper, Comp. Sci. Lab., Xeros Palo Alto Research Center, Palo Alto, CA, 1976.

Chandy, K. M., J. Misra, and L.M. Haas, “Distributed deadlock detection,” ACM

Transactions on Computer Systems, vol.1, No.2, pp. 144-156, May 1983.

Bellman, R. and S. Dreyfus, Applied Dynamic Programming, Princeton University Press,

Princeton, N.J., 1962.

Shreider, Y., ed., Method of Statistical Testing: Monte Carlo Method, Elsevier Publishing

Company, New York, 1964.

Rabin, M.O., “Randomized Byzantine generals,” in Proc . 24th Symp. Foundations of

Comput. Sci., Tucson, AZ, pp. 403-409, Nov. 1983.

17

I

ill) Lin, K. J., S. Natarajan, and J. W. S. Liu, ”Concord: a system of imprecise computations,’’

t o appear in the Proceedings of the 1987 I E E E Compsac! Japan, October, 1987.

[12! Lin, K. J., S. Natarajan, and J. W. S. Liu, “Imprecise results: Utilizing partial

computations in real-time systems,” submitted.

1131 Liestman, A. L. and R. H. Campbell, “A fault-tolerant scheduling problem,” I E E E

Transactions o n Software Engineering, vol. SE-12, No. lo., pp. 1089-1095, Oct. 1986.

[14; Coffman, E. G. Jr. and R. Graham Scheduling Theory, John Wiley and Sons, New York.

l l51 . . Lenstra, J. K. and A. H. G. Rinnooy Kan. “Schedn!ing t h x q siiice i38i: an annotated

bibliograph,” Report No. BW 188/83, Mathematisch Centrum, Amsterdam, the

Netherlands. 1983.

‘161 1 . Lenstra, J. K. and A. H. G. Risnooy Kan, “New directions in scheduling theory,”

Operations Res. Lett., vol. 2, pp. 255-259. 1984.

-17! Wensley. J. H., L. Lamport. J. Goldberg, ,M. W. Green, K. N. Levitt, P. M. Milliar-Smith,

R. E. Shostak, and C. B. Weinstock. “SIFT: design and analysis of a fault-tolerant

computer for aircraft control,” Proceedings of IEEE, Vol. 66, No. 10, pp. 1240-1253.

October, 1978.

[18] Liskov, B. and B. Scheifier, “Guardian: A methodology for robust, distributed programs,”

ACM Trans. o n Program. Lang. Syst., vol. 5, pp. 381-405, July 1983.

i19] Liskov, B., “Overview of the Argus language and system,” Lab. of Computer Science, MIT,
Programming Methodology Group Memo, 1984.

;20] Tannenbaurn, A. S., Computer Networks, pp.464-465., Prentice-Hall, NJ., 1981.

~211 Gray, J. N., “An approach to decentralized computer systems,” I E E E Transac t ion o n

Software Engineering, vol. SE-12, No. 6, pp. 684-692, Jun. 1986.

122) Lin, K.-J., “Resilient procedures - an approach t o highly available system,” in Proc . IEEE

Computer Society International Conj. on Computer Lang., Miami, pp. 98-106, Oct. 1986.

18

,

1231 Chen, L. and Avizienis, A., “N-version programming: A fault-tolerance approach to

reliability of software operation,” in Proc. 8th Symp. Fault- Tolerance Computing, pp. 3-9,

1978.

1241 Almes, G. T., A. P. Black, E. D. Lazowska, “The Eden system: a technical review,” IEEE

Trans. on Software Eng., vol. SE-11, p p . 43-58, Jan. 1985.

:25] Black, A., N. Hutchinson. E. Jul, H. Levy, and L. Carter, “Distribution and abstract typies

in Emerald,” IEEE Trans. on Software Eng., vol. SE-13, No.1, Jan. 1987.

1261 Parnas, D. L., ”A technique for software module specification with examples,” Comm.

ACM, vol. 15, No. 5, May 1972.

[27] Cheheyl, 34. H., Gasser, M., et. al., “Verifying security,” ACM Computing Surveys, vol. 13,

Yo. 3, Sep. 1981.

;28\ . . Levitt, K. N., L. Robinson, and B. A. Silverberg, “The HDM handbook,” Vols. 1-3,

Computer Science Lab., SRI International, Menlo Park, California, June 1979.

[291 Silverberg, B. A.: “An overview of the SRI hierarchical development methodology,”

Computer Science Lab, SRI International, Menlo Park. California, July 1980.

[30] Liu, C. L. and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard

real-time environment,” J. Assoc. Comput. Mach., vol. 20, pp. 46-61, 1973.

1311 Dhall, S. K. and C. L. Liu, “On a real-time scheduling problem:” Operations Res., vol. 26,

pp. 127-140, 1978.

[32] Leung, J. Y.-T. and M. L. Merrill, “A note on preemptive scheduling of periodic, real-time

tasks,” Inform. Process. Lett., vol. 11, pp. 115-118, 1980.

[33] Lawler, E. L. and C. U. Martel, “Scheduling periodically occurring tasks on multiple

processors,” Inform. Process. Lett., vol. 12, pp. 9-12, 1981.

[34] Leung, J.Y.-T. and J. Whitehead, “On the complexity of fixed-priority scheduling of

periodic, real-time tasks,” Performance Eval., vol. 2, pp. 237-250, 1982.

19

[35] Liu, C. L., J. W. S. Liu and A. L. Liestman, “Scheduling with slack times,” Acta

Inforrnatica, vol. 17, pp. 31-41, 1982.

[36] Bertossi, A.A. and M.A. Bonuccelli, “Preemptive scheduling of periodic jobs in uniform

multiprocessor systems,” Inform. Process. Lett. vol. 16, pp. 3-6, 1983.

[37] Stankovic, J., K. Rarnamritham, and S. Chang, ”Evaluation of a flexible task scheduling

algorithm for distributed hard real-time systems,” IEEE Transactions on Computers, Vol.

C-34, No. 12 pp. 1130-1144. Dec. 1985.

:38l - 1 Zhao, W. and K. Ramamritham, ”Distributed scheduling using bidding and focused

addressing,” Proceedings of IEEE Real-time Symposium, December 1985.

[39] Leinbaugh, D. W. and M. Yamini, “Guaranteed response time in a distributed hard real-

time environment,” Proceedings of Real- Time Systems Symposium, December, 1982.

