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Abstract  

Much research effort has been dedicated to the development of optimal strategies for 

rehabilitation and/or replacement of water mains. Some of the methods are intended for high-

level planning of groups or cohorts of pipes, while others address low-level scheduling of 

individual water mains. This paper focuses on the latter aspect. An approach is proposed for 

the efficient scheduling of individual water mains for replacement in a short to medium pre-

defined planning period and subject to various budgetary constraints. This approach also 

accounts for economies of scale considerations as well as harmonisation with other known 

infrastructure works. A multi-objective genetic algorithm scheme is used as a tool to search a 

vast combinatorial solution space, comprising various combinations of pipe replacement 

schedules. 

 

Key words: Water mains, pipes, renewal planning, multi-objective genetic algorithm, roadwork, economies of 

scale. 

 

Introduction 

The optimal scheduling for replacement of individual water mains is a challenge that has been 

quite extensively addressed in the last two decades. Often this optimal scheduling scheme is 

coupled with a forecasting model of future breakage rates. Much research effort has been 

dedicated to the development of optimal strategies to rehabilitation/replacement of water 

mains, a good portion of which is suitable to high-level planning of groups, or cohorts of 

pipes. In the following brief literature review, we focus only on those methods intended to 

address individual water mains.  
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Shamir and Howard (1979) pioneered this field with their exponential deterioration model, 

that was suitable to cohorts of pipes. Walski and Pelliccia (1982) refined the exponential 

model by using previously observed breaks and diameter classes as additional contributing 

factors. Walski (1987) extended the exponential growth model to include the cost of water 

losses through leaking pipes and the cost of broken valve replacement. Woodburn et al. 

(1987) combined a nonlinear programming procedure with a hydraulic simulation program in 

a model designed to determine which pipes should be replaced, rehabilitated or left alone in 

order to minimize cost. Su and Mays (1988) introduced some probabilistic considerations to 

the Woodburn et al. model. Male et al. (1990) addressed the structural deterioration of water 

mains over time but did not consider the hydraulic capacity of the distribution system. Kim 

and Mays (1994) proposed a branch and bound scheme to improve on the Su and Mays 

(1988) model. Arulraj and Suresh (1995) introduced the concept of significance index (SI), 

which is an optimality criterion that can be applied heuristically to prioritize pipe 

rehabilitation.  

Halhal et al. (1997) proposed an approach whereby four types of benefits (hydraulic, physical 

integrity, operational flexibility and water quality) were quantified and selection of pipe 

replacement/relining was performed on a double objective trade-off between maximizing 

benefits and minimizing cost (multi objective messy genetic algorithm was used as a tool). 

However, this model did not include the scheduling of pipe replacement. Herz (1999a, 1999b) 

proposed the KANEW model, which fits the Herz probability distribution  to cohorts of pipes 

to forecast their residual life and generate long term rehabilitation plans. Kleiner et al. (1998a, 

1998b) proposed an approach in which pipe breakage rate was modelled deterministically as 

an exponential function of age, and the subsequent scheduling scheme considered both 

network economics and hydraulic capacity over a pre-defined analysis period. Englehardt et 

al. (2000) provided a comprehensive review of issues to be addressed by pipe renewal 

strategies, as well as an account of much of the research effort that had been done to date 

(including for both cohorts and individual water mains). Dandy and Englehardt (2001) 

proposed a method using GAs to optimize pipe replacement scheduling and diameter 

selection.  

Skipworth et al., (2002) developed WILCO, which is an integrated decision model that 

combines pipe whole Life Costing and hydraulic and physical analysis of the network to 

generate rehabilitation strategies that are then evaluated using genetic algorithms. Le Gauffre 

et al, (2004) proposed the CARE-ARP model (Computer aided rehabilitation of water 
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networks - Annual Rehabilitation Program) that considers several performance indicators in a 

multi-criteria analysis (following the Electre-tri method, proposed by Mousseau and 

Slowinski, 1998) to identify critical pipes and establish priority for rehabilitation. Burn et al. 

(2003) developed PARMS (Pipeline Asset and Risk Management System) to prioritise groups 

of pipes for rehabilitation. Moglia et al. (2006) enhanced PARMS by incorporating risk 

analysis that examines the impacts of failure on the pipe physical environment.  Dandy and 

Englehardt (2006) proposed an approach to schedule pipe replacement (5-year time steps) on 

a double objective trade-off between maximizing network reliability and minimizing cost. 

Here too, multi-objective GA was used as a tool. Eisenbeis (1994) proposed to use the 

expected number of breaks and their associated costs (to be minimised) for the selection and 

scheduling of deteriorated pipes for renewal. Renaud et al. (2007) introduced SIROCO, 

a decision support tool that performs multi-criteria analysis (criteria include hydraulics, and 

forecasted failures) to select pipes for renewal in the short term, while considering possible 

coordination with other public works (sewers, roads, etc.) 

In this paper we propose a method for the optimal scheduling of individual pipes for 

replacement, while considering practical issues such as harmonizing pipe replacement with 

known roadwork and economies of scale. Although this method is not restricted to any 

planning horizon length, it is deemed most suitable for short to mid-term planning (say, 5 

years) due to practical considerations such as municipal budgetary planning horizon, 

confidence (or rather lack thereof) in longer term forecasting of breakage rates in individual 

water mains and likelihood of unforeseeable changing conditions. The proposed method is not 

limited to any specific breakage rate prediction model, rather it requires the forecasting of 

expected number of breaks for any individual pipe in a pre defined time period. The length of 

this time period is discussed in the following sections. 

The proposed method is currently limited to the consideration of pipes breakage frequency 

and the economics of their replacement. Future work will strive to encompass other factors, 

such as hydraulic performance, network reliability and even water quality issues, however due 

to the dimensionality of the solution space these endeavours will present substantial 

challenges. 

The rest of this paper is organized as follows. The second section provides definitions and 

assumptions underlying the proposed approach, the third section describes the solution 

method, the fourth section provides an illustrative example, the fifth section provides a brief 
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discussion on the merits and deficiencies of the approach and finally summary and 

conclusions are provided in last section. 

Problem statement, definitions and assumptions 

The problem addressed in this paper is generally expressed as follows: “Given a water 

distribution network with an inventory of N individual pipes, and given a planning horizon of 

T years, where ki,t (i = 1, 2,…, N) is the forecasted expected number of breaks for pipe i in 

year t, and given a pipe renewal budget BT, how should the pipes be scheduled for renewal 

while maximizing economic utility?”. Our definition of “economic utility” will be elaborated 

on later in this section. The term “individual pipe” can mean different things to different 

people. For practical reasons we did not attempt to provide a universal definition, rather we 

accept the implied definition of the owner of the network, as it is manifested in the inventory 

database. 

Pipe failure costs 

As mentioned earlier, ki,t is the forecasted expected number of breaks in pipe i at year t. We 

observe five different costs that are potentially associated with pipe failure. We denote the 

cost of failure repair by Ci
rep, cost of expected direct damage (e.g., to adjacent infrastructure, 

basement flooding, road damage) by Ci
dir, cost of indirect damage (e.g., accelerated 

deterioration of roads, sewers, etc.) by Ci
indir, cost of water loss by Ci

wat, and social cost (e.g., 

disruption, time loss, pollution, loss of business, etc.) by Ci
soc. The total cost of failure Cfi in 

pipe i is therefore  

soc

i

wat

i

indir

i

dir

i

rep

ii CCCCCCf ++++=  (1) 

 

Total cost associated with pipe replacement timing 

The total cost associated with pipe replacement timing is impacted on one hand by failure 

costs (or failure avoidance gains) and on the other hand by the time value of capital outlay. 

The present value (PV) of the total cost associated with pipe i, which is replaced at year t is 

given by 
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where CRi,t is the cost of replacing pipe i at year t,  e-rt is the exponential form of discounting 

and r is the discount rate. Note that the indirect cost and social cost components of pipe 

failure are not discounted here (there is no consensus on the merit of discounting social costs). 

Note further that for public projects such as water main works it is appropriate to use “social 

discount rate”, which is significantly lower (typically 1% - 3%) than financial discount rate 

(see e.g., Hufschmidt et al., 1983). Equation (2) also implies that the number of failures 

expected to occur on the new replacement pipe during the planning period T is assumed to be 

negligible. The assumption is justified for relatively short planning periods, except perhaps in 

rare cases where pipes are subject to extremely fast deterioration Dandy and Engelhardt 

(2006), for example did consider cost of repair for new pipes in a short planning period). 

The literature reflects (e.g., Shamir and Howard, 1979; Kleiner et al. 1998a) that equation (2) 

generally describes a convex present value cost function as illustrated in Figure 1. Herz 

(1999b) agreed that the cost function is generally convex but observed that often it is very flat, 

especially in the inclining branch (the right side) of the curve, creating a “hammock” shaped 

function. The time (ti*) when the total cost of pipe i is minimum is the point at which the 

marginal (discounted) cumulative cost of failure rate, which is essentially the expected 

(discounted) cost of failure at year ti*, equals the marginal savings due to deference of 

replacement (i.e., the product of cost of pipe replacement and discount rate).  
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Figure 1. Costs associated with replacement timing 

Replacement time 

Total expected cost [equation (2)]Cost (PV) 
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Case B Case C Case A 
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If the expected discounted cost of failure of pipe i at year t is denoted by ΔCfi,t and the 

marginal savings in deferring replacement of pipe i from year t to t+1 is denoted by ΔCRi,t 

then the relationship between ΔCfi,t and ΔCRi,t  indicates where year t is in relationship to year 

t*. When ΔCfi,t << ΔCRi,t  (Case A in Figure 1) then t is far to the left of ti*;  when ΔCfi,t ≈ 

ΔCRi,t  (Case B in Figure 1) then t is in the vicinity of ti*; and when ΔCfi,t >> ΔCRi,t  (Case C 

in Figure 1) then t is far to the right of ti*. Correspondingly, when planning window T for a 

given pipe is to the far left of a ti*, then the value of from equation 2 will tend to be 

minimum at the last year of T or beyond. When planning window T for a given pipe is to the 

far right of ti*, then the value of  will tend to be minimum at the first year of T. When 

planning window T for a given pipe is around ti*, then the value of  can be minimum at 

any year of T.  

Based on Equation (2), for each pipe i we can find the year  for which  is the smallest in 

the period of 2T+1 years. The assumptions about the shape and properties of equation (2), 

help to distinguish between the following three cases: 

tot

tiC ,

tot

tiC ,

tot

tiC ,

it̂
tot

ti
C ˆ,

1. If  > T then is located to the left of ti*  for pipe i (i.e., case A in it̂ it̂ Figure 1) 

2. If   2 ≤ ≤ T then  coincides with ti* for pipe i (i.e., case B in it̂ it̂ Figure 1). 

3. If    = 1 then during T,  is located to right of ti* for pipe i (i.e., case C in it̂ it̂ Figure 1). 

Note that if ti* happens to coincide with the first year of the planning period it would also 

qualify as case B.  

It is clear that in cases 2 and 3, barring any additional cost considerations, if pipe i is to be 

replaced then replacement should be carried out at year , where the total cost  

(equation 2) is minimum. In case 1, it is clear that pipe i should not be replaced at all during 

planning period T because  is obtained when replacement is carried out beyond planning 

period T. However, as will be explained in the next subsection, some situations could exist 

where economies of scale considerations would make it cost effective to replace a pipe during 

planning period T even if falls later. 

it̂
tot

tiC *,

tot

tiC *,

it̂

A penalty matrix Q (N x (2T)) is defined, whose elements are . Matrix Q is 

named “penalty matrix” because each element defines the penalty associated with deferring 

tot

t̂,i

tot

t,it,i C-Cq =
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(or promoting) the replacement of pipe i from year  to any other year t (in subsequent text 

we refer to this notion as “time-shifting penalties”). The reason why Q has 2T columns (as 

opposed to 2T+1 years of forecasted breaks) is explained below.  

it̂

t̂

Why consider 2T years in penalty matrix, Q? 

As described earlier, the so-called Case A (Figure 1), where > T, is problematic because it is 

not known a priori how far into the future the true minimum ti* lies and whether it is more 

economical to wait until then even if an opportunity arises to save cost (due to economies of 

scale) by replacing during the current planning period T. Thus, there is a practical need to 

reduce the problem dimensionality because contiguity calculations are computationally 

demanding. To this end, the following assumption was made: 

it̂

If for pipe i,  > T (i.e., case A in it̂ Figure 1) and  ≤ 2T then there is some likelihood that 

economies of scale savings might outweigh time-shifting penalties. However, when T is not 

too short (e.g., T > 3 years) the likelihood of this happening is very little if  > 2T and 

therefore it is reasonable to assume that the replacement of pipe i is better deferred to the next 

planning period.  

it̂

it̂

Consequently, all pipes i with  = 2T+1 are removed as candidates for replacement in 

planning period T (also referred to as ‘planning window). Further, penalty matrix Q is 

computed in consideration of only pipes i for which  ≤ 2T. Note that the actual scheduling 

of pipe replacement is done only for the T years of the planning period.  

it̂

i

Economies of scale in pipe replacement cost 

Pipe replacement cost was assumed to have two components, fixed and variable. The fixed 

component, M, is termed ‘mobilization component’ and is taken as a lump sum. Although in 

reality M may vary with the type and size of each pipe, for simplicity it was assumed to be 

approximately equal for all small (up to 12” diameter) distribution mains. Mobilization 

component comprises costs such as setting up the job site, signage, discovery and marking of 

adjacent infrastructure, etc. The variable component, Cri, is the length-unit cost ($/m) of 

replacing pipe i and it depends on pipe material, diameter, location and possibly other special 

circumstances (e.g., difficult access, rocky terrain, etc.). The cost of replacing pipe i, of length 

li is therefore 
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iii lCrMCR +=  (3) 

To account for economies of scale, the following assumptions are made about the 

mobilization and variable components of pipe replacement cost: 

• A quantity discount, Dt,m, is applied to  the replacement of pipes Vt,m of the same 

material m, when their replacement is carried out in the same year t (pipes in subset 

Vt,m are assumed to belong to the same replacement project). This discount is 

proportional to the total length of pipes in Vt,m 

⎪
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(4) 

where  is the maximum quantity discount available foFr pipe material m, and 

 and are pipe length quantities defined by the contractor. This quantity 

discount function is clearly illustrated in 

max

md

mLmax

mL min

Figure 2. 

 

 

 

 

 

 Replacement time 

Total expected cost [equation (2)]

Figure 2. Variation of quantity discount with pipe length 

tot

ti
C

*,

t* 

Cost (PV) 

Failure 

Case A Case B Case C 

Replacement 
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• Cost reduction is also possible when pipe replacement is coordinated with scheduled 

roadwork. It is assumed that the unit cost (variable component) of pipe replacement is 

discounted by pi (e.g., $/m or % of cost) if pipe i is replaced at the same year t that the 

pavement overlying it is scheduled for renewal. The total (nominal) cost of replacing 

pipe i at year t then becomes:  

iititmtiiti lpDCrMCR )--( ,,,, βα+=  (5) 

where αi,t and βi,t are binary variables so that αi,t = 1 if pipe i is of material m 

otherwise αi,t = 0; βi,t = 1 if the road overlying pipe i is renewed in year t, otherwise 

βI,t, = 0. 

• It is reasonable to assume that only one mobilization component is levied if pipe j is 

contiguous to pipe i (both share the same node) and both are replaced in a given year t 

as they form part of the same replacement project,  

jjtjtmtjj

iititmtiitjti

lpDCr

lpDCrMCRCR

)(

)(

,,,

,,,,,

βα

βα

−−

+−−+=+
 (6) 

This concept can be extended to u contiguous pipes that are replaced in a given year t, 

defined as contiguity U: 

∑
∈∀

−−+=
Ui

iititmtii lpDCrMUCR )()( ,,, βα  (7) 

The revised cost of replacing pipe i at year t, where pipe i belongs to contiguity U 

(assuming for convenience that all mobilisation costs are divided amongst all pipes in 

contiguity U relative to respective lengths) becomes 

i

Ui

ititmtii

Ui

i

ti lpDCr
l

M
CR

⎥
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⎦

⎤
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Economies of scale considerations may typically create situations where . For 

example, if roadworks are planned for pipe i in year ti and ti ≠  it may be beneficial to shift 

pipe replacement to year t if the savings due to roadwork are greater than the penalty for 

shifting from year  to year t. A similar situation can arise when pipe i contributes to 

complete a contiguity in year t, thus creating cost savings that possibly exceed penalties due 

to shifting (deferral or advancement). These situations create economies of scale savings that 

require the introduction of negative penalties (benefits) in penalty matrix Q. It should be noted 

that quantity discount and mobilisation savings due to pipe contiguity cannot be computed a 

priori for each pipe, rather they are computed upon the evaluation of an entire candidate 

solution. 

tot

ti

tot

ti CC ˆ,, <

it̂

it̂

Budget assumptions 

The total pipe replacement budget for the entire planning horizon (T years) is denoted by BT. 

We consider two budget scenarios, namely annual budget and global (non-restricted) budget. 

In the annual budget scenario, BT is divided into annual portions Bt and the total cost of pipe 

replacement in year t must not exceed Bt. The annual portions Bt can be equal portions, 

increasing/decreasing series or arbitrary. In the non-restricted scenario, BT can be allocated to 

the planning period in the most economically efficient manner, where the only restriction is 

that the total pipe replacement costs in all years T cannot exceed BT. 

It is very important to note that for budgetary calculations pipe replacement costs are taken at 

their nominal values (including savings on economies of scale and roadwork alignments) and 

not at their present values. 

Definition of solution objectives 

The objectives of the solution are to schedule the replacement of candidate pipes during 

planning horizon T, so as to minimize the total cost, including replacement and break-related 

costs, subject to budget constraints. For practical purposes it is easier to use an alternative (but 

equivalent) method of minimising the total penalties. This minimisation is done while 

respecting budget constraints as well as maximising the usage of available budget. Three 

budget situations are considered namely, unconstrained, globally constrained and annually 

constrained. The globally constrained problem has a total budget BT for the entire planning 

horizon, with no restriction on the distribution of this budget over the years. The annually 

constrained problem considers annual budgets Bt. Maximising budget usage means 

 
10



minimising the difference between the available budget(s) and the actual investment in pipe 

replacement.  

Scheduling replacement using multi-objective GA 

Genetic Algorithm (GA) is a search heuristic inspired by concepts of natural selection and 

survival of the fittest. Although GA concepts had been proposed earlier, they were 

popularised by Holland (1975) and his students at the University of Michigan, notably 

Goldberg (1989). GAs are well suited for searching discrete combinatorial spaces (continuous 

spaces will therefore need to be discretized). They have been widely applied to solve many 

types of problems in different scientific and engineering fields, such as scheduling, project 

planning, transportation, water networks design and maintenance and many others. The 

mathematical formulations of GAs are available in many text books (e.g., Goldberg, 1989) 

and will not elaborated in this paper. Traditional GAs are based on a so-called fitness 

function, whereby the (single) objective is to search for solutions that exhibit increasingly 

larger “fitness”. A relatively recent development is the multi-objective GAs (MOGAs),  

which search for non-dominated solutions that offer trade-offs between the competing 

objectives. 

In the field of water distribution, GAs have widely been used to optimise the renewal of water 

networks, where decision variables can include renewal dates, renewal alternatives (pipe 

diameter, renovation, etc.) and objective functions can include costs, reliability and/or 

hydraulic performance. GAs, e.g., Halhal et al. (1997), Savic and Walters (1997), were also 

coupled with hydraulic simulation programs, notably EPANET Rossman (2001) that serve as 

a tool to track conformance to hydraulic constraints. Dandy and Englehardt (2006) used 

MOGA to schedule pipe replacement (5-year time steps) on a double objective trade-off 

between maximizing network reliability and minimizing cost. Nafi et al. (2008) used Non-

dominated Sorting Genetic Algorithm II (NSGA II – a type of MOGA) proposed by Deb et al. 

(2000), to address the pipe renewal scheduling problem while considering cost and hydraulic 

reliability. They used the proportional hazard model (PHM) to forecast future breaks and 

EPANET to account for network hydraulics. Non-dominated Sorting Genetic Algorithm 

(NSGA) has also been used by Prasad and Park (2004). Cheung et al. (2003) used Strength 

Pareto Evolutionary Algorithm (SPEA) coupled with EPANET for the design of water 

network by considering pipes and pumps as decision variables. 
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Encoding candidate solutions and computing fitness 

A candidate solution is encoded by a chromosome with N genes, representing N decision 

variables, each corresponding to one of N candidate pipes. Each gene i contains an integer 

value ti (t = 1, 2,…, T+1). Pipe i  (i = 1, 2, …, N) is represented by the gene order in the 

chromosome (Figure 3). Note that candidate pipes that are scheduled for replacement in year 

T+1 represent all candidate pipes that will not be replaced in the current planning horizon. 

 
Chromosome

i=1 i=2 3 4 5 … N-2 N-1 N 

t1=1 t2=4 2 t4 ti … tN-2 tN-1 tN 

 Gene

Figure 3.Encoding a renewal policy using a chromosome 

Since there are two objectives, namely, minimize cost (or penalties) and maximize usage of 

available budget, two corresponding fitness values Objcost and Objbudget need to be computed 

for a chromosome (candidate solution). Suppose that a candidate solution calls for the subset 

of pipes S1 to be replaced in year 1, subset S2 to be replaced in year 2, and so on, subsets St to 

be replaced in year t. Suppose further that St comprises st pipes. Objcost is computed in two 

parts as follows. First, the total penalty is computed, including savings due to quantity 

discount and coordination with scheduled roadwork but excluding contiguity savings (see 

equations 2 and 5 for notation).  
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In the second stage, contiguities are considered: if in year t the st pipes to be replaced are 

arranged in ut contiguities, then the total savings on mobilization charges in year t are 

M(st - ut). Therefore total penalties now become 

∑ ∑
= ∈∀
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t Si
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(10) 

Finally, we define the two objectives for the MOGA, i.e the (discounted) cost objective and 

the budget objective. The cost objective is simply 

TotPenaltyObj t =cos  (11) 

The exact nature of the budget objective, Objbudget, depends on the problem explored. As 

stated earlier, three scenarios are explored, namely, unconstrained, globally constrained and 

annually constrained budgets. For the unconstrained problem, there is in fact no budget 

objective (the benefit of exploring this problem is discussed later). For the globally 

constrained problem, the budget objective expresses the difference (to be minimised) between 

total cash investment required for a renewal policy and the available budget. For the annually 

constrained problem the budget objective expresses the sum of the differences (to be 

minimised) between the annual cash investments required for a renewal policy and the 

available annual budgets. These scenarios are formulated as follows: 
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(12) 

Note that for budget calculations, investments are always computed as the cash (non 

discounted) value and with the consideration of all components of economies of scale, 

including coordination with scheduled roadwork, quantity and contiguity discounts. 
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Solution tools and parameters 

Non Sorting Genetic Algorithm II (NSGA II) proposed by Deb et al.(2000) is used to identify 

feasible solutions with tradeoffs between competing objectives (i.e., minimise penalties and 

maximise budget usage). GANetXL Bicik et al. (2008), a prototype non-commercial program 

developed by the Centre for Water Systems (CWS) at the University of Exeter, UK and uses 

MS-Excel® as a platform was used in this study. A multipoint crossover operator was used to 

achieve greater diversity in the generated chromosomes. The probability of crossover between 

two chromosomes is denoted by Pc and the number of crossover points is determined by a 

random integer 1 ≤ nc ≤ N generated by the software. A simple mutation operator with a 

probability of mutation Pm was used.  

A solution that violates any budget constraint is in fact infeasible. In MOGA no infeasible 

solution should ever dominate a feasible solution. In order to achieve this, a high artificial 

penalty has to be levied on the fitness of an infeasible candidate. This penalty is referred to in 

this text as ‘infeasibility penalty’ to distinguish it from the penalty matrix described earlier. 

Two types of infeasibility penalties are used to impose budget constraints. In the global 

budget scenario, a infeasibility penalty is imposed on the candidate solution if total 

replacement cost exceeds BT. In the annually restricted budget scenario, a infeasibility penalty 

is imposed on the candidate solution if any annual investment in year t exceeds annual budget 

bt.  

Example  

For our example we used a section of a water distribution network that serves a community in 

Southern Ontario, Canada (Figure 4). Table 1 provides details about our sample network that 

comprised 152 cast iron pipes (total length 18,059 m), with diameters 150 to 200 mm, 

installed between 1951 and 1960 and with available breakage history for the years 1962 – 

2003.  A non-homogeneous Poisson-based model (I-WARP), capable of considering time-

dependent covariates Kleiner and Rajani (2008, 2010) was used to forecast breakage rates. I-

WARP was trained on breakage data of the 30-year period 1968-1997 and the trained model 

was used to forecast breakage rates for the 11 years between 1998-2008. Note that the 

planning horizon was considered to include the five years (T = 5) 1998 – 2002, and the 

forecast was therefore done for a period of 2T + 1 years. The model forecasts ki,t, which is the 

mean anticipated number of breaks in each pipe i, at each year t of the forecast period.  
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Clearly, such predictive models are inherently limited in predictive accuracy but in reality 

renewal planning must be done based on the best available information, which is invariably 

inaccurate. 

Every pipe i for which was minimum at year 2T +1 (i.e., its  was 2008) was removed 

from the list of candidate pipes considered for replacement in the planning horizon. Of the 

152 pipes in the sub-network 23 pipes (total length 2,758 m) remained for replacement 

consideration. Details of these pipes are provided in Tables 1 and 2, and their respective 

locations are shown in Figure 4. Shaded pipes indicate candidates for renewal. Scheduled 

roadworks are marked by red triangles with their associated planned year. Contiguous pipes 

are marked bycircles (three in total). 
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Figure 4. Layout (not to scale) of the sample network 
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Table 1. Pipes considered for replacement 

ID 
Length 

(m) 

Diam. 

(mm) 
Zone   ID 

Length 

(m)

Diam. 

(mm) 
Zone 

1 170 150 1   13 203 150 1 

2 64 150 2   14 201 150 3 

3 166 150 1   15 284 150 2 

4 339 150 1   16 108 150 2 

5 85 150 1   17 37 150 3 

6 181 150 3   18 101 150 3 

7 82 150 1   19 146 150 2 

8 103 150 1   20 93 150 2 

9 76 150 2   21 6 150 2 

10 88 150 2   22 47 200 2 

11 94 150 2   23 50 200 3 

12 62 150 2       

 

 

Table 2. Forecast of expected number of breaks, kij for 2T + 1 years 

Pipe Year t 

ID 1 2 3 4 5 6 7 8 9 10 11 

1 0.19 0.19 0.20 0.20 0.20 0.20 0.21 0.21 0.21 0.21 0.22 

2 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.17 

3 0.33 0.33 0.34 0.35 0.35 0.36 0.37 0.37 0.38 0.39 0.39 

`4 1.01 1.03 1.05 1.08 1.10 1.12 1.14 1.16 1.19 1.21 1.23 

5 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.15 

6 0.31 0.32 0.32 0.33 0.34 0.34 0.35 0.35 0.36 0.37 0.37 

7 0.16 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.19 0.19 0.19 

8 0.16 0.16 0.16 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.19 

9 0.19 0.19 0.20 0.20 0.20 0.21 0.21 0.21 0.21 0.22 0.22 

10 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 

11 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.17 

12 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 

13 0.23 0.23 0.23 0.24 0.24 0.25 0.25 0.26 0.26 0.26 0.27 

14 0.22 0.22 0.23 0.23 0.24 0.24 0.25 0.25 0.26 0.26 0.27 

15 0.55 0.56 0.57 0.59 0.60 0.61 0.62 0.63 0.65 0.66 0.67 

16 0.19 0.19 0.19 0.20 0.20 0.21 0.21 0.21 0.22 0.22 0.22 

17 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 

18 0.52 0.53 0.54 0.56 0.57 0.58 0.60 0.61 0.62 0.64 0.65 

19 0.24 0.25 0.25 0.26 0.26 0.27 0.27 0.28 0.28 0.29 0.29 

20 0.62 0.63 0.65 0.66 0.67 0.69 0.70 0.72 0.73 0.74 0.76 

21 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

22 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

23 0.19 0.19 0.20 0.20 0.20 0.21 0.21 0.21 0.22 0.22 0.23 
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Table 3. Cost data  

Item Symbol Unit Value 

Pipe replacement 150mm Cr $/m 300 

Pipe replacement 200mm Cr $/m 350 

Pipe repair (all diameters) Ci
rep $/u 3,000 

Discount rate R (%) 3.0 

Minimum quantity for discount 
m in

mL
maxL

 (m) 500 

Quantity for maximum discount 
m  (m) 1,500 

Maximum quantity discount 
max

md  (%) 10 

Cost saving due to roadwork pi (%) 20 

Cost of water loss due to failure Ci
wat ($) 100 

 

Table 4. Factors for cost assessment 

 Zone 1 Zone 2 Zone 3 

Impact cost factor 1 1.2 1.5 

Social cost ($) 1,000 3,000 5,000 

 

Tables 3 and Table 4 provide economic data used in this example. Each pipe was assumed to 

be located in one of three zones, 1, 2, and 3 (Table 1), where each zone represents a different 

impact of pipe failure. Zone 1 represents low impact, e.g., industrial area; Zone 2 represents 

medium impact, e.g., residential area; and Zone 3 represents high impact, e.g., downtown 

area. Accordingly, each area is assigned different social cost of failure (Table 4) as well as an 

impact cost factor, used to multiply unit costs provided in Table 3. A discount rate of r =3%, 

is considered, which is in line with typical social discount rates (as opposed to financial 

discount rates) appropriate for public projects. For simplicity, indirect costs of pipe failure 

were taken as zero in this example. 

As is indicated in Figure 4, roadworks are assumed to be scheduled at the locations of pipes 1, 

6, 7, 13, 15, 22, 23 in years 2, 2, 3, 1, 5, 1, 3, respectively. Clearly, for every pipe i, penalty 

qi,t = 0 when t = . Table 5 provides the penalty matrix Q, computed based on the predicted 

number of breaks (Table 2) and the cost data but does not yet considers economies of scale. 

it̂

Table 5. Penalties matrix Q prior to economies of scale considerations. 

 Pipe Year  t 

ID 1  2  3  4  5  6  7  8  9  1 0  
1 5,504 4,799 4,132 3,501 2,905 2,343 1,813 1,315 848 410 
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2 0 177 378 601 847 1,115 1,403 1,712 2,040 2,388 
3 245 126 47 6 0 29 91 185 309 463 
4 0 1,124 2,332 3,622 4,988 6,428 7,938 9,514 11,154 12,854 
5 1,414 1,195 995 813 649 501 371 256 156 71 
6 0 169 427 770 1,197 1,706 2,294 2,959 3,700 4,514 
7 90 43 14 0 2 19 51 96 155 226 
8 1,551 1,306 1,083 881 699 538 395 270 164 74 
9 0 365 753 1,164 1,597 2,052 2,528 3,023 3,539 4,073 
10 1,137 912 713 541 394 271 172 96 43 11 
11 342 210 111 43 7 0 22 73 151 255 
12 1,123 933 762 608 472 354 252 166 96 40 
13 6,399 5,560 4,770 4,026 3,328 2,673 2,060 1,488 955 459 
14 4,352 3,499 2,745 2,089 1,527 1,056 675 382 173 46 
15 0 370 850 1,437 2,126 2,914 3,800 4,779 5,849 7,008 
16 0 13 64 153 278 439 633 861 1,122 1,413 
17 0 63 140 232 338 459 592 739 899 1,071 
18 0 2,834 5,768 8,801 11,929 15,151 18,465 21,869 25,360 28,937 
19 52 0 2 55 159 311 510 756 1,046 1,379 
20 0 2,752 5,562 8,427 11,347 14,319 17,341 20,412 23,532 26,697 
21 0 92 185 278 373 468 564 660 757 855 
22 1,043 874 720 581 458 348 252 170 101 44 
23 0 754 1,544 2,369 3,228 4,120 5,045 6,001 6,989 8,007 

Shaded cells denote  it̂

Baseline solution 

For convenience we define a baseline solution (policy) where each pipe i, with penalty qi,t = 0 

is replaced at year t provided t ≤ T. From Table 5 it is clear that the baseline solution 

comprises all pipes except pipes 1, 5, 8, 10, 11, 12, 13, 14 and 22. The renewal policy 

obtained for the baseline solution is represented by the chromosome depicted in Figure 5. 

Recall that in our chromosome representation, pipes that are scheduled to be replaced in year 

T+1 (i.e., years 6) represent pipes that will not be replaced in this renewal policy but rather in 

the next planning period.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 1 5 1 6 1 4 6 1 6 6 6 6 6 1 1 1 1 2 1 1 6 1 

Figure 5. Chromosome representation of the baseline solution  

This baseline solution will be used as a reference point for comparing optimised solutions. 

Consequently its quality, in terms of cost and investment budget, need to be computed, 

including all economies of scale considerations. Table 6 provides the details of the baseline 

solution, with mobilization cost taken as M = $2000.  
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Table 6. Details of the baseline policy  

 Year t Total 

 1 2 3 4 5 Next T  

Total length to replace ∑ li (m) 1,339 146 0 82 166 1,052 2,785 

Total length to replace ∑ li (%) 48% 5% 0% 3% 6% 38% 100% 

# of pipes to replace nt 11 1 0 1 1 9 23 

# of alignments with roadwork 0 0 0 0 0  0 

Savings due to roadwork alignment ($) 0 0 0 0 0  0 

# of contiguities Ut 1 0 0 0 0  1 

Savings due to contiguities ($) 2,000 0 0 0 0  2,000 

Saving due to quantity discount ($) 39,635 0 0 0 0  39,635 

Total savings ($) 41,635 0 0 0 0  41,635 

Expected # breaks avoided (relative to 
do nothing) during T 

16.05 0.77 0 0.79 0.71 0 18.32 

Total penalty due to replacement 
shifting ($) 

0 0 0 0 0 0 0 

Total investment in replacement ($) 454,818 52,571 0 24,507 49,884  581,780 

Note that among the 14 pipes scheduled for replacement in the baseline policy one contiguity 

exists in year 1 (pipes #17 and 18). Also the baseline solution does not benefit from any 

alignment with scheduled roadwork. A quantity discount can be applied in year 1 due to the 

total length of pipe scheduled for replacement.  

Optimised solution with no budget constraint 

We applied the MOGA without budget constraints, i.e., to minimise total (discounted) 

penalty. The MOGA was applied with a population of 200 chromosomes (candidate policies) 

and 500 generations, a multipoint crossover with probability Pc = 0.95 and simple mutation 

with probability Pm = 0.05. Renewal policy was optimized with respect to all economies of 

scale savings, including contiguity (mobilization cost M = $2,000) roadwork coordination and 

quantity discount. Figure 6 illustrates the optimized Pareto front and how it relates 

(dominates) the baseline solution (for the same investment level the optimized solution will 

save approximately $50K in discounted costs. Note that this Pareto front in fact provides the 

optimal (or near optimal) renewal policy for any given level of total budget Bt. 
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Figure 6. Pareto-front of optimised (unconstrained) solutions 

Table 7 provides details on the costs involved in a selected policy from the optimised Pareto 

front, and Figure 7 illustrates, using arrows, how replacement schedules were shifted from the 

baseline solution to the optimised solution, to take advantage of the various economies of 

scale discounts (recall that when a pipe is scheduled for replacement at years 6 it means that 

its replacement is deferred to the next planning horizon). For example, renewal of pipe 1 

shifted from year 6 to year 2 to benefit from discount due to harmonisation with scheduled 

roadwork. Pipes 5, 8, 10, 11, 12, 13 and 22 shifted from year 6 to year 1 to benefit from 

quantity discount as well as mobilisation savings due to contiguity (pipes 5 and 11) and 

harmonisation with scheduled roadwork (pipes 13 and 22); and so forth. This optimised 

policy sees the replacement of 22 pipes (2,583m length – see Table 5) compared to 14 pipes 

(1,733 m length –Table 4) in the baseline policy with renewal investments of $760,553 

compared to $581,780. The optimized solution added 852 m of pipe replacement at an 

additional cost of $178,773 (marginal cost of less than $210 per meter – compared to the 

average cost of $300/m for 6” pipe).  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 1 5 1 6 1 4 6 1 6 6 6 6 6 1 1 1 1 2 1 1 6 1 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 1 1 1 1 2 3 1 1 1 1 1 1 6 5 1 1 1 1 1 1 1 3 

  

Figure 7. Comparison between baseline and the optimised solution from Table 7.  

 

Table 7. Details of a renewal policy (identified in Fig 6) from the optimised Pareto front 

 

Optimised solutions with budget constraints 

In order to examine the impact of various budget schemes, we set the global budget to 

BT = $760,553, which is the highest investment obtained earlier for the unconstrained problem. 

This ensured that the policy constrained by global budget will be at least as good as the 

unconstrained policy, thus guaranteeing full benefits of economies of scale discounts. We 

examined three schemes of annual budget constraints, whose total amounted to BT, as is 

depicted in Table 8. Figure 8 illustrates the results with M = $2000 (note that the data points 

 Year t Total 

 1 2 3 4 5 Next T  

Total length to replace ∑ li (m) 1,818 351 132 0 284 201 2,785

Total length to replace ∑ li (%) 65% 13% 5% 0% 10% 7% 100% 

# of pipes to replace nt 17 2 2 0 1 1 23

# of alignments with roadwork 2 2 2 0 1 7

Savings due to roadwork alignment ($) 16,111 26,502 10,151 0 20,424 73,188

# of contiguities Ut 3 0 0 0 0 3
Savings due to contiguities ($) 6,000 0 0 0 0 6,000

Saving due to quantity discount ($) 59,621 0 0 0 0 59,621

Total savings ($) 81,732 26,502 10,151 0 20,424   138,809

Expected # breaks avoided (relative to 
do nothing) during T 

18.24 1.59 0.74 0 1.21   21.78 

Total penalty due to replacement 
shifting ($) 

13,307 4,968 1,557 0 2,126 0 21,958 

Total investment in replacement ($) 532,241 106,009 40,606 0 81,697 760,553

Optimised (unconstrained) solution 

Baseline solution 
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in Figure 8 represent discrete solutions and the lines connecting them are provided only as a 

visual aid to highlight the Pareto front that is comprised of these data points. The same holds 

for Figures 6, 9, and 11). 

Table 8. Annual budget constraints 

 
Year t 

Annual constraint  1 2 3 4 5 

Constant  $152,111 $152,111 $152,111 $152,111 $152,111 

Increase 10 %/year  $124,577 $137,034 $150,738 $165,812 $182,393 

Decrease 10 %/year  $182,393 $165,812 $150,738 $137,034 $124,577 
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Figure 8. Pareto fronts for renewal planning under budget constraints 

The following observations are noted: 

• Global budget clearly dominates, as expected, all annual budget schemes.  

• Among the different annual budget schemes, the decreasing scheme dominates the others 

because a large portion of the pipes in the example are expected to be replaced at year 1 

because of anticipated increasing failure costs and because of economies of scale benefits, 

including scheduled roadwork, contiguities and quantity discounts. 
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• The constant annual budget scheme dominates the increasing annual budget for the very same 

reason that the decreasing annual budget is expected to dominate the others, i.e., the favoured 

policy is the one that allows for more pipe replacements earlier in the planning period. 

• While the global budget scheme utilizes (nearly) the entire available budget (approx. 

$760K to maximize discounted cost savings (about $-118K), the annual budget schemes, 

because of inefficiencies in the time-allocation of investment, do not use the entire 

available budget (only about $510K-540K) to achieve their respective maximal cost 

savings (which at about $57K are of course inferior to the cost savings achieved by the 

global budget scheme. In fact forcing the annual budget scheme to use more of the 

available budget degrades their ability to achieve cost savings.   

Sensitivity analysis: impact of discount rate and quantity discount 

We tested the case of the unconstrained problem (Case C) with three different values of discount 

rate, r = 3%, 6% and 9%. Clearly, in the approach proposed here, discount rates directly affect 

only the (discounted) cost objective and not the budget (or investment) objective. Results are 

illustrated in Figure 9 and Figure 10. In general, higher discount rates will tend to defer cash 

outlays. In this case study the higher discount rates caused many pipe replacements to be 

deferred to the next planning horizon. Consequently maximum investments on the Pareto fronts 

were $760,553, $617,628 and $183,736 for discount rate of 3%, 6% and 9%, respectively.  
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Figure 9. The impact of variation of discount rate value on Pareto front 
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Select policy for 3% discount 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23t

2 1 1 1 1 2 3 1 1 1 1 1 1 6 5 1 1 1 1 1 1 1 3 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 5 5 5 5 2 5 6 5 5 5 6 6 6 5 5 5 1 5 1 5 6 6 

  Select policy for 6% discount
t

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 6 6 1 6 1 4 6 3 

Select policy for 9% discount 

Figure 10. Comparison between select renewal policies with varying discount rates.  

t

Figure 10 illustrates that the number of pipes to be replaced in policies selected from the three 

Pareto fronts were 22, 16 and 5 for discount rates of 3%, 6% and 9% respectively. 

In this same manner, we tested the unconstrained problem (Case C) with three different values 

of maximum quantity discount = 0%, 5% and 10%. Results are illustrated in max

md Figure 11 

and Figure 12. At low investment levels (i.e., when few pipes are replaced) quantity discount 

value has no impact because too few pipes are replaced to enjoy the benefits of such a 

discount. 

In our case study, the investment threshold, below which quantity discount does not matter, 

appears to be approximately $350,000. On the contrary as expected, high quantity discounts 

encourage high investments above an investment threshold of about $400,000.  

Policies selected from the three Pareto fronts are compared, as shown in Figure 12. At 

, 5%, and 10% the total number of pipes to be replaced are 10 (1,562m, $503,4

(2,527m, $795,809) and 22 (2,585m, $760,553), respectively (with mean pipe costs of 

$322/m, $315/m and $294/m). It is also interesting to note that at 
max

md =5% aximum 

quantity discount was realised at year 2, while at 
max

md =10% ximum quantity discount 

was realised at year 1. 

max

md

3), 20 of 0% 8

, m

, ma
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Figure 11. The impact of variation of maximum quantity rate value on Pareto front. 
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Select policy for max. quantity discount 0% 

Select policy for max. quantity discount 10% 

Select policy for max. quantity discount 5% 

Figure 12. Comparison between select renewal policies with varying quantity discounts. 

Discussion 

The consideration of economies of scale and infrastructure adjacency in planning the renewal 

of water mains has so far not received much attention in the literature. The challenges can be 
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both conceptual and computational. Conceptual challenges, such as contiguity considerations 

can be overcome by obtaining a good handle on the manner with which contractors price 

projects. It has been the experience of the authors that contractor pricing considerations can 

vary substantially between individual contractors. Moreover, discussions with contractors in 

Canada seem to suggest that they are not always consistent with the factors they consider to 

price a project. Consequently, simplifying assumptions and rationalizations are often 

necessary for any modeling effort. Computational challenges are due to the fact that 

economies of scale typically exacerbate the non-linearity of a problem that is already non-

linear. Furthermore, some phenomena are discrete (e.g., contiguity) rather than continuous. In 

this research, we chose to address these computational challenges by transforming the 

problem to a discrete one and solving it with MOGA. In order to reduce the solution space to 

a manageable one, we assumed that a five-year (or so) planning horizon (T) is a reasonable 

and practical period for a water utility to plan the replacement of individual pipes. However, 

by initially considering a period of 2T+1 (and subject to assumptions about breakage patterns 

of pipes), we ensure that this short planning horizon of duration T will not result in the loss of 

feasible and potentially optimal solutions. 

We examined three types of economies of scale and infrastructure adjacency, namely quantity 

discount, contiguity discount (savings on mobilization costs) and harmonization of pipe 

replacement with known scheduled roadwork. The impact on the costs and budget of 

economies of scale and infrastructure adjacency was demonstrated with the help of a 

relatively simple example. This example comprised a real network and real anticipated (mean) 

numbers of pipes breaks, however, costs and roadwork, while realistic, were mostly assumed.  

The moderately simple example is helpful in that it is not trivial yet simple enough to gain an 

intuitive understanding of the expected results. It is therefore reassuring that the proposed 

approach identified solutions that appear to be near optimal. Specific numerical results are not 

important here because they can vary with different assumptions about mobilization costs, 

roadwork savings, etc. What is important is that the information presented in Figure 8 can be 

a solid basis for making sound decisions about budgeting pipe renewal as well as pipe 

maintenance (based on anticipated breaks). Moreover, this approach can ultimately be 

extended so as to consider the schedule of pipe works and roadwork simultaneously (rather 

than use roadwork as a given constraint) to achieve an even higher cost effectiveness.  

Finally, it should be noted that a fully practical decision support system often requires 

additional information that is not readily available at s single pipe resolution. For example, 
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pipe replacement is often accompanied by the replacement of service connections, hydrants, 

valves, and other appurtenances attached to this pipe. Information about the condition and 

cost of these items should be considered. Further, re-pavement works may have different unit 

cost, depending on the type of road. Equation (2) was formulated to accommodate such data 

by assigning pipe-specific replacement costs (pipe costs all carry index i), but for simplicity 

the example did not address these data.  

Concluding remarks 

The approach described here, for planning the replacement of individual water mains, is 

currently limited to the consideration of structural resiliency (i.e., breakage frequency) of 

pipes and the economics of their replacement. In reality, other factors should also be 

considered as well, such as hydraulics (including the consideration of larger diameter 

replacement pipes), reliability, etc. More work is required to incorporate additional 

considerations into this approach. 

The assumptions about cost-contiguity implications are rather simple and may be overly 

simplified. For example, if 100 pipes are (spread out but) contiguous does this mean that 99 

mobilisation costs would be saved, or should there be a realistic spatial limit to the extent of a 

contiguity? Further, if two water mains are separated by a third, short (say 20 m) pipe, will 

they not save mobilization costs? It seems that a spatial element may be required to refine the 

consideration of mobilization cost savings. 

Finally, the residual value of the network at the end of the planning horizon was not 

considered in comparing renewal policies. . While it is clear that a policy comprising more 

pipe replacements yields a newer (and presumably higher value) network at the end of a 

planning horizon, it is not clear how this residual value might be monetised (e.g., replacement 

value, depreciated historical value or expected life-cycle maintenance cash flows) and 

incorporated in penalty matrix or perhaps considered as an additional objective in this multi-

objective problem. 

 

Notation 

a   Annual budget increase. 

αi,t   Binary variable for the type of material of the pipe i, in year t. 

BT   Global Budget on the horizon planning T. 
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bt   Annual budget constraint in year t (t = 1, 2,…T). 

βi,t Binary variable for the roadwork scheduling for the pipe i in year t. 

Ci
rep  Cost of failure repair in pipe i. 

Ci
dir Cost of expected direct damage at failure in pipe i. 

Ci
indir  Cost of indirect damage at failure in pipe i.  

Ci
wat :  Cost of water loss at failure in pipe i. 

Ci
soc :  Social cost of failure in pipe i. 

tot

tiC ,  :  Total cost associated with pipe i at year t. 

Cri   Pipe i replacement cost ($/m). 

Cfi:  Total cost of failure in pipe i ($). 

CRi,t  Cost of replacing pipe i at year t ($). 

ΔCfi,t: Expected discounted cost of failure of pipe i at year t.  

ΔCRi,t  Marginal savings in deferring replacement of pipe i from year t to t+1. 

Dt,m Quantity discount for the replacement of pipes of material m in year t. 

max

md    Maximum quantity discount available for pipe material m. 

Objcost Objective function assessing the total penalties for a given renewal policy. 

Objbudget Objective function assessing the total investment for a given renewal policy. 

ki,t  Forecasted expected number of breaks in pipe i at year t. 

li  Length of pipe i. 

max

mL   Total length of pipes of material m for which maximum quantity discount is available. 

min

mL   Total length of pipes of material m for which minimum quantity discount is available. 

Lt,m  Total length of pipes of material m to be replaced in year t (for quantity discount 

calculations). 

M  Mobilization cost. 

nc  Number of crossover points. 
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nt  Number of pipes renewed in year t. 

Pc  Probability of crossover. 

Pm  Probability of mutation. 

pi  Discount when replacement of pipe i is coordinated withroadwork. 

qi,t  Penalty for the renewal the pipe i in year t (members of Q). 

Q  Penalty matrix. 

r Social discount rate. 

st Number of pipes to renew in year t (for contiguity calculations). 

T  Planning horizon. 

ti Renewal year for pipe i. 

it̂    Year when is the smallest in the analysis time window 2T +1 years. tot

tiC ,

t
*   Year when  is minimum. 

tot

tiC ,

ut Number of contiguities in year t.  

Vt,m   Number of pipes of the same material m, considered for renewal in year t. 
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