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Abstract 
Managing transactions with real-time requirements 

and disk resident data presents many new problems. In 
this paper we address several: How can we schedule tran- 
sactions with deadlines? How do the real-time constraints 
affect concurrency control? How does the scheduling of 
IO requests affect the timeliness of transactions? How 
should exclusive and shared locking be handled? We 
describe a new group of algorithms for scheduling real- 
time transactions which produce serializable schedules. 
We present a model for scheduling transactions with 
deadlines on a single processor disk resident database sys- 
tem, and evaluate the scheduling algorithms through 
detailed simulation. 

1. Introduction 

A real-time database system (RTDBS) processes 
tmnsactions with timing constraints such as deadlines. 
The system guarantees serializable executions while at the 
same time minimizing the number of transactions that 
miss their deadlines. Conventional database systems 
differ from RTDB ones in that the former do not take into 
account individual transaction timing constraints in mak- 
ing scheduling decisions. Conventional real-time systems, 
on the other hand, differ from RTDB systems in that they 
assume advance knowledge of the data requirements of 
programs and their goal is to guarantee ))o missed dead- 
lines [14]. However, they do not guarantee data con- 
sistency. Such systems are called hard real-time. RTDB 
systems can be useful for applications which are both 
data-intensive and subject to real-time constraints. Such 
applications include computerized stock trading, com- 
mand and control systems and computer-integrated 
manufacturing [l, 131. 

There are many new and challenging problems in 
designing a RTDB. Two of these problems were studied 
in [l] : transaction scheduling and concurrency control. 
In particular, that paper presented several algorithms for 
resolving lock conflicts and for determining in what order 
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to execute available transactions. The algorithms were 
studied via detailed simulations. Two major assumptions 
were made in that work: (a) the database was memory 
resident, and (b) only exclusive locks were available. 

In this paper we continue our investigations of 
real-time scheduling and concurrency control. Assump- 
tions (a) and (b) have been dropped, a new set of algo- 
rithms has been developed, and some additional issues 
and measures have been considered. The new results, we 
believe, provide substantial additional insights into the 
operation of RTDB systems. 

Allowing the database to reside on disk, with a por- 
tion residing in a main memory buffer pool, introduces 
more interesting questions that one might initially ima- 
gine. For instance, the disk is now a resource that transac- 
tions must compete for. How are the disk requests to be 
scheduled? Do the same real-time priorities that worked 
for CPU scheduling work for disk scheduling? Some disk 
controllers do scheduling on their own (trying to minimize 
head movement). Does this interfere with the real-time 
scheduling? Since transactions now are suspended more 
frequently (lock waits and IO waits), there are more 
opportunities for CPU scheduling. How do the CPU 
scheduling algorithms respond? Finally, transaction com- 
mit must be considered. That is, transactions must flush 
their dirty pages to disk and write log records. What 
priorities should these operations receive? Should the log 
be placed on a separate disk? 

Shared locks also introduce a new set of challeng- 
ing questions. With exclusive locks only, conflicts always 
involve a pair of transactions, the holder and the reques- 
ter. The conflict can be resolved by comparing the priori- 
ties (e.g., earliest deadline) of each. With shared locks, 
the holder can actually be a set of concurrently reading 
transactions, each with a different deadline. If the reques- 
ter needs an exclusive lock, what is to be done? What 
priority does the group have? If the requester needs a 
shared lock, it could be granted immediately, but there 
may be other transactions already waiting for exclusive 
locks. How are the priorities of the waiting transactions 
compared against that of the new requester? Should the 
new requester be granted the shared lock or not? 

We have extended the algorithms of [l] to cope 
with disk data and shared locks. In addition, we have stu- 
died concurrency control algorithms not considered ini- 
tially, including one that promotes transactions that are 
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blocking higher priority transactions. Finally, we have 
also considered two supplementary measures (in addition 
to mean number of missed deadlines). One is the mean 
tardiness of transactions, i.e., average time by which tran- 
sactions miss their deadlines. The second is the response 
of the system to a batch of transactions that arrive at once. 
Such an “input step function” emulates a severe overload. 
Such overloads may not be frequent, but having algo- 
rithms that can cope with them gracefully is important. 

2. Model and Assumptions 

In this section we describe our basic assumptions 
and real-time transaction model. The system consists of a 
single processor. a disk-based database, and a main 
memory buffer pool. (The multiple processor case is also 
of interest, but we have not addressed it yet.) 

The unit of database granularity we consider is the 
page. Transactions access a sequence of pages. If a page 
is not found in the buffer pool, a disk read is initiated to 
transfer the page to the pool. Mod&d pages are held in 
the pool until the transaction completes. At that time, the 
log is flushed and the transaction commits. Finally, the 
modified pages are written back to disk to free space in 
the buffer pool. (This buffer management strategy can be 
characterized as not ATOMIC, not STEAL and 
FORCE [7) ) We assume that the buffer pool is large 
enough so that a transaction never has to write modilied 
pages to disk until after commit. Thus, aborting a transac- 
tion involves no disk writes. We assume that the log is 
kept on a disk (or tape) separate from the database disks 
(the most common scenario in practice). 

Each arriving transaction has a release time t, a 
deadline d, and a run time estimate E. The release time is 
the earliest time the transaction can be started and is usu- 
ally the atrival time. The deadline is the desired max- 
imum commit time. Estimate E approximates the duration 
of the transaction on an unloaded system. It takes into 
account both the CPU and disk read time involved. 
Pa*urretersr,d,andEareknowntothesystemassoonas 
the transaction arrives. However, the access pattern of the 
transaction is not known in advance. As the transaction is 
executed, it asks to read or write one page at a time. Our 
decision to assume knowledge of a run time estimate but 
no knowledge of data requirements is justified because it 
is easier to estimate the execution time of a transaction 
than to predict its data access pattern. In any case, E is 
simply an estimate that could be wrong or not given at all. 

The RTDB system schedules transactions with the 
objective of minimizing the number of missed deadlines. 
As the system runs it may observe that some transactions 
have already missed their deadlines before committing. 
We assume that all transactions must be executed eventu- 
ally, regardless of whether they are tardy or not. In this 
case, we will assume that the priority of tardy transactions 
increases, in order to limit the tardiness. Other options for 
handling tardy transactions and their performance are dis- 
cussed in [l]. 

As discussed in the introduction, we assume that 
transaction executions must be serializable [5]. (If tran- 
saction semantics were known, other strategies could be 
used [6J. ) We assume that serializability is enforced via 
a locking protocol that allows for shared and exclusive 
locks. Deadlock detection is used to find and break 
deadlocks. We have selected a locking protocol because 
locking is widely used in practice; other strategies may be 
possible [21 but are not considered here. 

3. Scheduling Algorithms 

Our scheduling algorithms have three components: 
a policy for assigning priorities to tasks, a concurrency 
control mechanism, and a policy for scheduling IO 
requests. The priority policy controls how a priority is 
assigned to a real-time transaction. The concurmncy con- 
trol mechanism can be thought of as a policy for resolving 
conllicts between two (or more) transactions that want to 
lock the same data object. Some concurrency control 
mechanisms permit deadlocks to occur. For these a 
deadlock detection and resolution mechanism is needed. 
The third component controls how scheduling of the IO 
queue is done, i.e., whether a transactions’s real-time con- 
straints are used to decide which IO request is serviced 
next. 

Each component may use only some of the avail- 
able information about a transaction. In particular we dis- 
tinguish between policies which do not make use of E, the 
runtime estimate, and those that do. A goal of our 
research is to understand how the accuracy of the runtime 
estimate affects the algorithms that use it. 

3.1. Assigning Prlorltles 

There are many ways to assign priorities to real- 
time tasks [9,10]. We have studied thme. 

First Come First Serve. This policy assigns the highest 
priority to the transaction with the earliest release time. If 
release times equal arrival times them we have the tradi- 
tional version of FCFS. ‘Ihe primary weakness of FCF!J is 
that it does not make use of deadline information. FCFS 
will discriminate against a newly arrived task with an 
urgent deadline in’favor of an older task which may not 
have such an urgent deadline. This is not desirable for 
real-time systems. 

Earliest Deadline. The tmwaction with the earliest dead- 
line has the highest priority. A major weakness of this pol- 
icy is that it can assign the highest priority to a task that 
has already missed or is about to miss its deadline. When 
this is done, the system allocates resources to a transaction 
which cannot meet its deadline in favor of a transaction 
which could meet its deadline. One way to solve this 
problem is to use an overload management policy to 
screen out transactions that have missed or am about to 
miss their deadlines [I]. 

Least Slack. For a transaction T we &fine a slack time 
S=d-(r+E-U),whereristhecurrenttime,andUis 
the amount of service time consumed by T so far. The 
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slack time is an estimate of how long we can delay the 
execution of T and still meet its deadline. If S 2 0 then we 
expect that if T is executed without interruption, it will 
finish at or before its deadline. A negative slack time is an 
estimate that it is impossible to make the deadline. A 
negative slack time results either when a transaction has 
already missed its deadline or when we estimate that it 
cannot meet its deadline. 

Note that Least Slack is very different from Earliest 
Deadline in that the priority of a task depends on how 
much service time it has received. The slack of a transac- 
tion which is executing does not change. (Its service time 
and the clock time increase equally.) The slack time of a 
transaction which is not executing decreases. Hence the 
priority of that transaction increases. 

A natural question to consider is how often to 
evaluate a transaction’s slack. We consider two methods. 
With the first, static evaluation, the slack of a transaction 
is evaluated once when the transaction arrives. This value 
is the transaction’s priority for as long as the transaction is 
in the system. (If a transaction is rolled back and restarted, 
the slack is recalculated. In effect, the transaction is re- 
entering the system as a new arrival.) Under the second 
method, continuous evuhmion, the slack is recalculated 
whenever we wish to know the transaction’s priority. This 
method yields more up-to-date information but also incurs 
more overhead. ’ 

Our performance studies have shown that some- 
times it is better to use static evaluation and sometimes it 
is better to use continuous evaluation. (See Section 5.) 
The majority of our experimental results use static evalua- 
tion. We chose this because static evaluation performed 
better than continuous at higher load settings, which is 
where we performed many of our experiments. 

? 3.2. Concurrency Control 

If vansactions are executed concurrently then we 
need a mechanisti to order the updates to the database so 
that the final schedule is serializable. Our mechanisms 
allow shared and exclusive locks. Shared locks permit 
multiple concurrent readers. The priority of a data object 
0 is delined to be the maximum priority of all transactions 
which hold a lock on object 0. If 0 is not locked then its 
priority is undefined. 

Let T be a transaction requesting a shared lock on 
object 0 which is already locked in shared mode by one 
or more transactions. Transaction T is allowed to join the 
read group only if the priority of T is greater than the 
maximum priority of all transactions, if any, which are 
waiting to lock 0 in exclusive mode. In other words, a 
reader can join a read group only if it has a higher priority 
then all waiting writers. Otherwise the reader must wait. 
Conflicts arise from incompatability of locking modes in 
the usual way. 

We are particularly interested in conflicts that can 
lead to priority inversions. A priority inversion occurs 
when a transaction T of high priority requests and blocks 

on a lock for object 0 which has a lesser priority than T. 
This means that T has a higher priority then the 
transaction(s) which holds the lock on 0. T must wait 
until the lock holder(s) releases its lock on 0, either 
voluntarily or involuntarily. Conflicts which cannot lead 
to priority inversion, i.e., the priority of the requester is 
less than the priority of the object, are handled by having 
the requester wait. Of course a deadlock detection method 
must be employed to detect cycles of waiting transactions. 
We now discuss four techniques that we use to resolve 
conflicts. 

In the following, let TR be a transaction that is 
requesting a lock on a data object 0 that is already locked 
by transaction TH. Furthermore, the lock modes are 
incompatible and TR has a higher priority than the priority 
of 0. Thus the priority of TR is greater than TH. Namely 
we have a priority inversion. 

Wait. Under this policy, priority inverting conflicts are 
handled exactly as non-priority inverting conflicts. That is, 
the requesting transaction always blocks and waits for the 
data object to become free. This is the standard method 
for most DBMS which do not execute real-time transac- 
tions. All conflicts are handled indentically and the con- 
currency control mechanism makes no effective use of 
transaction priorities. 

Wait Promote. Wait Promote handles conflicts as Wait 
does except when a priority inversion occurs. The high 
priority transaction TR will block and wait but now we 
promote the priority of the lock holder TH so it is as high 
as the priority of TR. In other words, TH inherits the prior- 
ity of TR. (Since locks are retained until commit time, TH 
will keep its inherited priority until it commits or is res- 
tarted. In the event that TH is restarted, e.g., because of 
deadlock, it assumes its normal priority. A pure imple 
men&on of priority inheritance would demote the prior- 
ity of TH if TR is aborted before TH finishes. We chose not 
to implement demotion. Our tests showed that it occurs so 
seldom that any difference in overall performance is not 
measurable.) This method for handling priority inversions 
was proposed in [12]. 

The reason for promoting TH is that it is blocking 
the execution of TR a higher priority transaction. Thus TH 
should execute at an elevated priority so that it finishes 
sooner and TR can resume execution sooner. Priority 
inheritance ensures that only a transaction with priority 
greater than TR will be able to preempt TH from the CPU. 
A transaction T, of intermediate priority, a priority greater 
than TH and less than TR, would normally be able to 
preempt TH. But with priority inheritance, T, has a lesser 
priority than TH which is now executing on behalf of TR. 

What if the object is locked by more than one tran- 
saction? In this event all transactions in the read group 
will inherit the priority of TR. Note that a priority inver- 
sion can affect only some of the transactions in a read 
group. For example, the requesting transaction may have a 
priority that is greater than only some of the transactions 
in the read group. These transactions will inherit the 
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greater priority of the requester. The priority of the other 
transactions in the read group remains unchanged. Thus 
every transaction holding a lock on object 0 has a priority 
that is at least as high as the highest priority transaction 
which is waiting for the lock. 

Finally, the property of priority inheritance is transi- 
tive. If, for example, TH is blocked by transaction THH, 
and the priority of THH is less than TR then THH will 
inherit the priority of TR. Note that when priority inheri- 
tance is combined with Least Slack, continuously 
evaluated, TH inherits not a static priority but a priority 
function which evaluates the slack of TR . 

High Priority. The idea of this policy is to resolve a 
conflict in favor of the transaction with the higher priority. 
The favored transaction, the winner of the conflict, gets 
the lock on the contested object. We implement this pol- 
icy by comparing transaction priorities at the time of the 
conflict. If the priority of TR is greater than the priority of 
object 0, and thus greater than every transaction holding a 
lock on 0, then we abort the lock holders thereby freeing 
the lock for TR. TR can resume processing; the lock hold- 
ers are rolled back and scheduled for restart If the prior- 
ity of TR is less than or equal to the priority of 0 then TR 
blocks to wait for 0 to become free. 

An interesting problem arises when we use Least 
Slack to prioritize transactions. Recall that under this pol- 
icy, a transaction’s priority depends on the amount of ser- 
vice time that it has received. Rolling back a transaction to 
its beginning reduces its effective service time to 0 and 
raises its priority under the Least Slack policy. Thus a 
transaction TH, which loses a conflict and is aborted to 
allow a higher priority transaction TR to proceed, can have 
a higher priority than TR immediately after the abort The 
next time the scheduler is invoked, TR will be preempted 
by T.+ TH may again conflict with TR initiating another 
abort and rollback. 

Our solution to this problem is to compare the prior- 
ity of TR against that of each lock holder assuming that the 
lock holder were aborted. Using the notation P(TH) to 
denote the priority of TH and P (T$) to denote the priority 
of TH were it to be aborted, we can write this algorithm as 
follows: 

High Priority Conflict Resolution Policy 

IF for any TH holding a lock on 0 
P (TH) < P (TR) AND P tti) < P tT,d 

THEN Abort each lock holder 
ELSE TR blocks 

Conditional Restart Sometimes High Rriority may be too 
conservative. Let us assume that we have chosen the first 
branch of the algorithm, i.e., TR has a greater priority than 
TH and 7$. We would like to avoid aborting TH because 
we lose all the service time that it has already consumed. 
We can be a little cleverer by using a conditional restart 
policy to resolve conflicts. The idea here is to estimate if 
TH, the transaction holding the lock, can be finished 
within the amount of time that TR, the lock requester, can 

afford to wait. Let Sa be the slack of TR and let EH - Cl, 
be the estimated remaining time of TH. (Recall that U 
denotes the elapsed service time of a transaction.) If 
Sk 2 EH - U, then we estimate that TM can finish within 
the slack of TR. If so, we let TH proceed to completion, 
release its locks and then let TR execute. This saves us 
from restarting TH. If TH cannot be finished in the slack 
time of TR then we restart TH (as in the previous algo- 
rithm). This modification yields the following algorithm: 

Conditional Restart Conflict Resolution Policy 

IF P (TH) < P (TR) AND P (Tfi) < P (TR) 
THEN 

IF EH-UHISR 
THEN TR blocks 

T” inherits the priority of TR 
ELSE Abort TH 

ELSE 
TR blocks 

Note that if TR blocks in the inner branch, then TH 
inherits the priority of TR. This inheritance is exactly the 
same as described in the Wait Promote algorithm. 

We only implement Conditional Restart if the 
conflict is one-on-one, i.e., there is no read group 
involved. We chose this because it is NP-complete to 
choose a maximal subset of readers all of which can finish 
within the slack of the requester. Furthermore we do not 
consider chained blockings as we did in our earlier 
study [l]. That is, we only make the special Conditional 
Restart decision if the requester conflicts with exactly one 
lock holder and the lock holder is not blocked waiting for 
some other lock. Experience with our earlier simulations 
indicated that chained blockings were rare, so that the 
payoff for handling them in a clever way was limited. 

3.3. IO Scheduling 

In a non memory resident database system, the disk 
is an important resource which can be managed to optim- 
ize various performance criteria. In conventional systems 
the usual goal is to maximize the throughput of the IO 
system. One way that this is accomplished is by using a 
disk scheduling algorithm (e.g., SCAN [ 1 I] ) to order the 
sequence of IO requests so that the mean seek time is 
minimized. While this may be good for maximizing 
throughput, it may be bad for a real-time system which is 
trying to meet transaction deadlines. For example, SCAN 
may order a batch of requests so that an IO request from a 
transaction with an early deadline is serviced last. 

In this paper we study the consequences of using 
algorithms to schedule IO requests based on transaction 
priorities as opposed to minimization of disk head seek 
times. We have looked at two ways to schedule the IO 
queue. 

FIFO. When FIFO is used to schedule the IO queue, 
requests are serviced,in the order in which they are gen- 
erated. This service order is somewhat related to transac- 
tion priorities because IO requests are generated by the 
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CPU, which is scheduled by priority. The ordering is 
essentially random with respect to track position on the 
disk. 

Priority. Under this policy each IO request has a priority 
which is equal to the priority of the transaction which 
issued the request. The next IO request to service is the 
one with the highest priority. Thus a newly arrived request 
from a transaction with a high priority can leapfrog over 
other requests which have been waiting longer in the IO 
queue. We also expect this ordering to be random with 
respect to track positions on the disk. 

In our model there are two types of IO requests: 
reads that are issued by unfinished transactions, and writes 
that are generated by committed transactions that are 
flushing their updates back to disk. (The log resides on a 
separate device, so it receives only log writes which are 
serviced FCFS.) Giving higher priority to reads over 
writes is desirable because it will speed the completion of 
transactions which are trying to meet their deadlines. Giv- 
ing high priority to writes does not enhance performance 
directly because the transactions which issued the writes 
have already committed. In fact, as our studies have 
shown, giving high priority to writes can decrease perfor- 
mance if it excessively delays the servicing of read 
requests. The priority of writes cannot be too low however 
as writes must be completed in order to free space in the 
memory buffer pool. 

In our experiments writes have the same priority as 
the transaction that issued them. For the priorities FCFS 
and Earliest Deadline, this means that writes are given a 
relatively high priority. (The arrival times and deadlines 
of committed transactions are usually earlier than those of 
uncommitted transactions.) Because we use static evalua- 
tion to implement Least Slack, the slack times of commit- 
ted transactions are not necessarily larger or smaller than 
those. of uncommitted transactions. 

4. Simulation Model 

Our program to simulate a RTDB was built using 
SIMPAS, a discrete system simulation language [3]. The 
names and meanings of the four parameters that control 
the configuration of the system resources are given in 
Table 1. The database log is maintained on a separate 
device which is of equal speed as the database disks. Each 
disk has its own queue of service requests. 

Parameter MeiUling Base Value 

DBsize # of pages in database 400 

MefnSize W of pages in memory buffer 200 

NunDisks # of disks 2 

IOtimt? Tiie to access disk 25ms. 

Table 1. System Resource Parameters. 

The database buffer pool is modeled as a set of 
pages each of which can contain a single database object. 
We do not model each buffer page individually, that is, 

we do not maintain a free list of pages, nor do we keep 
track of which pages have been modified. Instead we 
model the buffer pool as a collective set. When a transac- 
tion attempts to read an object, the system generates a ran- 
dom boolean variable which has the value true with pro- 
bability MemSize I DBsize. If the value is true then the 
page is in memory and the transaction can continue pro- 
cessing. If the value is false then an IO service request is 
created and placed in the input queue of the appropriate 
disk. The database is partitioned equally over the disks 
and we use the function 

to map an object i to the disk where it is stored. 

Transactions characteristics are controlled by the 
parameters listed in Table 2. Transactions enter the sys- 
tem with exponentially distributed inter-arrival times and 
they are ready to execute when they enter the system (i.e., 
release time equals arrival time). The number of objects 
accessed by a transaction is chosen from a normal distri- 
bution with mean Pages and the actual database items are 
chosen uniformly from the database. Each page is updated 
with with probability Update. Pages which are updated 
are locked exclusively, other pages are locked in shared 
mode. Updated pages are stored in the buffer pool until a 
transaction commits and then they are flushed out to disk. 

1 Parameter 1 Meaning 1 Base Value 1 

Madlack 1 Max slack as fraction of R 8 

EstErr 1 ExrorinEasfractionofR 0 

Restart 1 Tie to rollbacktransactitin 1 5 ms. 

MuActive I Liiit # of active jobs I25 

Table 2. Transaction Parameters. 

A transaction has an execution profile which alter- 
nates lock requests with equal size chunks of computation, 
one for each page accessed. Thus the total computation 
time is directly related to the number of items accessed. 
Let C denote the CPU requirement for a transaction; then 
C = Pages’ * CompFactor. (We use Paged to denote the 
actual number of pages for a specific transaction rather 
than the mean.) The IO service requirement for a transac- 
tion has two components: IO requests to read pages from 
the disk into memory and IO requests to write the 
modified pages back to the disk. Since the writing of 
updates back to disk occurs after a transaction commits, 
this IO time is not included in the nmtime estimate. Thus 
the total amount of pre-commit IO service time needed is 
I = IOtime * Pages’ * (1 - MemSize I DBsize) The total 
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runtime service needed to commit a transaction executing 
in an unloaded system is R = C +I . The accuracy of a 
transaction’s runtime estimate E with respect to R is con- 
tmlled by the parameter EstErr, E = R * (1 +&Err). 
How we choose the value of EstErr is explained later 
when we discuss the experimental results. 

The assignment of a deadline is controlled by two 
parameters MinSlack and MaxSlack which set a lower and 
upper bound respectively on a transaction’s slack time. A 
deadline is assigned by choosing a slack time uniformly 
from the range specified by the bounds. The program 
does not account for time needed to execute the lock 
manager, conllict manager. and deadlock detection 
manager. These routines are executed on a per data object 
basis and we assume that the costs of these calls are 
included in the variable that states how much CPU time is 
needed per object that a transaction accesses. Context 
switching and the time to execute the scheduler is also 
ignored. 

Deadlocks are detected by maintaining a wait-for 
graph and searching for cycles whenever a new arc is 
added to the graph. When a deadlock is detected a victim 
is selected by choosing the transaction with lesser priority 
of the two transactions which correspond to the arc which 
completed the cycle in the graph. 

In the following sections we discuss some of the 
results of eight different experiments that we performed. 
Due to space considerations we cannot present all our 
results but have selected the graphs which best illustrate 
the differences and performance of the algorithms. For 
each experiment we ran the simulation with the same 
parameters for 20 different random number seeds. Each 
run, except for the input step function experiment, contin- 
ued until at least 700 transactions were executed. For 
each algorithm tested, numerous performance statistics 
were collected and averaged over the 20 runs. In particu- 
lar we measured the percentage of transactions which 
missed their deadlines, the average amount of time by 
which transactions missed their deadlines, and the number 
of restarts caused by lock conflicts. The percentage of 
missed deadlines is calculated with the following equa- 
tion: %rnissed = 100 * (tardy jobs I 700). 

Another metric that we use is the average tardy time 
of all committed transactions. A transaction that commits 
before or on its deadline has a tardy time of zero. It is 
these averages that are plotted in the following figures. 

Note that we are not particularly interested in tran- 
saction response times as conventional performance 
evaluations of concurrency control mechanisms are. The 
reason is that response time is not critical as long as a 
transaction meets its deadline. We are interested in learn- 
ing how the various strategies are affected by load, the 
percentage of updates per transaction, the size of the 
memory buffer, and error of the runtime estimate. 

For many of the experiments the base values for 
parameters were as shown in tables 1 and 2. These values 
are not meant to model a specific real-time application but 

were chosen.as reasonable values within a wide range of 
possible values. We chose the arrival rate so that the 
corresponding CPU utilization (an average 0.84 seconds 
of computation arrive per second) is high enough to test 
the algorithms. It is more interesting to test the algorithms 
in a heavily loaded rather than lightly loaded system. (We 
return to this issue in the conclusions section.) 

Section 3 proposed three different methods for 
assigning priority and four methods for managing con- 
currency. Also IO scheduling can be done in two dif- 
ferent ways. Taking the cross product yields 24 different 
algorithms. Table 3 summarizes the methods of Section 3 
and provides the abbreviations that we will use when 
referring to them. 

Priority 

Concurrency 

FCFS - First Come First Serve 
ED - Earliest Deadline 
LS - Least Slack 
w-wait 
WP - Wait Promote 

/108thedding / ;im 1 

Table 3. Summary of Scheduling Policies. 

5. Experimental Results 

Effect of Increasing Load In this experiment we varied 
the arrival rate from 6 jobs/set to 8 jobs/set in increments 
of 0.5. The other parameters had the base values given in 
Tables 1 and 2. This set of parameters is designed to load 
the CPU more heavily than the IO system. The CPU utili- 
zation ranges from 0.72 to 0.96 seconds of computation 
arriving per second. The IO system experiences a range in 
utilization of 0.60 to 0.80 seconds of I/O service requests 
arriving per second. 

Figures 1 and 2 graph the three priority policies for 
each of the four different concurrency control strategies. 
Our first observation is that FCFS consistently performs 
worse than ED and LS. Also, where the other priority 
algorithms perform better with the concurrency control 
strategies that use promotion, FCFS does not. This is 
understandable as FCFS is a poor notion of priority for 
real-time transactions. 

The relative performance of ED and LS depends on 
the type of concurrency control that is used. Fortunately 
we can state some general rules as to when ED or LS may 
be better. The policy ED operates best under low levels of 
load and when the concurrency control strategy produces 
few restarts due to lock conflict resolution. At high load 
levels ED tends to assign high priorities to transactions 
which will miss their deadlines anyway. This can prevent 
transactions with later, but feasible, deadlines from finish- 
ing on time. Conflict resolution policies which can pro- 
duce a lot of restarts (e.g., HP and CR) work against ED 
because the restarts effectively increase the arrival rate of 
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new transactions into the system, thus increasing the load. 
Under HP and CR, LS produces fewer restarts than ED 
because LS makes use of an extra test that can prevent 
transactions from being restarted (see Section 3). 

Examining the graphs, we see that ED is better than 
LS when the simple Wait strategy is used for concurrency 
control (Figure 1). When promotion is added to the Wait 
strategy, ED and LS perform comparably although ED is 
slightly better at lower loads and LS slightly better at 
higher loads. Both policies are much better than FCFS. 

Under the two policies which restart transactions 
when conflicts occur, HP and CR, we note that LS is 
clearly the better policy when the load is high, Figure 2. 
Strategy ED performs well when the load is low but its 
performance degrades rapidly once the CPU utilization is 
greater than 0.84. 

Having discussed the priority politics we now turn 
our attention to the concurrency control policies. The pcr- 
formance of a concurrency control strategy depends on 
the priority policy used, so it is hard to compare con- 
currency without including priority. We will compare 
combinations of priority (ED and LS) and the four con- 
currency control strategies. We ignore FCFS because of 
its poor performance. Figure 3 graphs the eight combina- 
tions. 

The reader can see for himself that no one combina- 
tion is always better. ED/WP is best when the load is 
light but LS/WP is better when the load is high. Thus we 
see that WP works well with both LS and ED, but CR 
works better with LS; HP is not very good with either 
priority policy. 

Ideally we want our algorithms to schedule all tran- 
sactions such that all deadlines ate met. However, if this is 
not possible, then we would want to minimize the amount 
by which tardy transactions miss their deadlines. Figure 4 
graphs the average overdue time in seconds against arrival 
rate. With the Wait Promote strategy, we Observe that ED 
has the least average overdue time, then LS and tinally 
FCFS. These results are not surprising for it is known that 
ED minimizes the maximum task tardiness and LS max- 
imizes the minimum task tardiness [4]. The performance 
of the different concurrency strategies with respect to task 
tardiness parallels what we observed with missed dead- 
lines, namely, W and WP are best with ED, and WP and 
CR are best with LS. 

In the experiment described above, the priority pol- 
icy LS was implemented using static evaluation. We are 
also intere.:ted in learning how LS performs when con- 
tinuous evaluation is used. 

Figure 5 compares LS/WP and LS/CR for both 
static and continuous evaluation. The reader can see that 
no algorithm is best under all load settings. Under low 
arrival rates, the continuously evaluated versions of LS 
work better than the versions that use static evaluation. 
However, under higher loads, the opposite is true. This is 
an interesting and counter-intuitive result. The explanation 

is that transactions executing under LS, continuously 
evaluated, can experience priority reversals. We illustrate 
with an example. 

At time t let Ti and T2 be transactions with slack 
times of 5 and 6 seconds respectively. Since T1 has the 
lesser slack and thus the greater priority, it gains the pro- 
cessor and begins to execute. Two seconds later a new 
transaction arrives. The scheduler is invoked and slack 
times are recalculated. The slack of T1 is unchanged, the 
slack of Tz has decreased by 2 to 4. So now T2 has the 
greater priority and gains the processor. A similar event 
may occur 2 seconds later which would cause the priori- 
ties of T, and Tz to reverse again. If T1 and T2 are the 
highest priority transactions in the system, this continuous 
method of priority evaluation virtually guarantees that the 
two transactions are executed concurrently in the manner 
just described. If T1 and T2 have overlapping read and 
write sets then this scheduling method increases the likeli- 
hood that a conflict will occur. It also increases the likeli- 
hood that a deadlock will occur. Both of these events are 
undesirable. 

Biasing the Run Time Estimate The concurrency control 
strategy Conditional Restart uses the nmtime estimate to 
decide if a low priority transaction holding a lock can 
finish within the slack time of the higher priority transac- 
tion requesting the lock. We can easily describe the 
behavior of CR for the extreme values of E. When E = 0, 
CR will always judge (assuming that the lock requester 
has a positive slack, this is true if the transaction has not 
missed its deadline) that the lock holder can finish within 
the slack of the lock requester. Thus the lock requester 
will always wait for the lock holder. Since promotion is 
used by CR, this behavior is exactly the same as WP. 

At the other extreme, when E is much larger than R, 
the algorithm wilI nearly always judge that the lock holder 
cannot finish within the slack time of the lock requester. 
Thus the lock holder will be rolled back and restarted. 
This behavior is the same as the concurrency control stra- 
tegy HP. When the value of E is not so extreme CR will 
behave somewhere between WP and HP. 

The runtime estimate is also used by the priority 
policy Least Slack. We performed a number of experi- 
ments to study how biasing the runtime estimate affects 
the performance of LS. Our results showed that LS, under 
static evaluation, is surprisingly robust to inaccuracy in 
the estimate. To illustrate, we summarize a “worst case” 
experiment that yielded the largest performance degrada- 
tion. 

Half of the transactions were made to overestimate 
their runtime estimate E = R * (1 + EstErr); the other half 
underestimated E = R * (1 - EstErr). (Recall that R is the 
service time needed in an unloaded system. If all transac- 
tions over or underestimate, LS is not affected greatly.) 
The value of EsfErr was varied from 0 to 5 in increments 
of 1. (Negative nmtime estimates were converted to 
E = 0.) Figure 6 shows that even with this worst case 
bias, LS is not very sensitive to errors in the runtime esti- 
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mate. 

When continuous evaluation is used, the perfor- 
mance of LS is more sensitive to error in the runtime esti- 
mate. This is understandable since continuous evaluation 
means that the inaccurate runtime estimate will be used 
many more times to make scheduling decisons. 

Effect of Increasing Memory In this experiment we 
varied the value of MemSize from 200 to 400 in incre- 
ments of 50. The other parameters had the values shown 
in Tables 1 and 2. Thus the size of the memory resident 
fraction of the database varied from 0.5 to 1.0 of the total 
database. 

Note that the proportion of memory resident data- 
base influences the assignment of deadlines to transac- 
tions. This happens because deadlines are assigned with 
respect to the total service time, both CPU and IO, 
required by a transaction. As the memory increases, the 
IO service requirement decreases (pages are more likely 
in memory), and the deadlines are shortened propor- 
tionately. In this way we can compare the scheduling of 
sets of transactions with similar task urgencies in system 
configurations of various memory sizes. 

Our expectation, as memory size increases, is that 
all scheduling algorithms will perform better. The reason 
is that transactions will be doing much less IO and the 
time spent waiting for service in IO queues decreases. 
(CPU utilization and waiting time are unchanged.) Thus 
transactions will receive quicker service and are more 
likely to meet their deadlines. 

Figure 7 graphs the results for the four algorithms 
which schedule all transactions and use LS to assign prior- 
ity. It contirms our expectation that algorithms will pcr- 
form better as the memory size increases. The results for 
other algorithms are similar. 

Effect of Fraction of Pages Updated The value of 
Update, by controlling the size of the read and write sets. 
impacts the probability of conflict between two concurrent 
transactions. The value of Update, by determining the size 
of the writeset, also contributes to the IO load of the sys- 
tem. This is because updates are written to disk after a 
transaction commits. 

In this experiment we varied the value of Updafe 
from 0.2 to 0.8 in increments of 0.1. When Update = 0.2, 
only 20% of a transaction’s pages are locked exclusively. 
When Update = 0.8 80% of the pages accessed by a tran- 
saction are updated. The other parameters had the values 
shown in Tables 1 and 2. In this experiment the IO load 
varies from 0.49 to 0.91. 

Figure 8 shows the four different types of con- 
currency control with the ED priority policy and with IO 
scheduling done by priority. The general shape of the 
curves is as expected: when Update is large, the pcrfor- 
.mance is poor because the rate of conflict is high and 
‘because the overall IO load is high. As we saw earlier ED 
performs best with the concurrency strategies W and WP 
which cause fewer restarts than HP and CR. When Update 

is small, the conflict rate is lower and all algorithms per- 
form equally well. 

Figure 9 plots ED/W and ED/WP with priority IO 
scheduling against ED/W and ED/WP with FIFO IO 
scheduling. Somewhat surprising is the result that the ver- 
sions with IO scheduling perform worse than the versions 
without IO scheduling in the high update (right side) and 
thus high IO load part of the scale. The result is explain- 
able, however, when we note that at this end of the scale 
most of the IO, roughly 62%, consists of writing modified 
pages back to disk. As we discussed in Section 3, giving 
high priority to writes can delay the service of read 
requests with lower priorities. One conclusion that we 
can draw from this is that it may be advisable to give IO 
writes lower priorities than reads. We do not investigate 
this issue any further in this paper. 

Performance Under a Sudden Load Increase In the 
previous experiments, we studied the performance of the 
various algorithms under an increasing but steady load. In 
this experiment we study the algorithms under a different 
type of load increase namely a batch of arrivals in an oth- 
erwise idle system. To simulate this input step function we 
programmed the simulator so that a set of transactions 
arrived all at the same time. The system then executed all 
the jobs in the set. The number of jobs in the set varied 
from 20 to 60 in steps of 10. The parameters controlling 
job characteristics were the same as shown in tables 1 and 
2 except for the following differences: Pages = 10, 
CompFactor = 10, and Max-Slack = 30. The major differ- 
ence here is the change in MaxSlack. This was necessary 
to produce a set of transactions with a large amount of 
variability in deadlines. 

In reality, we would not expect all jobs in an over- 
load to arrive at the same instant, nor would we expect the 
system to be completely idle at this ,time. However, our 
idealized step function model lets us study the impact of 
an overload without distracting second order effects. If an 
algorithm performs well under a step function, we could 
also expect it to do well in a system that has plenty of 
spare capacity under normal circumstances but is sud- 
denly faced with a flurry of jobs (e.g., a radar system fac- 
ing a sudden all-out enemy attack). 

A good strategy for operation in this situation might 
be to employ an overload management policy to abort 
transactions which have missed their deadlines. If these 
transactions must be executed anyway then they should be 
restarted only after the spike has passed. We may also 
want to limit priority inversions from occurring. The rea- 
soning is that if a high priority job blocks, it will almost 
certainly miss its deadline if forced to wait on a low prior- 
ity job. Instead we may want to abort the low priority job 
and restart it later when the load has decreased. 

Figure 10 shows the four different concurrency con- 
trol policies for both the ED and LS priority assignment 
policies. IO scheduling is done according to job priority. 
It is easy to see that ED/HP is clearly the best algorithm. 
HP is also the best version of the LS algorithms The same 
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results were observed when no overload management pol- 
icy was used, although the effect was not as pronounced. 

Effect of IO Scheduling In this experiment we compared 
the versions of scheduling algorithms which use transac- 
tion priorities to schedule IO requests against versions 
which service IO requests using FIFO. To better study the 
effects, we changed the base values of three parameters to 
create a configuration where the disks are much more 
loaded then the CPU. The parameters and the new values 
were: Pages = 13, CompFactor = 5, and Update = 0.2. 
(The other parameters had the values shown in Tables 1 
and 2.) Thus the average transaction reads more pages and 
does less computation. The fraction of pages updated is 
less so the disks service more read requests than writes. 
The system load was varied by increasing the arrival rate 
from 6 jobs/set to 8 jobs/set in steps of 0.5. Hence, the 
CPU utilization varied from 0.39 to 0.52, and the IO utili- 
zation varied iiom 0.68 to 0.91. 

Figure 11 plots the four algorithms which use LS 
and FIFO against the same four algorithms using LS and 
Priority IO scheduling. The results clearly show that using 
transaction priorities to schedule IO requests can yield 
significant performance improvements over scheduling 
using FIFO. This is especially true for the two con- 
currency algorithms which use promotion, i.e., WP and 
CR. This is understandable since a transaction which 
inherits the higher priority of a blocking transaction will 
receive better service from the disk and will execute fas- 
ter. This unblocks the high priority transaction sooner, and 
it has a better chance of meetings its deadline. 

Priority is better than FIFO but both methods ignore 
disk head position and do not minimize the average seek 
time. Would a disk scheduling algorithm which minimizes 
average seek time, (e.g., SCAN) but is ignorant of tran- 
saction time constraints, yield better performance in a 
real-time system than our algorithm which considers tran- 
saction time requirements? We cannot answer this ques- 
tion directly but we have performed an experiment which 
indicates how much faster the average seek time of a 
SCAN type algorithm would have to be for it to match the 
real-time performance of our Priority algorithm. In this 
experiment we fixed the parameter settings at the values 
they had in the previous experiment and set ArrRare = 8 
job&c. Then we increased the speed of the disks by 
decreasing the value of IOtime from the initial 25 ms. to 
20 ms. in steps of 1. Figure 12 plots the performance of 
LS/WP/FlFO, which, like a SCAN type algorithm, does 
not use transaction priorities for IO scheduling. The hor- 
izontal line is the performance of LS/WP/Priority when 
IOtime =25 ms. The two curves intersect at 
IOtime = 22.8m.r indicating that a SCAN type algorithm 
must have an average seek time roughly 9% less than 
Priority in order for it to yield comparable real-time per- 
formance. Of course it is possible to design a SCAN type 
algorithm which also uses transaction prioritics, but we 
have not investigated this possibility. 

6. Conclusions 

In this paper we have presented various transaction 
scheduling options for a real-time database system. Our 
simulation results have illustrated the tradeoffs involved, 
at least under one representative database and transaction 
model. Before reaching some general conclusions, we 
would like to make two observations. 

The first ObSeNatiOII is that our base parameters 
represent a high load scenario. One could argue that such 
a scenario is “unrealistic.” However, we believe that for 
designing real-time schedulers, one must look at precisely 
these high load situations. Even though they may not 
arise frequently, one would like to have a system that 
misses as few deadlines as possible when these peeks 
occur. In other words, when a “crisis” hits and the data- 
base system is under pressure is precisely when making a 
few extra deadlines could be most important [81. 

It could also be argued that some of the differences 
between the various scheduling options is not striking. In 
many cases, the difference between one option and 
another one is a few percentage points. If we were dis- 
cussing transaction response times, then a say 10 percent 
improvement would not be considered impressive by 
some. However, our graphs show missed deadlines (in 
most cases) and we believe that this is a very different 
situation. Again, the difference between missing even one 
deadline and not missing it could be signiticant. Thus, if 
we do know that some scheduling options reduce the 
number of missed deadlines, why not go with the best 
one? 

And which are the best options? It is difficult to 
make any absolute statements, but we believe the follow- 
ing statements hold under most of the parameter ranges 
we tested. (All our additional results not shown in this 
paper also substantiate these statements.) l 

When the load is continuous and steady: 

(a) Of the tested priority policies for real-time database 
systems, Least Slack (LS) is the best overall. It always 
performed better than FCFS, and was better than ED 
under the higher load ranges. Earliest deadline (ED) is 
the second choice for assigning priorities. 

(b) Of the concurrency control policies we tested, Wait 
Promote (WP) is the best overall. It performs very well 
when combined with either LS or ED. Conditional Restart 
(CR) is the second choice for LS. CR also performs well 
with ED at low loads but poorly at high loads. Wait is the 
second choice for ED. High Priority (HP) does not do 
well with either LS or ED. 

(c) Although LS performed better at minimizing the 
number of late transactions, ED is the best choice for 
minimizing the mean tardy time of commited transactions. 

(d) When the IO system is heavily loaded, using real-time 
transacion priorities to schedule IO requests yields 
significant performance gains over scheduling IO requests 
in a FIFO manner. 
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(e) Using continuous evaluation to implement LS yields 
better performance when the load is low. Static evaluation 
achieves better performance when the load is high. Also, 
static evaluation is less sensitive to error in the nmtime 
estimate than is continuous evaluation. 

When the load is an “input step function”: 

(f) ED is the best priority policy to use. It performs better 
than LS at the higher load settings for three of the four 
concurrency control policies. 

(g) HP is the best concurrency control policy. It is the best 
of the four when combined with either ED or LS. The 
second and third choices for concurrency are CR and WP. 
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Figure 7. LS/W, LS/WP, LS/Hp, and LYCR. 
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