
Scheduling Real-Time Transactions with Disk Resident Data

Robert Abbott
Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract
Managing transactions with real-time requirements

and disk resident data presents many new problems. In
this paper we address several: How can we schedule tran-
sactions with deadlines? How do the real-time constraints
affect concurrency control? How does the scheduling of
IO requests affect the timeliness of transactions? How
should exclusive and shared locking be handled? We
describe a new group of algorithms for scheduling real-
time transactions which produce serializable schedules.
We present a model for scheduling transactions with
deadlines on a single processor disk resident database sys-
tem, and evaluate the scheduling algorithms through
detailed simulation.

1. Introduction

A real-time database system (RTDBS) processes
tmnsactions with timing constraints such as deadlines.
The system guarantees serializable executions while at the
same time minimizing the number of transactions that
miss their deadlines. Conventional database systems
differ from RTDB ones in that the former do not take into
account individual transaction timing constraints in mak-
ing scheduling decisions. Conventional real-time systems,
on the other hand, differ from RTDB systems in that they
assume advance knowledge of the data requirements of
programs and their goal is to guarantee))o missed dead-
lines [14]. However, they do not guarantee data con-
sistency. Such systems are called hard real-time. RTDB
systems can be useful for applications which are both
data-intensive and subject to real-time constraints. Such
applications include computerized stock trading, com-
mand and control systems and computer-integrated
manufacturing [l, 131.

There are many new and challenging problems in
designing a RTDB. Two of these problems were studied
in [l] : transaction scheduling and concurrency control.
In particular, that paper presented several algorithms for
resolving lock conflicts and for determining in what order

Permission to copy without fee all OT part of this material is

granted provided that the copies ape not made OT distributed for

direct commercial advantage, the VLDB copyright notice and

the title of the publication and its date appear, and notice is

given that copying is by permission oj the Very Large Data Base

Endowment. To copy otherwise, o+ to republish, requires a fee

and/or special permission from ihe Endowment.

Proceedings of the Fifteenth International

Conference on Very Large Data Bases

to execute available transactions. The algorithms were
studied via detailed simulations. Two major assumptions
were made in that work: (a) the database was memory
resident, and (b) only exclusive locks were available.

In this paper we continue our investigations of
real-time scheduling and concurrency control. Assump-
tions (a) and (b) have been dropped, a new set of algo-
rithms has been developed, and some additional issues
and measures have been considered. The new results, we
believe, provide substantial additional insights into the
operation of RTDB systems.

Allowing the database to reside on disk, with a por-
tion residing in a main memory buffer pool, introduces
more interesting questions that one might initially ima-
gine. For instance, the disk is now a resource that transac-
tions must compete for. How are the disk requests to be
scheduled? Do the same real-time priorities that worked
for CPU scheduling work for disk scheduling? Some disk
controllers do scheduling on their own (trying to minimize
head movement). Does this interfere with the real-time
scheduling? Since transactions now are suspended more
frequently (lock waits and IO waits), there are more
opportunities for CPU scheduling. How do the CPU
scheduling algorithms respond? Finally, transaction com-
mit must be considered. That is, transactions must flush
their dirty pages to disk and write log records. What
priorities should these operations receive? Should the log
be placed on a separate disk?

Shared locks also introduce a new set of challeng-
ing questions. With exclusive locks only, conflicts always
involve a pair of transactions, the holder and the reques-
ter. The conflict can be resolved by comparing the priori-
ties (e.g., earliest deadline) of each. With shared locks,
the holder can actually be a set of concurrently reading
transactions, each with a different deadline. If the reques-
ter needs an exclusive lock, what is to be done? What
priority does the group have? If the requester needs a
shared lock, it could be granted immediately, but there
may be other transactions already waiting for exclusive
locks. How are the priorities of the waiting transactions
compared against that of the new requester? Should the
new requester be granted the shared lock or not?

We have extended the algorithms of [l] to cope
with disk data and shared locks. In addition, we have stu-
died concurrency control algorithms not considered ini-
tially, including one that promotes transactions that are

Amsterdam, 1080

- 385 -

blocking higher priority transactions. Finally, we have
also considered two supplementary measures (in addition
to mean number of missed deadlines). One is the mean
tardiness of transactions, i.e., average time by which tran-
sactions miss their deadlines. The second is the response
of the system to a batch of transactions that arrive at once.
Such an “input step function” emulates a severe overload.
Such overloads may not be frequent, but having algo-
rithms that can cope with them gracefully is important.

2. Model and Assumptions

In this section we describe our basic assumptions
and real-time transaction model. The system consists of a
single processor. a disk-based database, and a main
memory buffer pool. (The multiple processor case is also
of interest, but we have not addressed it yet.)

The unit of database granularity we consider is the
page. Transactions access a sequence of pages. If a page
is not found in the buffer pool, a disk read is initiated to
transfer the page to the pool. Mod&d pages are held in
the pool until the transaction completes. At that time, the
log is flushed and the transaction commits. Finally, the
modified pages are written back to disk to free space in
the buffer pool. (This buffer management strategy can be
characterized as not ATOMIC, not STEAL and
FORCE [7)) We assume that the buffer pool is large
enough so that a transaction never has to write modilied
pages to disk until after commit. Thus, aborting a transac-
tion involves no disk writes. We assume that the log is
kept on a disk (or tape) separate from the database disks
(the most common scenario in practice).

Each arriving transaction has a release time t, a
deadline d, and a run time estimate E. The release time is
the earliest time the transaction can be started and is usu-
ally the atrival time. The deadline is the desired max-
imum commit time. Estimate E approximates the duration
of the transaction on an unloaded system. It takes into
account both the CPU and disk read time involved.
Pa*urretersr,d,andEareknowntothesystemassoonas
the transaction arrives. However, the access pattern of the
transaction is not known in advance. As the transaction is
executed, it asks to read or write one page at a time. Our
decision to assume knowledge of a run time estimate but
no knowledge of data requirements is justified because it
is easier to estimate the execution time of a transaction
than to predict its data access pattern. In any case, E is
simply an estimate that could be wrong or not given at all.

The RTDB system schedules transactions with the
objective of minimizing the number of missed deadlines.
As the system runs it may observe that some transactions
have already missed their deadlines before committing.
We assume that all transactions must be executed eventu-
ally, regardless of whether they are tardy or not. In this
case, we will assume that the priority of tardy transactions
increases, in order to limit the tardiness. Other options for
handling tardy transactions and their performance are dis-
cussed in [l].

As discussed in the introduction, we assume that
transaction executions must be serializable [5]. (If tran-
saction semantics were known, other strategies could be
used [6J.) We assume that serializability is enforced via
a locking protocol that allows for shared and exclusive
locks. Deadlock detection is used to find and break
deadlocks. We have selected a locking protocol because
locking is widely used in practice; other strategies may be
possible [21 but are not considered here.

3. Scheduling Algorithms

Our scheduling algorithms have three components:
a policy for assigning priorities to tasks, a concurrency
control mechanism, and a policy for scheduling IO
requests. The priority policy controls how a priority is
assigned to a real-time transaction. The concurmncy con-
trol mechanism can be thought of as a policy for resolving
conllicts between two (or more) transactions that want to
lock the same data object. Some concurrency control
mechanisms permit deadlocks to occur. For these a
deadlock detection and resolution mechanism is needed.
The third component controls how scheduling of the IO
queue is done, i.e., whether a transactions’s real-time con-
straints are used to decide which IO request is serviced
next.

Each component may use only some of the avail-
able information about a transaction. In particular we dis-
tinguish between policies which do not make use of E, the
runtime estimate, and those that do. A goal of our
research is to understand how the accuracy of the runtime
estimate affects the algorithms that use it.

3.1. Assigning Prlorltles

There are many ways to assign priorities to real-
time tasks [9,10]. We have studied thme.

First Come First Serve. This policy assigns the highest
priority to the transaction with the earliest release time. If
release times equal arrival times them we have the tradi-
tional version of FCFS. ‘Ihe primary weakness of FCF!J is
that it does not make use of deadline information. FCFS
will discriminate against a newly arrived task with an
urgent deadline in’favor of an older task which may not
have such an urgent deadline. This is not desirable for
real-time systems.

Earliest Deadline. The tmwaction with the earliest dead-
line has the highest priority. A major weakness of this pol-
icy is that it can assign the highest priority to a task that
has already missed or is about to miss its deadline. When
this is done, the system allocates resources to a transaction
which cannot meet its deadline in favor of a transaction
which could meet its deadline. One way to solve this
problem is to use an overload management policy to
screen out transactions that have missed or am about to
miss their deadlines [I].

Least Slack. For a transaction T we &fine a slack time
S=d-(r+E-U),whereristhecurrenttime,andUis
the amount of service time consumed by T so far. The

- 386 -

slack time is an estimate of how long we can delay the
execution of T and still meet its deadline. If S 2 0 then we
expect that if T is executed without interruption, it will
finish at or before its deadline. A negative slack time is an
estimate that it is impossible to make the deadline. A
negative slack time results either when a transaction has
already missed its deadline or when we estimate that it
cannot meet its deadline.

Note that Least Slack is very different from Earliest
Deadline in that the priority of a task depends on how
much service time it has received. The slack of a transac-
tion which is executing does not change. (Its service time
and the clock time increase equally.) The slack time of a
transaction which is not executing decreases. Hence the
priority of that transaction increases.

A natural question to consider is how often to
evaluate a transaction’s slack. We consider two methods.
With the first, static evaluation, the slack of a transaction
is evaluated once when the transaction arrives. This value
is the transaction’s priority for as long as the transaction is
in the system. (If a transaction is rolled back and restarted,
the slack is recalculated. In effect, the transaction is re-
entering the system as a new arrival.) Under the second
method, continuous evuhmion, the slack is recalculated
whenever we wish to know the transaction’s priority. This
method yields more up-to-date information but also incurs
more overhead. ’

Our performance studies have shown that some-
times it is better to use static evaluation and sometimes it
is better to use continuous evaluation. (See Section 5.)
The majority of our experimental results use static evalua-
tion. We chose this because static evaluation performed
better than continuous at higher load settings, which is
where we performed many of our experiments.

? 3.2. Concurrency Control

If vansactions are executed concurrently then we
need a mechanisti to order the updates to the database so
that the final schedule is serializable. Our mechanisms
allow shared and exclusive locks. Shared locks permit
multiple concurrent readers. The priority of a data object
0 is delined to be the maximum priority of all transactions
which hold a lock on object 0. If 0 is not locked then its
priority is undefined.

Let T be a transaction requesting a shared lock on
object 0 which is already locked in shared mode by one
or more transactions. Transaction T is allowed to join the
read group only if the priority of T is greater than the
maximum priority of all transactions, if any, which are
waiting to lock 0 in exclusive mode. In other words, a
reader can join a read group only if it has a higher priority
then all waiting writers. Otherwise the reader must wait.
Conflicts arise from incompatability of locking modes in
the usual way.

We are particularly interested in conflicts that can
lead to priority inversions. A priority inversion occurs
when a transaction T of high priority requests and blocks

on a lock for object 0 which has a lesser priority than T.
This means that T has a higher priority then the
transaction(s) which holds the lock on 0. T must wait
until the lock holder(s) releases its lock on 0, either
voluntarily or involuntarily. Conflicts which cannot lead
to priority inversion, i.e., the priority of the requester is
less than the priority of the object, are handled by having
the requester wait. Of course a deadlock detection method
must be employed to detect cycles of waiting transactions.
We now discuss four techniques that we use to resolve
conflicts.

In the following, let TR be a transaction that is
requesting a lock on a data object 0 that is already locked
by transaction TH. Furthermore, the lock modes are
incompatible and TR has a higher priority than the priority
of 0. Thus the priority of TR is greater than TH. Namely
we have a priority inversion.

Wait. Under this policy, priority inverting conflicts are
handled exactly as non-priority inverting conflicts. That is,
the requesting transaction always blocks and waits for the
data object to become free. This is the standard method
for most DBMS which do not execute real-time transac-
tions. All conflicts are handled indentically and the con-
currency control mechanism makes no effective use of
transaction priorities.

Wait Promote. Wait Promote handles conflicts as Wait
does except when a priority inversion occurs. The high
priority transaction TR will block and wait but now we
promote the priority of the lock holder TH so it is as high
as the priority of TR. In other words, TH inherits the prior-
ity of TR. (Since locks are retained until commit time, TH
will keep its inherited priority until it commits or is res-
tarted. In the event that TH is restarted, e.g., because of
deadlock, it assumes its normal priority. A pure imple
men&on of priority inheritance would demote the prior-
ity of TH if TR is aborted before TH finishes. We chose not
to implement demotion. Our tests showed that it occurs so
seldom that any difference in overall performance is not
measurable.) This method for handling priority inversions
was proposed in [12].

The reason for promoting TH is that it is blocking
the execution of TR a higher priority transaction. Thus TH
should execute at an elevated priority so that it finishes
sooner and TR can resume execution sooner. Priority
inheritance ensures that only a transaction with priority
greater than TR will be able to preempt TH from the CPU.
A transaction T, of intermediate priority, a priority greater
than TH and less than TR, would normally be able to
preempt TH. But with priority inheritance, T, has a lesser
priority than TH which is now executing on behalf of TR.

What if the object is locked by more than one tran-
saction? In this event all transactions in the read group
will inherit the priority of TR. Note that a priority inver-
sion can affect only some of the transactions in a read
group. For example, the requesting transaction may have a
priority that is greater than only some of the transactions
in the read group. These transactions will inherit the

- 387 -

greater priority of the requester. The priority of the other
transactions in the read group remains unchanged. Thus
every transaction holding a lock on object 0 has a priority
that is at least as high as the highest priority transaction
which is waiting for the lock.

Finally, the property of priority inheritance is transi-
tive. If, for example, TH is blocked by transaction THH,
and the priority of THH is less than TR then THH will
inherit the priority of TR. Note that when priority inheri-
tance is combined with Least Slack, continuously
evaluated, TH inherits not a static priority but a priority
function which evaluates the slack of TR .

High Priority. The idea of this policy is to resolve a
conflict in favor of the transaction with the higher priority.
The favored transaction, the winner of the conflict, gets
the lock on the contested object. We implement this pol-
icy by comparing transaction priorities at the time of the
conflict. If the priority of TR is greater than the priority of
object 0, and thus greater than every transaction holding a
lock on 0, then we abort the lock holders thereby freeing
the lock for TR. TR can resume processing; the lock hold-
ers are rolled back and scheduled for restart If the prior-
ity of TR is less than or equal to the priority of 0 then TR
blocks to wait for 0 to become free.

An interesting problem arises when we use Least
Slack to prioritize transactions. Recall that under this pol-
icy, a transaction’s priority depends on the amount of ser-
vice time that it has received. Rolling back a transaction to
its beginning reduces its effective service time to 0 and
raises its priority under the Least Slack policy. Thus a
transaction TH, which loses a conflict and is aborted to
allow a higher priority transaction TR to proceed, can have
a higher priority than TR immediately after the abort The
next time the scheduler is invoked, TR will be preempted
by T.+ TH may again conflict with TR initiating another
abort and rollback.

Our solution to this problem is to compare the prior-
ity of TR against that of each lock holder assuming that the
lock holder were aborted. Using the notation P(TH) to
denote the priority of TH and P (T$) to denote the priority
of TH were it to be aborted, we can write this algorithm as
follows:

High Priority Conflict Resolution Policy

IF for any TH holding a lock on 0
P (TH) < P (TR) AND P tti) < P tT,d

THEN Abort each lock holder
ELSE TR blocks

Conditional Restart Sometimes High Rriority may be too
conservative. Let us assume that we have chosen the first
branch of the algorithm, i.e., TR has a greater priority than
TH and 7$. We would like to avoid aborting TH because
we lose all the service time that it has already consumed.
We can be a little cleverer by using a conditional restart
policy to resolve conflicts. The idea here is to estimate if
TH, the transaction holding the lock, can be finished
within the amount of time that TR, the lock requester, can

afford to wait. Let Sa be the slack of TR and let EH - Cl,
be the estimated remaining time of TH. (Recall that U
denotes the elapsed service time of a transaction.) If
Sk 2 EH - U, then we estimate that TM can finish within
the slack of TR. If so, we let TH proceed to completion,
release its locks and then let TR execute. This saves us
from restarting TH. If TH cannot be finished in the slack
time of TR then we restart TH (as in the previous algo-
rithm). This modification yields the following algorithm:

Conditional Restart Conflict Resolution Policy

IF P (TH) < P (TR) AND P (Tfi) < P (TR)
THEN

IF EH-UHISR
THEN TR blocks

T” inherits the priority of TR
ELSE Abort TH

ELSE
TR blocks

Note that if TR blocks in the inner branch, then TH
inherits the priority of TR. This inheritance is exactly the
same as described in the Wait Promote algorithm.

We only implement Conditional Restart if the
conflict is one-on-one, i.e., there is no read group
involved. We chose this because it is NP-complete to
choose a maximal subset of readers all of which can finish
within the slack of the requester. Furthermore we do not
consider chained blockings as we did in our earlier
study [l]. That is, we only make the special Conditional
Restart decision if the requester conflicts with exactly one
lock holder and the lock holder is not blocked waiting for
some other lock. Experience with our earlier simulations
indicated that chained blockings were rare, so that the
payoff for handling them in a clever way was limited.

3.3. IO Scheduling

In a non memory resident database system, the disk
is an important resource which can be managed to optim-
ize various performance criteria. In conventional systems
the usual goal is to maximize the throughput of the IO
system. One way that this is accomplished is by using a
disk scheduling algorithm (e.g., SCAN [1 I]) to order the
sequence of IO requests so that the mean seek time is
minimized. While this may be good for maximizing
throughput, it may be bad for a real-time system which is
trying to meet transaction deadlines. For example, SCAN
may order a batch of requests so that an IO request from a
transaction with an early deadline is serviced last.

In this paper we study the consequences of using
algorithms to schedule IO requests based on transaction
priorities as opposed to minimization of disk head seek
times. We have looked at two ways to schedule the IO
queue.

FIFO. When FIFO is used to schedule the IO queue,
requests are serviced,in the order in which they are gen-
erated. This service order is somewhat related to transac-
tion priorities because IO requests are generated by the

- 388 -

CPU, which is scheduled by priority. The ordering is
essentially random with respect to track position on the
disk.

Priority. Under this policy each IO request has a priority
which is equal to the priority of the transaction which
issued the request. The next IO request to service is the
one with the highest priority. Thus a newly arrived request
from a transaction with a high priority can leapfrog over
other requests which have been waiting longer in the IO
queue. We also expect this ordering to be random with
respect to track positions on the disk.

In our model there are two types of IO requests:
reads that are issued by unfinished transactions, and writes
that are generated by committed transactions that are
flushing their updates back to disk. (The log resides on a
separate device, so it receives only log writes which are
serviced FCFS.) Giving higher priority to reads over
writes is desirable because it will speed the completion of
transactions which are trying to meet their deadlines. Giv-
ing high priority to writes does not enhance performance
directly because the transactions which issued the writes
have already committed. In fact, as our studies have
shown, giving high priority to writes can decrease perfor-
mance if it excessively delays the servicing of read
requests. The priority of writes cannot be too low however
as writes must be completed in order to free space in the
memory buffer pool.

In our experiments writes have the same priority as
the transaction that issued them. For the priorities FCFS
and Earliest Deadline, this means that writes are given a
relatively high priority. (The arrival times and deadlines
of committed transactions are usually earlier than those of
uncommitted transactions.) Because we use static evalua-
tion to implement Least Slack, the slack times of commit-
ted transactions are not necessarily larger or smaller than
those. of uncommitted transactions.

4. Simulation Model

Our program to simulate a RTDB was built using
SIMPAS, a discrete system simulation language [3]. The
names and meanings of the four parameters that control
the configuration of the system resources are given in
Table 1. The database log is maintained on a separate
device which is of equal speed as the database disks. Each
disk has its own queue of service requests.

Parameter MeiUling Base Value

DBsize # of pages in database 400

MefnSize W of pages in memory buffer 200

NunDisks # of disks 2

IOtimt? Tiie to access disk 25ms.

Table 1. System Resource Parameters.

The database buffer pool is modeled as a set of
pages each of which can contain a single database object.
We do not model each buffer page individually, that is,

we do not maintain a free list of pages, nor do we keep
track of which pages have been modified. Instead we
model the buffer pool as a collective set. When a transac-
tion attempts to read an object, the system generates a ran-
dom boolean variable which has the value true with pro-
bability MemSize I DBsize. If the value is true then the
page is in memory and the transaction can continue pro-
cessing. If the value is false then an IO service request is
created and placed in the input queue of the appropriate
disk. The database is partitioned equally over the disks
and we use the function

to map an object i to the disk where it is stored.

Transactions characteristics are controlled by the
parameters listed in Table 2. Transactions enter the sys-
tem with exponentially distributed inter-arrival times and
they are ready to execute when they enter the system (i.e.,
release time equals arrival time). The number of objects
accessed by a transaction is chosen from a normal distri-
bution with mean Pages and the actual database items are
chosen uniformly from the database. Each page is updated
with with probability Update. Pages which are updated
are locked exclusively, other pages are locked in shared
mode. Updated pages are stored in the buffer pool until a
transaction commits and then they are flushed out to disk.

1 Parameter 1 Meaning 1 Base Value 1

Madlack 1 Max slack as fraction of R 8

EstErr 1 ExrorinEasfractionofR 0

Restart 1 Tie to rollbacktransactitin 1 5 ms.

MuActive I Liiit # of active jobs I25

Table 2. Transaction Parameters.

A transaction has an execution profile which alter-
nates lock requests with equal size chunks of computation,
one for each page accessed. Thus the total computation
time is directly related to the number of items accessed.
Let C denote the CPU requirement for a transaction; then
C = Pages’ * CompFactor. (We use Paged to denote the
actual number of pages for a specific transaction rather
than the mean.) The IO service requirement for a transac-
tion has two components: IO requests to read pages from
the disk into memory and IO requests to write the
modified pages back to the disk. Since the writing of
updates back to disk occurs after a transaction commits,
this IO time is not included in the nmtime estimate. Thus
the total amount of pre-commit IO service time needed is
I = IOtime * Pages’ * (1 - MemSize I DBsize) The total

- 389 -

runtime service needed to commit a transaction executing
in an unloaded system is R = C +I . The accuracy of a
transaction’s runtime estimate E with respect to R is con-
tmlled by the parameter EstErr, E = R * (1 +&Err).
How we choose the value of EstErr is explained later
when we discuss the experimental results.

The assignment of a deadline is controlled by two
parameters MinSlack and MaxSlack which set a lower and
upper bound respectively on a transaction’s slack time. A
deadline is assigned by choosing a slack time uniformly
from the range specified by the bounds. The program
does not account for time needed to execute the lock
manager, conllict manager. and deadlock detection
manager. These routines are executed on a per data object
basis and we assume that the costs of these calls are
included in the variable that states how much CPU time is
needed per object that a transaction accesses. Context
switching and the time to execute the scheduler is also
ignored.

Deadlocks are detected by maintaining a wait-for
graph and searching for cycles whenever a new arc is
added to the graph. When a deadlock is detected a victim
is selected by choosing the transaction with lesser priority
of the two transactions which correspond to the arc which
completed the cycle in the graph.

In the following sections we discuss some of the
results of eight different experiments that we performed.
Due to space considerations we cannot present all our
results but have selected the graphs which best illustrate
the differences and performance of the algorithms. For
each experiment we ran the simulation with the same
parameters for 20 different random number seeds. Each
run, except for the input step function experiment, contin-
ued until at least 700 transactions were executed. For
each algorithm tested, numerous performance statistics
were collected and averaged over the 20 runs. In particu-
lar we measured the percentage of transactions which
missed their deadlines, the average amount of time by
which transactions missed their deadlines, and the number
of restarts caused by lock conflicts. The percentage of
missed deadlines is calculated with the following equa-
tion: %rnissed = 100 * (tardy jobs I 700).

Another metric that we use is the average tardy time
of all committed transactions. A transaction that commits
before or on its deadline has a tardy time of zero. It is
these averages that are plotted in the following figures.

Note that we are not particularly interested in tran-
saction response times as conventional performance
evaluations of concurrency control mechanisms are. The
reason is that response time is not critical as long as a
transaction meets its deadline. We are interested in learn-
ing how the various strategies are affected by load, the
percentage of updates per transaction, the size of the
memory buffer, and error of the runtime estimate.

For many of the experiments the base values for
parameters were as shown in tables 1 and 2. These values
are not meant to model a specific real-time application but

were chosen.as reasonable values within a wide range of
possible values. We chose the arrival rate so that the
corresponding CPU utilization (an average 0.84 seconds
of computation arrive per second) is high enough to test
the algorithms. It is more interesting to test the algorithms
in a heavily loaded rather than lightly loaded system. (We
return to this issue in the conclusions section.)

Section 3 proposed three different methods for
assigning priority and four methods for managing con-
currency. Also IO scheduling can be done in two dif-
ferent ways. Taking the cross product yields 24 different
algorithms. Table 3 summarizes the methods of Section 3
and provides the abbreviations that we will use when
referring to them.

Priority

Concurrency

FCFS - First Come First Serve
ED - Earliest Deadline
LS - Least Slack
w-wait
WP - Wait Promote

/108thedding / ;im 1

Table 3. Summary of Scheduling Policies.

5. Experimental Results

Effect of Increasing Load In this experiment we varied
the arrival rate from 6 jobs/set to 8 jobs/set in increments
of 0.5. The other parameters had the base values given in
Tables 1 and 2. This set of parameters is designed to load
the CPU more heavily than the IO system. The CPU utili-
zation ranges from 0.72 to 0.96 seconds of computation
arriving per second. The IO system experiences a range in
utilization of 0.60 to 0.80 seconds of I/O service requests
arriving per second.

Figures 1 and 2 graph the three priority policies for
each of the four different concurrency control strategies.
Our first observation is that FCFS consistently performs
worse than ED and LS. Also, where the other priority
algorithms perform better with the concurrency control
strategies that use promotion, FCFS does not. This is
understandable as FCFS is a poor notion of priority for
real-time transactions.

The relative performance of ED and LS depends on
the type of concurrency control that is used. Fortunately
we can state some general rules as to when ED or LS may
be better. The policy ED operates best under low levels of
load and when the concurrency control strategy produces
few restarts due to lock conflict resolution. At high load
levels ED tends to assign high priorities to transactions
which will miss their deadlines anyway. This can prevent
transactions with later, but feasible, deadlines from finish-
ing on time. Conflict resolution policies which can pro-
duce a lot of restarts (e.g., HP and CR) work against ED
because the restarts effectively increase the arrival rate of

- 390 -

new transactions into the system, thus increasing the load.
Under HP and CR, LS produces fewer restarts than ED
because LS makes use of an extra test that can prevent
transactions from being restarted (see Section 3).

Examining the graphs, we see that ED is better than
LS when the simple Wait strategy is used for concurrency
control (Figure 1). When promotion is added to the Wait
strategy, ED and LS perform comparably although ED is
slightly better at lower loads and LS slightly better at
higher loads. Both policies are much better than FCFS.

Under the two policies which restart transactions
when conflicts occur, HP and CR, we note that LS is
clearly the better policy when the load is high, Figure 2.
Strategy ED performs well when the load is low but its
performance degrades rapidly once the CPU utilization is
greater than 0.84.

Having discussed the priority politics we now turn
our attention to the concurrency control policies. The pcr-
formance of a concurrency control strategy depends on
the priority policy used, so it is hard to compare con-
currency without including priority. We will compare
combinations of priority (ED and LS) and the four con-
currency control strategies. We ignore FCFS because of
its poor performance. Figure 3 graphs the eight combina-
tions.

The reader can see for himself that no one combina-
tion is always better. ED/WP is best when the load is
light but LS/WP is better when the load is high. Thus we
see that WP works well with both LS and ED, but CR
works better with LS; HP is not very good with either
priority policy.

Ideally we want our algorithms to schedule all tran-
sactions such that all deadlines ate met. However, if this is
not possible, then we would want to minimize the amount
by which tardy transactions miss their deadlines. Figure 4
graphs the average overdue time in seconds against arrival
rate. With the Wait Promote strategy, we Observe that ED
has the least average overdue time, then LS and tinally
FCFS. These results are not surprising for it is known that
ED minimizes the maximum task tardiness and LS max-
imizes the minimum task tardiness [4]. The performance
of the different concurrency strategies with respect to task
tardiness parallels what we observed with missed dead-
lines, namely, W and WP are best with ED, and WP and
CR are best with LS.

In the experiment described above, the priority pol-
icy LS was implemented using static evaluation. We are
also intere.:ted in learning how LS performs when con-
tinuous evaluation is used.

Figure 5 compares LS/WP and LS/CR for both
static and continuous evaluation. The reader can see that
no algorithm is best under all load settings. Under low
arrival rates, the continuously evaluated versions of LS
work better than the versions that use static evaluation.
However, under higher loads, the opposite is true. This is
an interesting and counter-intuitive result. The explanation

is that transactions executing under LS, continuously
evaluated, can experience priority reversals. We illustrate
with an example.

At time t let Ti and T2 be transactions with slack
times of 5 and 6 seconds respectively. Since T1 has the
lesser slack and thus the greater priority, it gains the pro-
cessor and begins to execute. Two seconds later a new
transaction arrives. The scheduler is invoked and slack
times are recalculated. The slack of T1 is unchanged, the
slack of Tz has decreased by 2 to 4. So now T2 has the
greater priority and gains the processor. A similar event
may occur 2 seconds later which would cause the priori-
ties of T, and Tz to reverse again. If T1 and T2 are the
highest priority transactions in the system, this continuous
method of priority evaluation virtually guarantees that the
two transactions are executed concurrently in the manner
just described. If T1 and T2 have overlapping read and
write sets then this scheduling method increases the likeli-
hood that a conflict will occur. It also increases the likeli-
hood that a deadlock will occur. Both of these events are
undesirable.

Biasing the Run Time Estimate The concurrency control
strategy Conditional Restart uses the nmtime estimate to
decide if a low priority transaction holding a lock can
finish within the slack time of the higher priority transac-
tion requesting the lock. We can easily describe the
behavior of CR for the extreme values of E. When E = 0,
CR will always judge (assuming that the lock requester
has a positive slack, this is true if the transaction has not
missed its deadline) that the lock holder can finish within
the slack of the lock requester. Thus the lock requester
will always wait for the lock holder. Since promotion is
used by CR, this behavior is exactly the same as WP.

At the other extreme, when E is much larger than R,
the algorithm wilI nearly always judge that the lock holder
cannot finish within the slack time of the lock requester.
Thus the lock holder will be rolled back and restarted.
This behavior is the same as the concurrency control stra-
tegy HP. When the value of E is not so extreme CR will
behave somewhere between WP and HP.

The runtime estimate is also used by the priority
policy Least Slack. We performed a number of experi-
ments to study how biasing the runtime estimate affects
the performance of LS. Our results showed that LS, under
static evaluation, is surprisingly robust to inaccuracy in
the estimate. To illustrate, we summarize a “worst case”
experiment that yielded the largest performance degrada-
tion.

Half of the transactions were made to overestimate
their runtime estimate E = R * (1 + EstErr); the other half
underestimated E = R * (1 - EstErr). (Recall that R is the
service time needed in an unloaded system. If all transac-
tions over or underestimate, LS is not affected greatly.)
The value of EsfErr was varied from 0 to 5 in increments
of 1. (Negative nmtime estimates were converted to
E = 0.) Figure 6 shows that even with this worst case
bias, LS is not very sensitive to errors in the runtime esti-

- 391 -

mate.

When continuous evaluation is used, the perfor-
mance of LS is more sensitive to error in the runtime esti-
mate. This is understandable since continuous evaluation
means that the inaccurate runtime estimate will be used
many more times to make scheduling decisons.

Effect of Increasing Memory In this experiment we
varied the value of MemSize from 200 to 400 in incre-
ments of 50. The other parameters had the values shown
in Tables 1 and 2. Thus the size of the memory resident
fraction of the database varied from 0.5 to 1.0 of the total
database.

Note that the proportion of memory resident data-
base influences the assignment of deadlines to transac-
tions. This happens because deadlines are assigned with
respect to the total service time, both CPU and IO,
required by a transaction. As the memory increases, the
IO service requirement decreases (pages are more likely
in memory), and the deadlines are shortened propor-
tionately. In this way we can compare the scheduling of
sets of transactions with similar task urgencies in system
configurations of various memory sizes.

Our expectation, as memory size increases, is that
all scheduling algorithms will perform better. The reason
is that transactions will be doing much less IO and the
time spent waiting for service in IO queues decreases.
(CPU utilization and waiting time are unchanged.) Thus
transactions will receive quicker service and are more
likely to meet their deadlines.

Figure 7 graphs the results for the four algorithms
which schedule all transactions and use LS to assign prior-
ity. It contirms our expectation that algorithms will pcr-
form better as the memory size increases. The results for
other algorithms are similar.

Effect of Fraction of Pages Updated The value of
Update, by controlling the size of the read and write sets.
impacts the probability of conflict between two concurrent
transactions. The value of Update, by determining the size
of the writeset, also contributes to the IO load of the sys-
tem. This is because updates are written to disk after a
transaction commits.

In this experiment we varied the value of Updafe
from 0.2 to 0.8 in increments of 0.1. When Update = 0.2,
only 20% of a transaction’s pages are locked exclusively.
When Update = 0.8 80% of the pages accessed by a tran-
saction are updated. The other parameters had the values
shown in Tables 1 and 2. In this experiment the IO load
varies from 0.49 to 0.91.

Figure 8 shows the four different types of con-
currency control with the ED priority policy and with IO
scheduling done by priority. The general shape of the
curves is as expected: when Update is large, the pcrfor-
.mance is poor because the rate of conflict is high and
‘because the overall IO load is high. As we saw earlier ED
performs best with the concurrency strategies W and WP
which cause fewer restarts than HP and CR. When Update

is small, the conflict rate is lower and all algorithms per-
form equally well.

Figure 9 plots ED/W and ED/WP with priority IO
scheduling against ED/W and ED/WP with FIFO IO
scheduling. Somewhat surprising is the result that the ver-
sions with IO scheduling perform worse than the versions
without IO scheduling in the high update (right side) and
thus high IO load part of the scale. The result is explain-
able, however, when we note that at this end of the scale
most of the IO, roughly 62%, consists of writing modified
pages back to disk. As we discussed in Section 3, giving
high priority to writes can delay the service of read
requests with lower priorities. One conclusion that we
can draw from this is that it may be advisable to give IO
writes lower priorities than reads. We do not investigate
this issue any further in this paper.

Performance Under a Sudden Load Increase In the
previous experiments, we studied the performance of the
various algorithms under an increasing but steady load. In
this experiment we study the algorithms under a different
type of load increase namely a batch of arrivals in an oth-
erwise idle system. To simulate this input step function we
programmed the simulator so that a set of transactions
arrived all at the same time. The system then executed all
the jobs in the set. The number of jobs in the set varied
from 20 to 60 in steps of 10. The parameters controlling
job characteristics were the same as shown in tables 1 and
2 except for the following differences: Pages = 10,
CompFactor = 10, and Max-Slack = 30. The major differ-
ence here is the change in MaxSlack. This was necessary
to produce a set of transactions with a large amount of
variability in deadlines.

In reality, we would not expect all jobs in an over-
load to arrive at the same instant, nor would we expect the
system to be completely idle at this ,time. However, our
idealized step function model lets us study the impact of
an overload without distracting second order effects. If an
algorithm performs well under a step function, we could
also expect it to do well in a system that has plenty of
spare capacity under normal circumstances but is sud-
denly faced with a flurry of jobs (e.g., a radar system fac-
ing a sudden all-out enemy attack).

A good strategy for operation in this situation might
be to employ an overload management policy to abort
transactions which have missed their deadlines. If these
transactions must be executed anyway then they should be
restarted only after the spike has passed. We may also
want to limit priority inversions from occurring. The rea-
soning is that if a high priority job blocks, it will almost
certainly miss its deadline if forced to wait on a low prior-
ity job. Instead we may want to abort the low priority job
and restart it later when the load has decreased.

Figure 10 shows the four different concurrency con-
trol policies for both the ED and LS priority assignment
policies. IO scheduling is done according to job priority.
It is easy to see that ED/HP is clearly the best algorithm.
HP is also the best version of the LS algorithms The same

- 392 -

results were observed when no overload management pol-
icy was used, although the effect was not as pronounced.

Effect of IO Scheduling In this experiment we compared
the versions of scheduling algorithms which use transac-
tion priorities to schedule IO requests against versions
which service IO requests using FIFO. To better study the
effects, we changed the base values of three parameters to
create a configuration where the disks are much more
loaded then the CPU. The parameters and the new values
were: Pages = 13, CompFactor = 5, and Update = 0.2.
(The other parameters had the values shown in Tables 1
and 2.) Thus the average transaction reads more pages and
does less computation. The fraction of pages updated is
less so the disks service more read requests than writes.
The system load was varied by increasing the arrival rate
from 6 jobs/set to 8 jobs/set in steps of 0.5. Hence, the
CPU utilization varied from 0.39 to 0.52, and the IO utili-
zation varied iiom 0.68 to 0.91.

Figure 11 plots the four algorithms which use LS
and FIFO against the same four algorithms using LS and
Priority IO scheduling. The results clearly show that using
transaction priorities to schedule IO requests can yield
significant performance improvements over scheduling
using FIFO. This is especially true for the two con-
currency algorithms which use promotion, i.e., WP and
CR. This is understandable since a transaction which
inherits the higher priority of a blocking transaction will
receive better service from the disk and will execute fas-
ter. This unblocks the high priority transaction sooner, and
it has a better chance of meetings its deadline.

Priority is better than FIFO but both methods ignore
disk head position and do not minimize the average seek
time. Would a disk scheduling algorithm which minimizes
average seek time, (e.g., SCAN) but is ignorant of tran-
saction time constraints, yield better performance in a
real-time system than our algorithm which considers tran-
saction time requirements? We cannot answer this ques-
tion directly but we have performed an experiment which
indicates how much faster the average seek time of a
SCAN type algorithm would have to be for it to match the
real-time performance of our Priority algorithm. In this
experiment we fixed the parameter settings at the values
they had in the previous experiment and set ArrRare = 8
job&c. Then we increased the speed of the disks by
decreasing the value of IOtime from the initial 25 ms. to
20 ms. in steps of 1. Figure 12 plots the performance of
LS/WP/FlFO, which, like a SCAN type algorithm, does
not use transaction priorities for IO scheduling. The hor-
izontal line is the performance of LS/WP/Priority when
IOtime =25 ms. The two curves intersect at
IOtime = 22.8m.r indicating that a SCAN type algorithm
must have an average seek time roughly 9% less than
Priority in order for it to yield comparable real-time per-
formance. Of course it is possible to design a SCAN type
algorithm which also uses transaction prioritics, but we
have not investigated this possibility.

6. Conclusions

In this paper we have presented various transaction
scheduling options for a real-time database system. Our
simulation results have illustrated the tradeoffs involved,
at least under one representative database and transaction
model. Before reaching some general conclusions, we
would like to make two observations.

The first ObSeNatiOII is that our base parameters
represent a high load scenario. One could argue that such
a scenario is “unrealistic.” However, we believe that for
designing real-time schedulers, one must look at precisely
these high load situations. Even though they may not
arise frequently, one would like to have a system that
misses as few deadlines as possible when these peeks
occur. In other words, when a “crisis” hits and the data-
base system is under pressure is precisely when making a
few extra deadlines could be most important [81.

It could also be argued that some of the differences
between the various scheduling options is not striking. In
many cases, the difference between one option and
another one is a few percentage points. If we were dis-
cussing transaction response times, then a say 10 percent
improvement would not be considered impressive by
some. However, our graphs show missed deadlines (in
most cases) and we believe that this is a very different
situation. Again, the difference between missing even one
deadline and not missing it could be signiticant. Thus, if
we do know that some scheduling options reduce the
number of missed deadlines, why not go with the best
one?

And which are the best options? It is difficult to
make any absolute statements, but we believe the follow-
ing statements hold under most of the parameter ranges
we tested. (All our additional results not shown in this
paper also substantiate these statements.) l

When the load is continuous and steady:

(a) Of the tested priority policies for real-time database
systems, Least Slack (LS) is the best overall. It always
performed better than FCFS, and was better than ED
under the higher load ranges. Earliest deadline (ED) is
the second choice for assigning priorities.

(b) Of the concurrency control policies we tested, Wait
Promote (WP) is the best overall. It performs very well
when combined with either LS or ED. Conditional Restart
(CR) is the second choice for LS. CR also performs well
with ED at low loads but poorly at high loads. Wait is the
second choice for ED. High Priority (HP) does not do
well with either LS or ED.

(c) Although LS performed better at minimizing the
number of late transactions, ED is the best choice for
minimizing the mean tardy time of commited transactions.

(d) When the IO system is heavily loaded, using real-time
transacion priorities to schedule IO requests yields
significant performance gains over scheduling IO requests
in a FIFO manner.

- 393 -

(e) Using continuous evaluation to implement LS yields
better performance when the load is low. Static evaluation
achieves better performance when the load is high. Also,
static evaluation is less sensitive to error in the nmtime
estimate than is continuous evaluation.

When the load is an “input step function”:

(f) ED is the best priority policy to use. It performs better
than LS at the higher load settings for three of the four
concurrency control policies.

(g) HP is the best concurrency control policy. It is the best
of the four when combined with either ED or LS. The
second and third choices for concurrency are CR and WP.

Acknowledgments

The authors thank the referees for their helpful comments.
Tbii research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and by the Office
of Naval Research under Contracts Nos. NOOO14-85-C-0456 and
NOOO14-85-K-0465, and by the National Science Foundation
under Cooperative Agreement No. DCR-8420948. The views
and conclusions contained in thii document are those of the
authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

References

1.

2.

3.

4.

5.

6.

7.

8.

Abbott, Robert and Hector Garcia-Molina,
“Scheduling Real-time Transactions: a Perfor-
mance Evaluation,*’ Proceedings of the Confkence
on Very Large Database Systems, pp. 1-12, VLDB,
Ayust 1988.

Bernstein, Philip A. and Nathan Goodman,
“Timestamp-Based Algorithms For Concurrency
Control In Distributed Database Systems,”
Proceedings of the Conference on Very Large Datq-
bases, pp. 285-300, IEEE, Montreal, Canada, Oct.,
1980.

Bryant, R. M., SIMPAS 5.0 User Manual, Univer-
sity of Wisconsin-Madison.

Coffman, Edward G. Jr. and Peter J. Denning,
Operating Systems Theory, Prentice Hall, 1973.

Eswaran, K. P., J. N. Gray, R. A. Lorie, and I. L.
Traiger, “The Notions of Consistency and Prcdi-
cate Locks in a Database System,” CACM, vol. 19,
no. 11, pp. 624-633, November 1976.

Garcia-Molina, Hector, “Using semantic
knowledge for transaction processing in a distri-
buted database,” Transactions on Database Sys-
tems, vol. 8, pp. 186-213, ACM, June, 1983.

Haerder, Theo and Andreas Reuter, “Principles of
Transaction-Oriented Database Recovery,” Com-
puting Surveys, vol. 154, pp. 287-317, ACM, 1983.

Jensen, E. Douglas, “The Future Reality of Real
Time,” UNIX Review, January 1989.

9.

10.

11.

12.

13.

14.

Jensen, E. Douglas, C. Douglass Locke, and
Hideyuki Tokuda, “A time-driven scheduler for
real-time operating systems,” Proceedings Real-
time Systems Symposium, pp. 112-122, IEEE, 1986.

Liu, C.L. and J.W. Wayland, “Scheduling algo-
rithms for multiprogramming in hard real-time
environment,” Journal of the ACM, vol. 20,‘ pp.
46-61, ACM, January, 1973.

Peterson, James L. and Abraham Silberschatz,
Operating System Concepts, Addison Wesley,
1986.

Sha, Lui, Ragunathan Rajkumar, and John P.
Lehoczky, “Priority Inheritance Protocols: An
Approach to Real-Time Synchronization,” Tech.
Report, vol. CMU-CS-87-181, CMU, Pittsburgh,
December 1987.

Stankovic, John A., “Misconceptions About Real-
time Computing: A Serious Problem for Next-
Generation Systems,” Computer, vol. 21, pp. lo-
19, IEEE, October 1988.

Zhao. W., K. Ramamritham, and J. A. Stankovic,
“Preemptive Scheduling Under Time and Resource
Constraints,” Transactions on Computers, vol. C-
36, pp. 949-960, IEEE, August 1987.

- 394 -

40-I I I I I
. ’ ‘. . FCFS/w .t - .:.

. + . . FCFS/WP
.:’

.:.
”

30-
- ED/W .:’

ii

Y + ED/WP

-.-Em

o-
I I I I

6 6.5 7 7.5 8
Arrival Rate (iobs/sec)

Figure 1. FCFS, ED, and LS each with W and Wp.

I I I

40 - ---c EDIWP

- ED/HP

.8 + ED/CR

B

30- -.-Law
-+-LSiWP
-E- LSMP

B

m--A- L%cR

52

ap 10 -

o-
I I I I

6 6.5 7 7.5 8
Arrival Rate Ciobs/sec)

Figure 3. ED vs LS, each with W. WF’, HP, CR.

35*

--c + Ls/wP/slatic
30 d wcR/strtic P

- + - LsiwP~tinuous It - A - ~/~cntinua~s

6 6.5 7 7.5 8
Arrival Rate (jobs&c)

Figure 5. LS/wp and LS/CR under
static and continuous evaluation.

I I I I
“0.. FCFS/HP i3

50-
..&.. FCFSKR :

- ED/HP

+ ED/CR

I I I I
6 6.5 7 7.5 8

Arrival Rate (iobs/sec)
Figure 2. FCFS. ED, and LS each with HP and CR.

0.25 - I
I I I I

..+.. FCFWVP .+
:

g OS2
- --c EDIWP :. +.

. . I
-+-ls/wP

: ,

g 0.15 -
: I

: I
: I

: I

6 6.5 7 7.5 8

Arrival Rate (iobs/sec)

Figure 4. FCFS/WF’, ED/WI’, and LS/WP.

20 - ’
I I I I I

*.......-

. . . .
. . . .

15 -

-e--r
,---m

1o-_/e---=-~

5-.....LsMp

-.-LS/WP

o-
-Lslw

I I I I I

0 1 2 3 4 5
EstErr

Figure 6. LS/W, WWP, and LS/IIp
under static evaluation.

- 395 -

Figure 7. LS/W, LS/WP, LS/Hp, and LYCR.

--I- - ED/WP/Ptiori~y

30-

20 30 40 50 60 70 80

% Pages Updated

Figure 9. ED/W and ED/MT, each with
F$O and Priority IO s&d&a.

I I I I
- Ls/wmFo
+ L&+FIPo
- Ls/nP/FIFO

30--A- LslcRfFlFo
- . - Ls/w/Priority
- + - Ls/wp/priority

20 _ - q - Ls/IIP/Priofity

o-
I I I I

6 6.5 7 7.5 8

Arrival Rate (jobs/set)
Figurcll.LSwithW,WP,~,and~,
under FIFO and Priority IO scheduling.

20 30 40 50 60 70 80

% Pages Updated

Figure 8. ED/W, ED/NT, ED/HP, and ED/CR.

3op I I I I l

- ED/W
- EDjWP

- ED/HP

1 -ED/CR
--.--Ls/w

-- B--LsmP

20 30 40 50 60
Number of Jobs

Figure 10. ED and LS, each with W, WP,
HP, and CR, and Priority IO scheduling.

28c’ I I I I I 1

I-

-c- LwvP/FIFo
24 ----IsfwP/Priority

8

Otl-
20 21 22 23 24 25

IO time (ms)

Figure 12. LS/WP.

- 396 -

