
Scheduling Small Packets
in IPSec Multi-accelerator Based Systems

Antonio Vincenzo Taddeo, Alberto Ferrante,
ALaRI, University of Lugano, Lugano, Switzerland

Email: {taddeo, ferrante}@alari.ch

Vincenzo Piuri
DTI, University of Milano, Milano, Italy

Email: piuri@dti.unimi.it

Abstract—IPSec is a suite of protocols that adds security
to communications at the IP level. Protocols within the IPSec
suite make extensive use of cryptographic algorithms. Since
these algorithms are computationally very intensive, some
hardware acceleration is needed to support high throughput.
IPSec accelerator performance may heavily depend on the
dimension of the packets to be processed. In fact, when
packets are small, the time needed to transfer data and
to set up the accelerators may exceed the one to process
(e.g. to encrypt) the packets by software. In this paper
we present a packet scheduling algorithm that tackles this
problem. Packets belonging to the same Security Association
are grouped before the transfer to the accelerators. Thus, the
transfer and the initialization time have a lower influence on
the total processing time of the packets. This algorithm also
provides the capability of scheduling grouped packets over
multiple cryptographic accelerators. High-level simulations
of the scheduling algorithm have been performed and the
results for a one-accelerator and for a two-accelerator system
are also shown in this paper.

Index Terms—Cryptographic accelerators, packet
scheduling algorithm, IPSec, small packets.

I. INTRODUCTION

IPSec is a suite of protocols that adds security to
communications at the IP level. This suite of protocols
is becoming more and more important as it is included as
a mandatory security mechanism in IPv6. IPSec is mainly
composed of two protocols: Authentication Header (AH)
and Encapsulating Security Payload (ESP). The former al-
lows authentication of each IP datagram’s selected header
fields or – depending on the operational mode that has
been selected – of the entire IP datagram. The latter
allows encryption (and optionally authentication) of the
entire IP datagram or of the IP payload, depending on
the operational mode that has been selected, namely the
transport and the tunnel modes. The former was designed
for use in host machines, the latter for secure gateways. In
tunnel mode, the entire original IP datagram is processed;

This paper is based on “Scheduling Small Packets in IPSec-based
Systems,” by A. V. Taddeo, A. Ferrante, and V. Piuri which appeared
in the Proceedings of CCNC 2006, Las Vegas, USA, January 2006.
c© 2006 IEEE.

the result becoming the data payload of a new IP datagram
with a new IP header. In transport mode, only parts of
the original IP datagram are processed (e.g., the data
payload for the ESP protocol) and the original IP header is
kept with some small modifications. Through encryption,
authentication, and other security mechanisms included
in IPSec (e.g., anti-reply), data confidentiality, data au-
thentication, and the peer’s identity authentication can
be provided [1]–[3]. The concept of Security Association
(SA) is fundamental to IPSec. A Security Association is
a simplex “connection” that supplies security services to
the traffic carried by it. To secure typical bi-directional
communication between two peers, two SAs (one in each
direction) are required. Security services are afforded to
a SA by the use of AH, or ESP, but not both. Security
association establishment can be performed through a
protocol named Internet Key Exchange (IKE) [4].

IPSec is gaining importance as it is often used to
create Virtual Private Networks (VPNs). A VPN is an
extension of a private network on a public network (e.g.,
the Internet) [5], [6].

IPSec has been proven to be very computationally
intensive [7]–[9]. Thus, some hardware acceleration is
needed to support large network bandwidths, as may
be required even in small secure gateways. The use of
mixed hardware-software solutions for this, especially in
low-end systems, has become a common practice in the
last few years [10], [11], since it provides flexibility and
performance.

It is also known that the encryption process might
be inefficient for small IP packets. Some performance
measurements for small packet processing are shown in
[7]. This problem cannot be neglected; as matter of fact,
according to an analysis of Cooperatives Association for
Internet Data Analysis (CAIDA), the most probable size
of Internet packets is around 40 bytes [12].

This work is based on [13] and [14]. The former
presents a scheduling algorithm allowing distributing
packet processing over multiple crypto-accelerators and
the CPU (running a software implementation of the same
cryptographic algorithms). The latter extends the sched-
uler to support quality of service (QoS). In these papers,

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007 53

© 2007 ACADEMY PUBLISHER

Main FIFO

Scheduler

CPUCPU FIFO

SW enc.

Fast Bus

HW enc.

Acc FIFO Accelerator

PCI bus

Fig. 1. Model used in simulations.

no specific solutions for the small packets problem is
presented.

In this work, we investigate the effects of small packets
on system performance and we propose a solution to
improve overall system efficiency. Our scheduler bundles
small packets belonging to the same SAs to form bigger
packets. This allows avoiding performance loss due to the
transfer of small packets between memory and processors.

Section II describes the architecture of the considered
system. Section III describes the scheduling algorithm.
Finally, section IV presents the model for the simulations
and the obtained results.

II. SYSTEM ARCHITECTURE

The system considered here is composed of a host
computer and a cryptographic accelerator connected to
the normal system bus; a PCI bus (32bit, 66MHz) [15]
is adopted here as an example. CPU-memory communi-
cation is performed on a faster bus, as in most modern
personal computers. The network card is also connected to
the faster CPU bus. Only cryptography-related operations
are offloaded to the accelerator. This means that all IPSec
header processing is done by the CPU. Pieces of data to be
processed are stored in main memory and each processor
loads them in its local memory by using DMA.

This is only a sample architecture we use to test the
properties of our scheduling algorithm. Higher throughput
systems should use different system architectures.

III. THE SLIDING WINDOW SCHEDULING

ALGORITHM

In the envisioned architecture, each processor (CPU
or hardware accelerator) can support different sets of
algorithms and different processing speeds. A common
interface (i.e., an API) is therefore required to allow
uniform access to all the cryptographic devices. This
common interface should also allow access to the software
implementations of the cryptographic algorithms. The
scheduler runs on the CPU.

In this section, we present the assumptions on which
our scheduling algorithm is based and their motivations,
the scheduling algorithm, and some limitations of our
approach.

A. Assumptions

Our algorithm is based on two fundamental charac-
teristics. The first one is that the processing time for

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Window

Sliding

SA_1 SA_2

Scheduler

Fig. 2. Sliding Window schema

packets is known (at least approximately) in advance.
This is true for symmetric-key cryptographic algorithms
which are normally used within the IPSec context: their
processing time only depends on the number of data
blocks to be processed. The only exception is for software
implementations of these algorithms: in this case the
computation time may vary depending on the current CPU
load. The second characteristic is that each packet can be
processed independently from the others (i.e., there are no
data dependencies between different packets). This comes
from IPSec specifications: each packet must carry any
data required for its processing [3]. How to obtain data
independency among packets for AES is shown in [16].

B. Description of the Algorithm

Our algorithm is based on two ideas: to allocate the
packets to be processed on the processor (the CPU or the
accelerator) that can provide the shortest processing time,
and to bundle together packets belonging to the same SAs.
These bundles are sent to the selected processors, thus
avoiding multiple DMA setups and algorithm initializa-
tion phases.

One key concept of this algorithm is the use of a sliding
window over the incoming data. As shown in Figure 2, the
sliding window provides a way to observe a specific-size
part of the input data stream. This allows to group packets
into multi-packets thus providing the possibility to send
them to the processors in a single transfer. The sliding
window allows to analyze the packets by comparing their
SA identifiers:

1) the SA identifier of the first packet in the window
is taken as a reference;

2) the SA identifiers of the incoming packets are
compared with the reference one:

a) the packets having the same identifier as the
reference one are grouped together to form a
multi-packet;

b) if no packets with the same identifier as the
reference one are found, the multi-packet is
composed of the the first packet only;

3) once the window is full or a certain timeout expires,
the multi-packet is sent for processing;

4) when multi-packets are formed and sent, the related
single packets are removed from the queue; packets
remaining in the queue are then rearranged (arrival
order is preserved) and re-processed through the
mechanism described in the previous points.

54 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007

© 2007 ACADEMY PUBLISHER

From an implementation stand point, the sliding win-
dow is just a modification of the scheduler’s input queue.
A new system parameter needs to be considered: the
sliding window size, W . This parameter needs to be
tuned depending on the considered system and on network
traffic characteristics. The scheduler processes each multi-
packet as follows:

• the finishing time for each of these processors is
computed; the finishing time is defined as the sum
of the waiting time and of the processing time of the
packet scheduled on the considered processor;

• the packet is scheduled to the processor with the
lowest finishing time. When all of the queues are
empty, new tasks are scheduled to the first fastest
accelerator. Each accelerator processes the assigned
packets in FIFO order.

The equation to compute the finishing time for each
processor i (where i = 0 is the CPU and i = 1 is the
accelerator) is as follows:

fi = wi + pi, i = {0, 1} (1)

where wi is the waiting time and the pi is the processing
time of the examined packet. pi = pi (bdata) is a function
of the packet dimension. The waiting time is defined as the
sum of the processing time of all the packets contained in
the related queue, the time in queue, qi, and of the residual
processing time, ri, of the packet being processed at that
time by the processor:

wi = wi (t) = qi (t) + ri (t) (2)

In detail, we have the time in queue expressed by:

qi = qi (t) =

N∑
n=1

cin (3)

that is the sum of the computation time cin, at time t, for
the related queue i of dimension N . The qi value can be
efficiently updated each time a datagram goes in or out of
a queue by a simple addition or subtraction, respectively.

The residual processing time ri represents the residual
computation time to complete the packet that is currently
being processed. ri can be computed as follows:

ri = r

j
i (t) = c

j
i −

(
t − t

j
i

)
(4)

Where c

j
i is the overall computation time required by the

packet j, and t

j
i is the time at which the computation has

started.
Once the cryptographic algorithms to be applied to a

packet are known, the processing time for this packet
can be computed by using formulas corresponding to the
considered cryptographic algorithm; formula parameters
depend on the characteristics of each processor. These
characteristics can be provided by the manufacturer, or
determined through simple speed tests. An example of a
formula used to compute processing time is provided in
Section IV-A.

1) Algorithm Limitations: As stated earlier, this algo-
rithm has been designed to process IPSec packets only
with the assumptions given in Section III-A. For a het-
erogeneous protocol environment our algorithm may have
to be modified. This would be the case if, for example,
the TLS protocol [17] also needed to be supported. In fact
different TLS packets may exhibit data interdependency.
Since our target system is a secure gateway, the situation
in which IPSec and TLS are required to coexist should
not be very common. TLS works above TCP and it would
not make much sense having it on a gateway.

The sliding window mechanism proposed is strongly
connected with network traffic characteristics and may
increase processing latency of the packets. In applica-
tions where latency is important (e.g., real time network
streams) the W parameter needs to be tuned in a proper
way (typically small values need to be selected for these
applications). In addition other mechanisms such as a
timeout on the sliding window might be applied.

The algorithm presented above cannot guarantee the
processing order of the packets. This is not a problem for
IPSec per se.

IV. SIMULATIONS

To validate our algorithm and evaluate its performance,
we developed a queue-based model. Model simulations
and results are now presented. The SystemC language
[18] was selected to describe our model as it allows
for specification of hardware-software systems. Delays
associated with the performed operations can be easily
modeled with this language.

A. Description of the Model

The SystemC model used to describe our algorithm
represents the queues of the cryptographic architecture
and the flow of cryptographic requests related to IPSec
packets. We are therefore not interested in specific op-
erations performed on data, but only on their delays. A
representation of the model is shown in Figure 1.

Among all possible conflicts and delays due to com-
munication between the architectural components, we
only considered bus contention. RAM contention and
other necessary communications between the CPU and
the accelerator have been ignored. Providing a highly
accurate performance estimation of the considered system
is in fact beyond the scope of this work; our main
goal is to prove that our algorithm works as desired.
Ignoring RAM contention should not introduce a too
coarse approximation, since in the system considered, the
RAM access is much faster than the access to system bus.

A bus contention mechanism, simplified with respect
to the PCI standard, has been modeled here. Access to
the bus is given to each of the processors which have
requested it, one at a time, in the same order as it has
been requested. Bus transfer time (that is also the bus
lock time) is computed as:

tbus = tbus cycle(caddress + �ldata/b�) (5)

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007 55

© 2007 ACADEMY PUBLISHER

where: tbus cycle is the bus cycle period (i.e., 10−6
/66);

caddress is the time needed to assert the address (1 bus
cycle for PCI in DMA mode); ldata is the length of the
piece of data to be transferred (measured in bytes) and b

is the number of bytes that are transferred in each cycle
(here we consider b = 4).

In our model, we decided to use AES encryption as the
only available operation both in hardware and in software.
Time for decryption, depending on the selected algorithm,
may differ; for AES, encryption and decryption time can
be very similar, depending on the implementation. To
compute the delays of the AES encryption operation, we
considered a formula that can be applied to all cipher-
block algorithms working on 16-byte blocks:

tenc = tinit + tblock × �bdata/16� (6)

where: tinit is the algorithm initialization time and tblock

is the time needed to encrypt a 16-byte data block.
In our model, we considered a modified version of

Equation 6 allowing for CPU processing rate variability.
Here follows the modified version of the equation:

tenc = Tinit−ratio∗tinit+Tenc−ratio∗tblock×�bdata/16�

(7)
where: Tinit−ratio is the ratio between the encryp-
tion/decryption initialization time of the CPU and the
one of the accelerator; Tenc−ratio is the ratio between
the encryption/decryption processing time of the CPU
and the one of the accelerator. These two parameters
allow defining the CPU processing rate relative to the
accelerator one. Both Tinit−ratio and Tenc−ratio are 1

for the reference accelerator.
Mainly, the sliding window modifies the average packet

dimension in the system datapath. The number of times
it creates merged packets highly depends on network
traffic characteristics. Information about packets inter
departure/arrival time was neglected as we considered the
worst possible case, i.e., no delay between arrival of the
packets. We therefore simulated a nominal network rate
of 1 Gbit/s. Moreover, we focused only on the distribution
of the dimension of the packets and their SA parameters.

In order to study the effects of the dimension of
the packets on our model, we adopted seven different
traffic patterns, each one composed of 500,000 samples.
Two patterns are based on exponential and uniform
statistic distributions; another four patterns are of data
payload fixed dimension: 0, 24, 472, and 984 bytes.
Inside these patterns a random distribution of 100 SAs
were considered. Besides these patterns, we also used a
real network trace file provided on the Internet Traffic
Archive [19] website. Files provided by ITA contain long
traces obtained by using the tcpdump tool [20] on various
networks. We considered a trace taken from a 2Mbit/s
gateway and containing about 3 million TCP packets.
For our simulations, we decided to use only 500,000 of
these packets to avoid having overly long simulations. The
only parameter we took from the considered tracefile was
packet dimension, ignoring timestamps. Table I shows
the parameters of this trace and of the exponential and

TABLE I
PATTERN PARAMETERS IN BYTES.

Exponential Uniform Trace
range: [20-7,065] [0-1,960] [0-1,460]

average: 471 976 256
median: 326 – 162
std. dev.: 470 565 259

uniform patterns. In this case, SAs were associated to the
destination IP address. This could be considered a kind
of worst case estimation for gateway machines.

As our target is a gateway-like machine, in our simu-
lation we processed the packets as if ESP in tunnel mode
was being used. We incremented the packet size read from
the tracefiles by 40 (40 bytes is the size of a normal
TCP/IPv4 packet header) since the sizes contained both
in ITA and in artificially generated files are the ones of
data payloads only.

We chose to have accelerators capable of processing a
data traffic of roughly 230Mbit/s each. The processing
capability of the CPU was varied from 32Mbit/s to
230Mbit/s, being the first value similar to the one that
can be obtained on a Pentium III [9]. Even if a more
powerful CPU is used, it also has to execute, among other
operations, IPSec header processing and TCP/IP packet
processing, and to run the packet scheduler. Thus only
a fraction of the overall computational capacity can be
dedicated to running cryptographic algorithms. We should
also remember that multi-GHz Pentium class CPUs are
not able to process normal TCP/IP multi-Gbit/s traffic
by themselves [21]. Therefore other form of hardware
acceleration may be needed in large bandwidth systems.

B. Simulation Results

In this section, we show the results obtained and
compare them with the ones obtained by considering a
system where the basic scheduling algorithm shown in
[13] is adopted. Considered sliding window dimensions
(W) are of 10 and 30. Both the results related to a system
equipped with one accelerator and with two accelerators
are shown in this section.

1) System With One Accelerator: The average number
of multi-packets per window that have been obtained for
W = 30 is 2.57 for the real trace and 1.33 for all other
patterns. The latter has been obtained by considering 100
equiprobable SAs.

The relative number of packets processed by the CPU
for a system with a sliding window dimension (W) of
30 is shown in Figure 3. This figure shows the results
obtained by considering the Tenc−ratio parameter of the
CPU to be 1, 3, 5, and 7; Tinit−ratio was instead
fixed to 3. CPU usage decreases for increasing values of
Tenc−ratio and it does it faster for fix dimension patterns.

Figure 4 shows the average size of the packets pro-
cessed by the CPU, the average size of the packets
processed by the accelerator, and the average size of
the packets that are scheduled for processing. Multi-
packets are included in this computation. As shown by

56 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007

© 2007 ACADEMY PUBLISHER

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7

C
PU

 p
ro

ce
ss

ed
 p

ac
ke

ts
 [

%
]

Encoder Time Ratio

W=30, Ir=3, SA=4equal

fixto0
fixto24

fixto472
fixto984

exp
real

uniform

Fig. 3. Percentage of packets processed by the CPU; W = 30.

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5 6 7

Pa
ck

et
 L

en
gt

h
[b

yt
es

]

Encoder Time Ratio

pattern=’real’, Ir=3

CPU-pkts-avg-len
ACC-pkts-avg-len

scheduled-pkts-avg-len

Fig. 4. Comparison of the average length of the packets processed
by the accelerator with the average length of the ones processed by the
CPU and average length of the packets that are scheduled (i.e. of the
multi-packets).

this figure, the scheduler always tries to assign multi-
packets to the accelerator. Small packets are usually sent
to the CPU, especially when it is considerably slower
than the accelerator. In the same graph, the variation of
the mean value is also shown. This variation is bigger
on the accelerator than on the CPU. Thus, the accelerator
processes packets of very different lengths, but big ones
are preferred over the smaller ones.

Figure 5 shows the relative number of packets allotted
to the CPU with W = 10 and W = 30; considered
reference case is the one without the sliding window
mechanism.

The sliding window system improves the overall system
throughput as shown in Figure 6. The results obtained
prove the efficiency of our algorithm to reduce the effects
of small packet processing. The greater throughput incre-
ment is for small packets. We have to consider that with
bigger patterns, processing capacity of the processors are
saturated. This is due to the fact that an overloaded system
is considered (network rate is 1Gbit/s, while processing
capability is of 500Mbit/s). In any case, throughput de-
creases for increasing values of the Tenc−ratio; this is due
to the fact that the processing capability of the CPU is
decreasing accordingly.

Fig. 5. Relative number of packets processed by the CPU. CPU
parameters: Tinit−ratio = 3; Tenc−ratio = 3.

Fig. 6. Relative throughput. CPU parameters: Tinit−ratio = 3;
Tenc−ratio = 3.

Average processing latency represents the average time
elapsing between when a packet is scheduled and when its
processing is completed. In opposition with throughput,
the latency does not grow with increasing values of
Tenc−ratio. This is again because we have considered
an overloaded system. Results obtained by considering
the sliding window mechanism are shown in Figure 7.
Average processing latency increases due to the time that
is needed to fill the sliding window. The bad influence
of the sliding window on this parameter is higher when
traces with big average sizes of the packets are considered.
The problem with latency increase can be solved by
introducing an upper bound on time or on total number
of bytes for the sliding window.

The not very large performance improvement is due to
the fact that in average very few packets were identified
to be related to the same SAs inside the sliding windows.

2) System With Two Accelerators: In this subsection
we show the results obtained by considering a system
equipped with two cryptographic accelerators. The archi-
tecture of the system is very similar to the one shown
in Figure 1. The only modification is the addition of
another accelerator connected to the PCI bus. Here we
only show the results related to Accelerator 1. Results
for Accelerator 2 are not shown, being very similar to
them.

Figures 8 and 9 show the the percentage of processed
packets for all the patterns when a window of length
30 (W = 30) is considered for the CPU and for the
Accelerator 1, respectively. As expected, the percentage
of packets processed by the CPU lowers when the encoder
time ratio is increased. Accelerator 1 usage increases with
increasing values for the encoder time ratio.

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007 57

© 2007 ACADEMY PUBLISHER

Fig. 7. Relative average latency. CPU parameters: Tinit−ratio = 3;
Tenc−ratio = 3.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7

C
PU

 p
ro

ce
ss

ed
 p

ac
ke

ts
 [

%
]

Encoder Time Ratio

W=30, Ir=3, SA=4equal

fixto0
fixto24

fixto472
fixto984

exp
real

uniform

Fig. 8. Percentage of packets processed by the CPU in a system with
2 accelerators. W = 30.

Figure 10 shows the average length of the packets
processed by the CPU when a window of 30 elements
is considered. The results related to all the previously
described patterns are also shown in Figure 10. The length
of the processed packets decreases for all the encoder time
ratios smaller than 3. For almost all the patterns it also
continues to decrease for higher values of this ratio, but
with a lower slope. On the opposite, the average length
of the packets processed by Accelerator 1 increases with
increasing values of the encoder time ratio, as shown in
Figure 11.

Figure 12 shows the throughput of the system when all
patterns and a window length of 30 are considered. The
system throughput, which is to some extent the sum of
the throughput of the two accelerators and of the CPU,
decreases for increasing values of the encoder time ratio.
This is due to the fact that, by increasing this ratio, the
processing capabilities of the CPU are decreased.

Figure 13 shows a comparison of the average process-
ing latency obtained for a real trace when a window
size of 1 and 30 are considered. The average processing
latency increases for increasing values of the encoder time
ratio in both cases. It is always lower for W = 30 than for
W = 1 (for the values of the encoder time ratio that have
been considered). Throughput decreases for increasing
values of the encoder time ration and it is higher when
W = 30 for all the values of the ratio that have been
considered. Therefore, we can conclude that by using the
sliding window mechanism (W = 1 disables the sliding
window mechanism) we improve the system performance

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 1 2 3 4 5 6 7

A
C

C
1

pr
oc

es
se

d
pa

ck
et

s
[%

]

Encoder Time Ratio

W=30, Ir=3, SA=4equal

fixto0
fixto24

fixto472
fixto984

exp
real

uniform

Fig. 9. Percentage of packets processed by the Accelerator 1 in a
system with 2 accelerators. W = 30.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7

A
vg

 C
PU

 P
ac

ke
ts

 L
en

gt
h

[b
yt

es
]

Encoder Time Ratio

W=30, Ir=3, SA=4equal

fixto0
fixto24

fixto472
fixto984

exp
real

uniform

Fig. 10. Average length of packets for the CPU in a system with 2
accelerators. W = 30.

also when a system with two accelerators is considered.
The average processing latency is, as expected, lower
when two accelerators are used instead of one. When two
accelerators are considered this parameter is decreased
to 0.2–0.5ms. Similar behaviors as the ones shown here
have been obtained for the other input patterns.

Figure 14 and Figure 15 show the average length of
the packets processed by the CPU and by Accelerator 1,
respectively. The average length of the packets processed
by the CPU and by the accelerators is higher for W = 30.
This means that the use of the sliding window mechanism
allows to compose multi-packets which are to be sent to
the accelerators. This mechanism also allows to increase
the size of the packets processed by the CPU, as many
smaller packets are bundled and sent to the accelerators.

The number of bus conflicts has also been observed:
when two accelerators are used, this parameter remains
below 17% of the total bus accesses. Finding a way
to reduce the number of conflicts, could help in further
improving the efficiency of the system. A solution to this
problem might be to use the prefetch and write buffering
mechanisms proposed in [13, Section 4.3].

V. CONCLUSIONS AND FUTURE WORK

We have provided a solution to the “small packets”
problem. The sliding window mechanism was applied to

58 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007

© 2007 ACADEMY PUBLISHER

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7

A
C

C
1

A
vg

 P
ac

ke
ts

 L
en

gt
h

[b
yt

es
]

Encoder Time Ratio

W=30, Ir=3, SA=4equal

fixto0
fixto24

fixto472
fixto984

exp
real

uniform

Fig. 11. Average length of packets for the accelerator 1 in a system
with 2 accelerators. W = 30.

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 1 2 3 4 5 6 7

Sy
st

em
 T

hr
ou

gh
pu

t [
kb

it/
s]

Encoder Time Ratio

W=30, Ir=3, SA=4equal

fixto0
fixto24

fixto472
fixto984

exp
real

uniform

Fig. 12. Throughput of accelerator 1 in a system with 2 accelerators.
W = 30.

bundle together packets belonging to the same SAs in
order to avoid multiple DMA setups and cryptography
algorithm initialization.

We have also provided some high-level simulations to
prove that our algorithm works as desired and that it can
provide an overall performance enhancement, especially
when the system is overloaded. Simulations have been
conducted with both 1-accelerator and 2-accelerator sys-
tems. This allowed studying the behavior of the algorithm
in a number of different situations.

A practical, real life implementation and test of our
algorithm is ongoing. The algorithm described in [13] has
been implemented as a patch for the OpenBSD Crypto-
graphic Framework (OCF) [22] and is being functionally
tested. The OCF is a cryptographic framework which is
also available for BSD and Linux. Some performance
tests with a cryptographic accelerator will be conducted.
The algorithm described in this paper will then be imple-
mented and tested in the same way.

Future research should address QoS support. A timeout
mechanism and a limit on number of bytes contained
in the sliding window will also be studied to improve
performance of the algorithm in terms of latency. A
dynamic parameter tuning mechanism will also be studied
to adapt the algorithm to the incoming flows of data.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1 2 3 4 5 6 7

Sy
st

em
 A

vg
 P

ac
ke

t L
at

en
cy

 [
m

s]

Encoder Time Ratio

Ir=3, SA=4equal, Pattern=Real

W=1
W=30

Fig. 13. Average latency comparison for the real trace among W = 1

and W = 30.

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7

A
vg

 C
PU

 P
ac

ke
ts

 L
en

gt
h

[b
yt

es
]

Encoder Time Ratio

Ir=3, SA=4equal, Pattern=Real

W=1
W=30

Fig. 14. Comparison of the average length of the packets processed
by the CPU for the real trace among W = 1 and W = 30.

REFERENCES

[1] S. Kent and R. Atkinson, “Security Architecture for the Internet
Protocol – RFC2401,” IETF RFC, 1998. [Online]. Available:
http://www.ietf.org/rfc.html

[2] ——, “IP Authentication Header – RFC2402,” IETF RFC, 1998.
[Online]. Available: http://www.ietf.org/rfc.html

[3] ——, “IP Encapsulating Security Payload (ESP) – RFC2406,”
IETF RFC, 1998. [Online]. Available: http://www.ietf.org/rfc.html

[4] D. Harkins and D. Carrell, “The Internet Key Exchange
(IKE) – RFC2409,” IETF RFC, 1998. [Online]. Available:
http://www.ietf.org/rfc.html

[5] J. Feghhi and J. Feghhi, Secure Networking with Windows 2000
and Trust Services. Addison Wesley, 2001.

[6] R. Yuan and W. T. Strayer, Virtual Private Networks. Addison
Wesley, 2001.

[7] S. Miltchev, S. Ioannidis, and A. D. Keromytis, “A Study of the
Relative Costs of Network Security Protocols.” Monterey, CA:
USENIX Annual Technical Program, June 2002.

[8] S. Ariga, K. Nagahashi, M. Minami, H. Esaki, and J. Murai,
“Performance Evaluation of Data Transmission Using IPSec Over
IPv6 Networks,” in INET, Yokohama, Japan, July 2000.

[9] Alberto Ferrante, Vincenzo Piuri, and Jeff Owen, “IPSec Hardware
Resource Requirements Evaluation,” in NGI 2005. Rome, Italy:
EuroNGI, 18 Apr. 2005.

[10] F.T. Hady, T. Bock, M. Cabot, J. Chu, J. Meinecke, K. Oliver, and
W. Talarek, “Platform Level Support For High Throughput Edge
Applications: the Twin Cities Prototype,” IEEE Network, vol. 17,
no. 4, pp. 22–27, Jul. 2003.

[11] John Freeman, “An Industry Analyst’s Perspective on Network
Processors,” in Network Processor Design, P. Crowley, M. A.
Franklin, H. Hadimioglu, and P. Z. Onufryk, Eds. Morgan
Kaufmann, 2003, vol. 1, ch. 9, pp. 191–218.

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007 59

© 2007 ACADEMY PUBLISHER

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7

A
C

C
1

A
vg

 P
ac

ke
ts

 L
en

gt
h

[b
yt

es
]

Encoder Time Ratio

Ir=3, SA=4equal, Pattern=Real

W=1
W=30

Fig. 15. Comparison of the average length of the packets processed
by the Accelerator 1 for the real trace among W = 1 and W = 30.

[12] S. McCreary. Packet Length Distributions at NASA Ames
Internet Exchange (AIX). Internet Analisys of the Cooperative
Association for Internet Data Analysis (CAIDA). [Online].
Available: http://www.caida.org

[13] Fabien Castanier, Alberto Ferrante, and Vincenzo Piuri, “A Packet
Scheduling Algorithm for IPSec Multi-Accelerator Based Sys-
tems,” in ASAP 2004. Galveston, TX, USA: IEEE Computer
Society Press, Sep. 2004, pp. 387–397.

[14] Alberto Ferrante, Vincenzo Piuri, and Fabien Castanier, “A QoS-
enabled Packet Scheduling Algorithm for IPSec Multi-accelerator
Based Systems.” in Computing Frontiers. Ischia, Italy: ACM,
May 2005, pp. 221–229.

[15] (2002) PCI Comparison, 32 Vs. 64-bit and 33MHz Vs. 66MHz.
[Online]. Available: http://www.buildorbuy.org/pdf/64bitpci.pdf

[16] S. Frankel, R. Glenn, and S. Kelly, “The AES-CBC Cipher
Algorithm and Its Use with IPsec - RFC 3602,” IETF RFC, Sep.
2003.

[17] T. Dierks and C. Allen, “The TLS Protocol Version 1.0
– RFC 2246,” IETF RFC, Jan. 1999. [Online]. Available:
http://www.ietf.org/rfc.html

[18] “SystemC Official Website.” [Online]. Available: http:/www.
systemc.org/

[19] (2000) The Internet Traffic Archive. [Online]. Available:
http://ita.ee.lbl.gov/

[20] TCPDUMP Public Repository. [Online]. Available: http://www.
tcpdump.org/

[21] Srihari Makineni and Ravi Iyer, “Architectural Characterization of
TCP/IP Packet Processing on the Pentium M Microprocessor,” in
Tenth International Symposium on High-Performance Computer
Architecture, Feb. 2004, pp. 152–162.

[22] Angelos D. Keromytis, “The Design of the OpenBSD Crypto-
graphic Framework,” in USENIX 2003 Annual Technical Confer-
ence. San Antonio, TX: USENIX, Jun. 2003, pp. 181–196.

Antonio Vincenzo Taddeo is currently a Ph.D. student at the
University of Lugano, Switzerland. He received his MSc in
Telecommunication Engineering in 2004 from Politecnico di
Milano, Italy.

His main research interests are in security for reconfig-
urable embedded devices, distributed networks, and wireless
telecommunications. He is also interested in data-driven web
applications for e-learning environments.

He teaches the practical sessions of the Hardware and Soft-
ware Architectures course at Politecnico di Milano.

He is a student member of IEEE, IEEE Computer Society
and IEEE ComSoc.

Alberto Ferrante obtained his Ph.D. in Computer Science in
2006 at the University of Milano, Italy. In 2002 he received
his MSc (Laurea) in Computer Engineering from Politecnico di
Milano, Italy. He also successfully completed the 1-year “Master
of Engineering in Embedded System Design” program at the
ALaRI Institute of the University of Lugano, Switzerland.

From 2006 he holds a post doctoral position at the ALaRI
Institute. His main research activities include hardware–software
architectures for security processors, quality of service support
for network security devices, and security for reconfigurable
pervasive devices. He is currently involved in the Æther IST-FET
European Project, responsible for project (modules) developed
at the University of Lugano.

He teaches the practical sessions of the Computer Architec-
tures course at the ALaRI Institute and he is one of the tutors of
the Operating Systems course of the on-line bachelor program
in Network and System Security held at University of Milano.

He is a member of IEEE, IEEE Computer Society and IEEE
Communications Society. He is also member of the IEEE Com-
munications and Information Security Technical Committee.

Vincenzo Piuri obtained his Ph.D. in Computer Engineering
in 1989 at Politecnico di Milano, Italy. From 1992 to September
2000, he was Associate Professor of Operating Systems at
Politecnico di Milano. Since October 2000 he is Full Professor
in Computer Engineering at the University of Milano, Italy.
He was Visiting Professor at the University of Texas at Austin
during the summers from 1993 to 1999.

His research interests include distributed and parallel comput-
ing systems, computer arithmetic, application-specific process-
ing architectures, digital signal processing architectures, fault
tolerance, theory and industrial applications of neural networks,
intelligent measurement systems, and biometrics. Original re-
sults have been published in more than 200 papers in book
chapters, international journals, and proceedings of international
conferences.

He is Fellow of the IEEE and member of ACM, INNS, and
AEI. He was Associate Editor of the IEEE Transactions on
Instrumentation and Measurement and the IEEE Transactions
on Neural Networks. He was Vice President for Publications
of the IEEE Instrumentation and Measurement Society, Vice
President for Members Activities of the IEEE Neural Networks
Society, and Member of the Administrative Committee both of
the IEEE Instrumentation and Measurement Society and the
IEEE Computational Intelligence Society. He is President of the
IEEE Computational Intelligence Society (2006-07).

In 2002 he received the IEEE Instrumentation and Mea-
surement Society Technical Award for his contributions to the
advancement of computational intelligence theory and practice
in measurement systems and industrial applications.

60 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 2, MARCH 2007

© 2007 ACADEMY PUBLISHER

