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Scheduling Real-Time, P e r i o d i c  Jobs Using Imprecise Results 

ABSTRACT 

A process is called a monotone process if the accuracy of its intermediate result is 

non-decreasing as more time is spent t o  obtain the result. The result produced by a 

monotone process upon its normal termination is the desired result; the error in this result 

is zero. External events such as timeouts or crashes may cause the process to terminate 

prematurely. If the intermediate result produced by the process upon its premature 

termination is saved and made available. the appiication may still find the resuit usable 

and, hence, acceptable; such a result is said to be an imprecise one. The error in an 

imprecise result is nonzero. This paper discusses the problem of scheduling periodic jobs to 

meet deadlines on a system that  provides the necessary programming language primitives 

and run-time support for processes to return imprecise results. This problem differs from 

the traditional scheduling problems since the scheduler may choose to  terminate a task 

before it is completed, causing it to produce an acceptable but imprecise result. 

Consequently, the amounts of processor time assigned to tasks in a valid schedule can be 

less than the amounts of time required to complete the tasks. A meaningful formulation of 

this problem taking into account the quality of the overall result is discussed. Three 

algorithms for scheduling jobs for which the effects of errors in results produced in different 

periods are not cumulative are described, and their relative merits are evaluated. 



I. Introduction 

A real-time task must be completed by its deadline. In a hard real-time system [ I ] ,  a 

timing fault is said to occur when a real-time process delivers its result too late. Often, one is 

willing to  accept approximate, poorer quality results that  can be produced on time in order to 

avoid timing faults. 

This paper describes an approach to avoid timing faults in hard real-time systems. To 

motivate this approach, we note tha t  for many applications, the quality of the result produced by 

a process improves with the length of time invested t o  produce it. For example, this is true of 

most iterative processes :2-4]. The result produced by an iterative process can be viewed as 

consisting of two components: the returned value(s) and the tolerance (a  measure of error) in the 

value. The tolerance usually decreases as more iterations are carried out. Ideally, the process 

executes until a result with a desirably small tolerance has been obtained. When time is limited, 

it may be necessary to terminate the process before it completes a sufficient number of iterations. 

The result produced by a prematurely terminated process may be not as precise as desired, but it 

may still be acceptable, and therefore, can be used by the application. Other examples of 

applications where the precision of the intermediate result improves as execution progresses 

include dynamic programming, statistical programming techniques, and multi-phase processes 

[ 5- lo]. 

We call a process a monotone process if the accuracy of its intermediate result is non- 

decreasing as more time is spent to obtain the result. For the sake of discussion here, it  is 

reasonable to  assume that  the result produced by a monotone process upon its normal 

termination is the desired result; this result is said to be a precise one. External events such as 

timeouts, interruptions, or crashes may cause the process to  terminate prematurely. If the 

intermediate result produced by the process upon its premature termination is saved and made 

available, the application may still find the result usable and, hence, acceptable; such a result is 

said t o  be an imprecise one. Concord is a system tha t  provides the necessary programming 

language primitives and system support for processes to return imprecise results : l l , l 2 ] .  

Specifically, real-time processes on Concord are either iterative or multi-phased. Concord allows 



the programmer to specify the intermediate result variables to  be recorded and the times to  

record them so tha t  the resultant process is monotone. It also allows the programmer to define a 

set of error indicators. The values of the error indicators are made available to the application 

process along with the intermediate results. By examining these error indicators, the application 

process can decide whether an intermediate result is acceptable when the desired precise result 

cannot be obtained in time. 

The capability to return imprecise results can be used to  ensure timeliness of system 

responses in hard real-time systems. In particular, deadline mechanisms based on the use of 

prirr?sry a d  a!ter?.ate versions [!3j ca:: be easi!y imp!emested OR Concijrd. An iteiiitive (or 

multi-phase) process returning an intermediate result after each iteration (or phase) accomplishes 

similar objectives as a set of multi-version processes tha t  have different execution times. In both 

cases, the intent is to provide timely, but possibly degraded. services by making results that  are 

of poorer quality available when the desired results cannot be obtained in time. However, since 

only one process for all versions is executed on Concord rather than one process per version, the 

overhead of coordinating multiple processes is avoided. Furthermore, our approach allows 

dynamic scheduling of real-time processes to  meet deadlines with processors fully utilized to 

make the results as precise as possible. 

This paper is concerned with the problem of scheduling periodic jobs to meet deadlines on a 

system such as Concord. This problem differs from traditional scheduling problems 114-161 for 

the following two reasons: (1) The scheduler may choose to terminate a task before i t  is 

completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts 

of processor time assigned to tasks in a valid schedule can be less than the amounts of time 

required to complete the tasks. (2) A meaningful formulation of this problem must take into 

account the qualities of the results. For these reasons, we seek to find algorithms tha t  will give 

us schedules in which all tasks meet their deadlines while some cost function of the result errors 

is kept small. 

The rest of the paper is organized as follows. Section I1 discusses the structure of the 

Concord prototype system. Similarities between Concord and well-known systems such as SIFT 
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[17! and Argus 118,191 are summarized. A formal model of imprecise computations is discussed 

in Section I11 to  provide a theoretical basis. Section IV discusses the problem of scheduling 

periodic jobs to  meet deadlines making use of imprecise results. Three heuristic scheduling 

algorithms are described in Section V, along with their performance. Section VI is a short 

summary . 

II. The Concord System 

The general process str  cture of Concord is based on a variation of th client-server model 

[20,21]. Each 

(instance of a)  server (type) is split into a caflee and a supervisor. X client (caller) invokes a 

service by sending an invocation request to the supervisor of the server providing the service. 

When the supervisor receives the invocation request, it initializes the callee and requests the 

system to schedule the callee’s execution. The supervisor executes concurrentiy with and 

monitors the progress of the callee. In particular. the supervisor records intermediate results 

produced by the callee at appropriate instances of callee’s execution. It  also records the values of 

those variables specified by the programmer as error indicators. When the callee terminates 

normally, the result produced by i t  is passed to the client through the supervisor. If the callee 

crashes or if its execution is terminated by the scheduler, the supervisor passes to the client the 

latest recorded values of the result and error indicator variables. Based on the values of error 

indicators, the client can decide whether the intermediate result is acceptable. 

A server type is defined for each real-time service provided by the system. 

There are two Concord programming language primitives: impreturn is used in the callee 

procedure to return imprecise results. impresult is used in the caller procedure to accept 

imprecise results. An imprecise result along with error indicators is recorded by the supervisor in 

the server whenever an impre turn statement is executed. The example shown in Figure 1 

illustrates the use of this statement. The iterative procedure implements Newton’s method for 

finding roots of an equation. The  use of the impreturn statement allows the result variable 

zguess and error indicators change and error be easily identified at compile time. These variables 

are recorded each time the impre turn statement is executed. Iteration continues till the scheduler 

terminates the procedure or the tolerance is satisfied. The value of the result variable recorded 

3 



/ *  Error indicators are change and error. * I  
while (abs(xnew - xguess) > tolerance) do 
I 
I 

xguess = xnew; 
xnew = xguess - f(xguess)/fprime(xguess); 
change = xnew - xguess; 
error = f(xnew)/f(xguess) * (xnew-xguess); 
if (f(xnew)/f(xguess)*(xnew-xguess) < precision) 

impreturn(xguess, change, error); 
I 
I 

retur n(xnew); 

Figure 1. Example of the impreturn construct 

at the end of an iteration is the result returned to  the c!ient if the procedure terminates before 

the completion of the next iteration. 

The semantics of the impresult statement is similar to  that of the exception handling 

mechanisms supported by many programming languages. The impresult construct introduces an 

imprecise result handler. A client requesting an imprecise service attaches an impresult construct 

to  its call statement. When an imprecise result is received from the server, it  is treated as an 

exception condition. The imprecise result handler is invoked t o  evaluate the result. When the 

imprecise result is acceptable, the client resumes its execution as if it had received a final result. 

The callee is terminated after the result is returned. 

The prototype Concord system has two components: the language processor and the run- 

time system. The Concord language processor has a compiler that  converts impreturn and 

impresult primitives into run-time system calls and creates a supervisor for each procedure that  

will return imprecise results. The language processor also has a loader which can distribute a 

concurrent program in a distributed environment. Currently, each program is divided into 

modules for distribution among processors by the programmer. The general Concord run-time 

support is a layered distributed system. The prototype Concord system makes use of the run- 

time system designed for the Resilient Procedure (RP) project 1221. The RP supports imprecision 
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arising from multi-version software [23] and hardware. 

In this paper, we are concerned only with the portion of Concord that  runs on the 

multiprocessor system Encore Multimax. Communication delays between clients and servers on 

this tightly-coupled system are negligibly small. The  task of assigning processors to  execute 

invoked procedures is carried out  by a scheduler. When the execution of a procedure is 

preempted by the scheduler t o  be resumed later, no result is returned t o  the client. A result is 

returned only when the callee procedure terminates either normally or involuntarily. The latter 

occurs when the scheduler terminates the callee procedure. 

We note that  Concord servers as described above can be naturally implemented as objects 

in object-based systems [17,18,24,25]. The callee procedure in a server implements an operation 

of the object. The supervisor, being a process that  executes in parallel with the execution of the 

invoked operation, is the handler of the server object. Since each object contains more than one 

concurrently executing process, the Concord server objects must include explicit constructs for 

handling concurrency. In this way, Concord servers resemble Emerald objects :?SI. Some of the 

functions of supervisors in Concord servers are the same as the functions of guardians in the MIT 

Argus system [16,17j. 

Both SIFT il5j and Concord rely on the iterative nature of the tasks. On the SIFT system, 

each task is a sequence of iterations. Each iteration is executed on a number of processors. The 

result produced by each processor is recorded at the end of the iteration. The intermediate result 

of the iteration is obtained by majority voting on the results recorded by different processors. 

Thus, error masking is achieved. Recording results of individual iterations makes i t  possible for 

voting to  be carried out only at the beginning of each iteration. However, the intermediate 

results are not intended to be used as substitutes of the final results on SIFT as in the case of 

Concord. 

III. Model of Imprecise Computations 

The Concord system 

rigorously the correctness 

imprecise computations. 

is based on the notion of imprecise computations. This section defines 

of (and error in) computation results and describes a formal model of 

Again, we are particularly concerned with processes that  have the 

5 



monotone property: the precision of the result produced by the continued execution of a process 

with this property is monotonically non-decreasing. 

More specifically, we define the correctness C of the result R produced by a process P to be 

the extent to which the execution of P has progressed to  produce the result. When R is not 

acceptable, C has a value of 0. When the process executes to its normal termination, C is 1. Let 

7 be the time required for the process to terminate normally and t, be the minimum time 

required to produced an acceptable result. When a monotone process has executed for t units of 

time, the correctness function C of its result is given by 

if t < t ,  
if t ,  < t  S T  

if t > T  

where c ( t )  is in the range (0,l)  and c j t l j  5 C( t2 j  for t ,  5 t ,  5 t ,  5 T. 

To model computations that  sometimes return imprecise results, we note that  if the 

computation environment is perfect, an independent computation P can be viewed as a 

transformation function: 

where S is the set of states of a state machine M ,  I is set of input values, and 0 is the set of 

output values [26-29!. In other words, for an initial state S and input value I ,  the output value 

0 and the new state S' are given by 

( 0 , s ' )  = P ( I , S )  

We call this model the precise computation model. 

In practice, a program may produce any of several different acceptable results depending on 

the environment. We are particularly concerned with the case when time constraints may cause 

a procedure to  terminate prematurely. Allowing different amounts of time for execution will 

produce different results given the same input and initial state. When these results can be 

regarded as approximations to the desired resuit, the original program does not define uniquely 

the computation that  will be performed. Rather, it  defines a set of possibilities, or imprecise 



computations. 

For our purposes, i t  suffices to model imprecise computations as follows: Let W be the set 

of states of the computation environment of P .  We model an independent imprecise 

computation P by the following transition function: 

P : I x  s x w -+ 0 x s (2) 

In other words, given an initial state S, input values I ,  and an environment s ta te  W ,  we have 

( 0 , St) = P ( I ,  s , w ) (3 )  

This model allows us to  state the notion of imprecision more rigorously. For example, an 

independent, iterative (or multi-phase) Computation P that  terminates normally after n 

iterations (phases) can be decomposed into n subcomputations. Let Pi be the transformation 

function performed by the i t h  iteration (phase) which is a precise computation modeled by (1). If 

P is allowed to execute until normal termination, its output and final s ta te  are given by 

( 0 , s ' )  = P ( I , S ) = P , P , _ ,  ...... P,P,(I,S) (4) 

To model a corresponding imprecise iterative (multi-phase) computation, let W,,, be an 

environment s ta te  that  will allow the first rn iterations (phases) t o  complete but not the (rn +l) th  

iteration (phase) for some 15 rn L n .  The output value and the final s ta te  of the imprecise 

computation is 

(O,,S',) = P (  I , S ,  W,) = P,,,P,,,-, ...... P,P,( 1 , s )  (5) 

Typically, W,,, is not known. Hence, the result ( Om, St, ) is one of n results defined by (5). 

Thus, we can model the multiple possibilities for program executions. 

This model also allows us to  define monotone property so tha t  it can be formally treated. 

We have used the approach in [26,28,29! to specify Concord servers. In this approach, each 

computation object is modeled as a state machine M .  The state  machine is specified by two 
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basic types of functions: V-functions and O-functions. Associated with each state variable in the 

state space of M is a primitive V-function. The s ta te  of iM at  a particular moment is specified 

by the values of all primitive V-functions. Each O-function performs an operation that  changes 

the state of M. State transitions, called effects, are specified by assertions relating new values of 

primitive V-functions to  their prior values. The set of transition operations of iM is the set of 

O-functions defined for the object. The interface to  iM consists of a set of derived V-functions 

(each of which returns a value computed from the values of primitive V-functions) and all the 

O-functions of iM. Using this approach, each Concord server is an object whose interface 

contains one O-function and one or more derived V-functions (one for each result and error 

indicators). In the interface of the callee, which is accessed only by the supervisor in the server, 

this O-function corresponds to a sequence of consecutively invoked sub-O-functions (as in 

Eq.(4)). The values of the result and error indicator variables (Le., derived V-functions) are 

changed by the invocations of these sub-0-functions. The  monotone property can be stated in 

terms of assertions relating the values of error indicators before and after the invocation of each 

sub-O-function. The supervisor will record the new result and error indicators only when these 

assertions are true. Thus, intermediate results with increasing correctness can be obtained even 

when a computation does not have the monotone property naturally. 

W .  Scheduling Periodic Jobs to Meet Deadlines 

We adopt here the periodic-job workload model commonly used in studies on scheduling 

hard real-time jobs 130-391. (From this point on, the terminology commonly used in studies on 

scheduling disciplines are used.) In this model, we are given a set J = [ Jk I of K jobs. Each j ob  is 

a.unit  of computation that  can be scheduled independently from other jobs. The job Jk consists 

of a periodic sequence of tusks T k , j  for j = l , 2 , 3 ,  ...... The execution time of any task T k , j  in J k ,  

denoted by T f ,  is the amount of processor time required t o  complete the task, i.e. for the task t o  

execute until its normal termination. Let Q k , j  be its ready  t ime before which its execution cannot 

begin. Its deadline is the time instant at or prior to  which i t  must produce an acceptable result. 

In particular, the deadline of the task Tk,, is the ready time of the task T,,,,,. Let 

P k  = a ! k , j + l  -  CY^,^ be the repeti t ion periodof the job Jk and rk = l/pk be its repeti t ion rate.  (We 

choose to  use this term instead of the more commonly used term iteration rate to avoid possible 
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confusion due to  overloading the word “iteration”.) The job fk is, therefore, specified by the 2- 

tuple ( p k ,  rk). Let p be the least common multiple of the periods p k  for k = 1,2, * * K ,  and 

r = 1 / p .  

The problem of scheduling tasks to meet deadlines on a system such as Concord differs from 

traditional scheduling problems in the following way: h task may be terminated before i t  is 

completed, producing an imprecise result. Consequently, it  is possible for the total processor 

time assigned to a task in a valid schedule, referred to as its assigned t ime.  t o  be less than its 

execution time. Hereafter, by a schedule we mean one in which the assigned time of every task 

,,,,ts of +:..... sa.-... : - - A  e % is 3t !e& equa! tc t , f k ) ,  the ,?.,inimL;m **..: u i i u c  icyuiicu t~ PiiAtice afi .~ceptab:e 

result. We refer to t , ( k )  as the minimal ezecution time of the tasks in job fk. .I schedule in 

which the assigned time of every task is equal to its execution time i s  called a precise schedule. 

(We note that only precise schedules are valid schedules in the traditional sense.) If the assigned 

time ~7 of a task is equal to its execution time r, the result produced by the task is of the desired 

quality; the error in the result is zero. If its assigned time is less than its execution time 

(corresponding to involuntary termination of the task), the error E ( O )  in its result is a non- 

increasing function of n. We consider here only preemptive schedules. The result produced by 

any task is returned to the client only at the time when the task terminates. either normally 

when it attains r units of processor time, or involuntarily when its deadline is reached. 

The term feasible schedule of the job set J refers to  a schedule in which every task meets its 

deadline. In a feasible schedule, the total processor time assigned to  every task prior to  its 

deadline is equal to or larger than its minimal execution time. The problem of finding a feasible 

schedule of periodic jobs without regard to errors in the results is a relatively easy one. - Given 

a job set J, we define a periodic job set F =  (Fk in which the job Fk is specified by ( P k , t m ( k ) ) .  In 

other words, Fk has the same repetition rate as f k  but consists of tasks with execution time 

t , ( k ) .  The problem of finding a feasible schedule of the job set J is the same as the problem of 

finding a precise feasible schedule of the job set  F. Known results 130-391 can be applied directly 

here. 
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A more meaningful formulation of the scheduling problem on a system tha t  supports 

imprecise computations must take into consideration the quality of the results produced by the 

tasks. For this reason, we want t o  find algorithms leading to  feasible schedules tha t  keep some 

functions of errors small. 

T o  motivate our choices of performance measures, we note tha t  for different types of jobs, 

errors in the results cause different undesirable effects. As an example, consider a job consisting 

of tasks that  periodically receive, enhance, and transmit frames of video images. The effect of 

errors in imprecise results is a reduction in the quality of the transmitted video, which is 

tolerable for many applications. Hence, no tlrr?ir?g fau!t OCF,I?TS as ! c g  as su%cient piocessor 

time is assigned to every task before i ts  deadline so that an enhanced frame of accepcable quality 

is transmitted on time. For applications such as this one, errors in results produced in different 

periods are not accumulative. We referred jobs of this type as type N(on-accumulative) jobs.  

A reasonable performance measure for type N jobs is the average error of all results. Given 

a feasible schedule of the job set J, the average error is defined as follows: Let the error in the 

result produced by the task Tk,] when its assigned time is ukl be denoted by E k ( b k ] ) .  Let iVk be 

the number of consecutive periods over which the average error in job Jk is computed. At  any 

time s beyond the deadline of the (lVk+-l)th task but, before the  deadline r?f the (-V,--I)th task 

in Jk for some i, the average error in job Jk is 

where gke is the processor time attained by the current task at time s .  Let E k ( s - )  be the 

contribution to the average error of Jk by errors in the results produced during the Nk-1 periods 

prior t o  s. This equation can be rewritten as 

We may choose to compute the average error over a t ime interval of duration p ,  the least 

common multiple of all periods. In this case, the average error of Jk is approximately equal to 
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j = l + p r ,  

j =1 
Ek = ‘ P k  E k ( b k j )  (7) 

The average error over all jobs in J is 

K 

k = l  
where wk are constant weights and c w k  = K .  (These weights reflect the relative importance of 

different jobs.) Given a set of type N jobs, we want to  find feasible schedules that minimize the 

average error E among all feasible schedules of J . 

As an  example of a different type of applications, suppose that  we have a periodic job in 

which each task processes the returned signals from an air traffic control radar and to generate 

the coordinates and the velocity of a tracked target for display purposes. When a task 

terminates prematurely, it produces coarse estimates of the target position and velocity in that  

period. For 

example, the position of the target must be accurately displayed every 30 seconds. Hence, if the 

results produced by the position computation tasks in several consecutive periods are imprecise, 

the task in the next period must complete normally and produce a precise result. Otherwise. a 

timing fault occurs. We referred t o  jobs of this type as type A(ccumulatiue) j obs .  One 

formulation of the scheduling problem for type A jobs is as follows: Let the cost ,8(ek(oky))  be a 

monotone non-decreasing function of the error E k ( a k , ) .  .kt any time s between the deadlines of 

Tk 

Typically, it  is essential that  a precise result be obtained every now and then. 

and Tk(n+L) ,  let the cumulative cost due to errors in job Jk be 

where T k l  ( l < n )  was the last task in Jk that terminated normally and produced zero error. A 

timing fault occurs if the assigned time of any task is less than tk(m) and if when the cumulative 

cost rk exceeds an upper limit, the deadline of current task Tk(n+l )  is reached before it at tains Tk 

units of processor time. The scheduling problem we want t o  consider is: given a set of jobs. find 

a schedule which guarantees no timing fault while keeping the average error small. 



V. Heuristic Scheduling Algorithms for Type N Jobs 

We consider here a class of heuristic algorithms based on the rate-monotone algorithms 

130,311. This section describes three algorithms for type N jobs. 

Given a set J of type N jobs, we first use either the rate-monotonic next-fit algorithm or 

the rate-monotonic first-fit algorithm [31] to assign individual jobs to  processors. According to  

these algorithms, jobs in J are sorted in the order of increasing period lengths and are assigned to  

processors on next-fit or first-fit basis. In deciding whether a job can be assigned to a processor, 

we use the minimal execution time of its tasks instead of the execution time to compute the 

utilization factors. More specifically, the minimal utilization factor of job Jk is U k  = ‘ k  t , ( k ) .  

Suppose that n jobs with a total minimal utilization factor u are already assigned to a processor. 

If an addition job with repetition rate r ,  execution time r, and minimal execution time t is 

assigned on this processor, the total minimal utilization factor of the n7-1 jobs is u + - r t .  This job 

is assigned to the processor only if 

We note that these jobs are not precisely schedulable in general. However, they are schedulable 

if the assigned time of every task is equal to its minimal execution time (31j. 

We now assume that  jobs are assigned to processors as described above and confine our 

attention of the problem of how to schedule periodic jobs on a single processor to  meet a!l 

deadlines while keeping the average error of all jobs on the processor small. The mixed 

scheduling algorithms described below use the rate-monotone algorithm to ensure that  all 

deadlines are met but use different strategies to  improve result quality. They work as follows: 

Given a job set J of K jobs t o  be scheduled, we define two job sets, the f irs t  set ,  F, and the last 

set, L. For each job Jk = ( p k , r k )  in J, there is a job Fk = ( p k , t , ( k ) )  in the first set F. In 

particular, the task T k , , ( F )  in the job Fk is the first portion of the task Tk, ,  in J k ,  and the 

execution time of T k , j ( F )  is t , ( k )  for all j. Similarly, for each job Jk in J, there is a job 

Lk = ( p k 9 r k - t , , , ( k ) )  in the last set L. The task Tk, ; (L)  in the job Lk is the last portion of the 

task Tk,; in J k ,  and the execution time of T k , j ( L )  is r k - t m ( k ) .  Furthermore, the ready times and 
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deadlines of the tasks T k , j ,  T k , , ( F ) ,  and r k , j ( L )  are the same. Instead of the job set J, we 

schedule the sets F and L using the following preemptive, priority-scheduling strategy: All jobs 

in F are given higher priorities than jobs in L and are precisely scheduled according to  the rate- 

monotone algorithm. Again, by being precisely scheduled, we mean that  the assigned processor 

time of every task is equal to its execution time. Because 

k = l  

this strategy ensures tha t  all tasks in F complete before their deadlines independent of how tasks 

in L are scheduled Since, for every schdn!e c?f F .Ed L nbt&r?ed ir? this rn"E"Pf, there is 'E 

equivalent schedule of jobs in J in which the assigned time of every task is a t  least equal t o  its 

minimal execution time, this strategy allows us to  schedule jobs in J such tha t  all deadlines are 

met. Moreover, only a fraction K(2  -1) je.g, 0.82 for K=l  and in 2 for iarge K ) of processor 

time is used to  execute tasks in F. Whenever there is no task in F to be executed, the spared 

processor time can be used to  execute tasks in L. Thus, quality of the results can be improved. 

The algorithms described below differ in how priorities are assigned to jobs in L. 

1 - 

V.1. The Least Utilization Algorithm 

To see how priorities should be assigned to  jobs in L so that the average error is kept small, 

let us first consider the special case of linear error functions given by 

From Eq.(7) and (8), the average error of the job set J over a time interval of length p is given 

by 

' + P 7 k  

where b k  = 

uk = rk Tk is the utilization fac tor  of Jk. 

b k .  is the total processor time assigned to all tasks in Jk over prk periods, and 
1 5 1  
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Equation (11) suggests the following algorithm, referred to  as least utilization algorithm. It 

is preemptive and priority-driven. Given a job set J, we divide i t  up into a first set F and a last 

set L as defined above. A11 jobs in F are assigned higher priorities than the jobs in the L. 

Priorities of the individual jobs in F are assigned statically on rate monotone basis, Le., jobs with 

higher repetition rates are assigned higher priorities. Priorities of jobs in L are assigned also 

statically but according to their values of the ratio W k / U k .  The larger this ratio is, the higher 

the priority. (When the constant w k  for all jobs are the same, jobs with smaller utilization 

factors are assigned higher priorities, and hence the name of this algorithm.) Without loss of 

generality, let 

w 1  w2 W K  - > - > ...... > - 
CJI (72 UK 

At any time when there is no task in F to be executed, the processor is asigned to execute the 

current task in L, until i t  is completed. If the processor is free after the current task in L ,  is 

completed, i t  is asigned to  execute the current task in L,, and so on. As shown above, the least 

utilization algorithm ensures that all deadlines are met. Furthermore, when the errors are linear 

functions of the assigned time as in Eq.(lO), the average error E is minimized when jobs are 

scheduled according to the least utilization algorithm. 

V.2. Other Heuristic Algorithms 

In general, the underlying procedure may not converge linearly, and the error in the result 

produced by a task does not decrease linearly as its execution continues. When the errors are not 

linear functions of assigned times, the least utilization algorithm does not minimize the average 

error. We consider two additional algorithms that  keep the' average error small for general error 

functions. Again, they differ from the least utilization algorithm only in how priorities are 

assigned to jobs in the last set L. 

According to  the least attained time algorithm, priorities are assigned to jobs in L 

dynamically in the following manner: At any time when the processor is free from executing 

tasks in F, the highest priority is assigned to the job whose current task has the least attained 

processor time. In other words, tasks in the last set L are scheduled on the shortest-elapse- 
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time-first basis until their deadlines are reached. Many iterative procedures converges faster 

during earlier iterations than later iterations; the error decreases faster during earlier iterations 

and slower during later iterations. In this case, the least attained time algorithm yields smaller 

average error than the least utilization algorithm. 

T o  see how the performance of least attained time algorithm depends on the behavior of the 

the error function fk, we examine the average error of Jk given by Eq.(6) a t  time s when the 

attained processor time of the current task of Jk is less than its execution time, i.e. b k c  < r k .  If 

additional processor time of duration 6 is assigned to this task, the average error of Jk is 

.,,,.,":,"t,l.r .r:.rnn L., " y y "  "*\IIIIc&"lrl, 6'. L L I  ", 

where ~ ~ ' ( 2 )  and E k " ( 2 )  are the first and second derivatives of the function E ~ ( z ) ,  respectively. 

The former is always negative (due to monotone property.) However, for a large class of error 

functions of practical interest, the second derivative of 6 k ( b k c )  is positive; the error functions are 

convex. In this case? the optimality of the least attained time algorithm depends on the relative 

values of these derivatives and the ratio ujk /Nk. An algorithm that  assigns higher priorities t o  

jobs with higher values of 

would achieve the smallest average error. However, this algorithm is not a practical one. The  

exact behavior of the error functions are typically not known making it impossible to  compute 

their derivatives statically. Computing the derivatives on dynamically basis would introduce 

unacceptably high overhead. 

When the behavior of the error function is not known, we may want to use an algorithm 

that  attempts to  keep the average error small by making good use of slack time between the t ime 

instant at which the task in the current period first attains tk(m) units of processor time to  the 

beginning of the next period, the ready time of the next task. The lower bound on slack times 

derived in [35] provides the basis of the best slack time algorithm. It has been shown tha t  after 
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the completion of the task T k , j ( F ) ,  the slack time to the ready time of the task T k , j + l ( F )  is a t  

least equal to the O.207qk,, where q k . j  is the length of the last quantum of processor time assigned 

to the task Tk, , (F) .  This lower bound on slack times of individual jobs allows us to bound the 

slack times sk between the instant when the processor becomes free from executing tasks in F 

and the ready times of the next tasks in F. At the time when the processor is free to execute 

tasks in L, the best slack time algorithm assigns the highest priority to  the job with the largest 

slack time. We are currently evaluating the performance of this algorithm. 

VI. Summary 

This paper discusses the problem of scheduling periodic jobs on a system that  allows tasks 

to  terminate prematurely and produce imprecise results. When a task terminates normally after 

it is completed, the error in the result produced by it is zero. When it terminates prematurely, 

the result produced by it is acceptable as long as the duration of its execution is equai to or 

longer than its minimal execution time. Hence, for all deadlines to be met, it is only necessary 

for the amounts of processor time assigned to  all tasks prior to their deadlines be a t  least equal 

to their minimal execution time. A good scheduling algorithm should allow us to find feasible 

schedules in which all deadlines are met and errors in the results are kept small. 

Depending on the different types of undesirable effects caused by errors, jobs are classified as 

type X or type A. For type N jobs, the effects caused errors in results produced in different 

periods are not cumulative. A reasonable performance measure is the average error over all jobs 

to  be scheduled. Three algorithms that  lead to  feasible schedules with small average error for 

type N jobs are described. Their performance in terms of average error depend on how errors as 

functions of the assigned times vary. The least utilization algorithm minimizes the average error 

when errors for all jobs are linearly dependent on assigned times. The  least attained time 

algorithm achieves less average error for the case when errors are convex functions of assigned 

times. 

For type A jobs, the undesirable effects of errors produced in different periods are 

cumulative. One special case of practical interest is when the cost function a(z) in Eq.(9) is equal 

t o  1 for z > o  and is equal to  zero for z =O. In this case, requiring the cumulative cost be under 

16 



an acceptable upper limit is the same as requiring that at least one task among ibfk tasks in each 

job Jk be completed normally and produce zero error. Known algorithms such as the rate- 

monotone algorithm and earliest deadline algorithm can be used to  schedule this type of job to  

meet deadlines. Criteria of schedulability for type A jobs will be presented in a future paper. 
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