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Abstract—In this paper, we consider the problem of allocating a large number of independent, equal-sized tasks to a heterogeneous

computing platform. We use a nonoriented graph to model the platform, where resources can have different speeds of computation

and communication. Because the number of tasks is large, we focus on the question of determining the optimal steady state

scheduling strategy for each processor (the fraction of time spent computing and the fraction of time spent communicating with each

neighbor). In contrast to minimizing the total execution time, which is NP-hard in most formulations, we show that finding the optimal

steady state can be solved using a linear programming approach and, thus, in polynomial time. Our result holds for a quite general

framework, allowing for cycles and multiple paths in the interconnection graph, and allowing for several masters. We also consider the

simpler case where the platform is a tree. While this case can also be solved via linear programming, we show how to derive a closed-

form formula to compute the optimal steady state, which gives rise to a bandwidth-centric scheduling strategy. The advantage of this

approach is that it can directly support autonomous task scheduling based only on information local to each node; no global information

is needed. Finally, we provide a theoretical comparison of the computing power of tree-based versus arbitrary platforms.

Index Terms—Scheduling, heterogeneous, divisible load, steady-state, bandwidth-centric.
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1 INTRODUCTION

INthis paper, we deal with the master-slave paradigm on a
heterogeneous platform, where resources have different

speeds of computation and communication. More precisely,
we tackle the problem of allocating a large number of
independent, equal-sized tasks to a heterogeneous comput-
ing platform. We model a collection of heterogeneous
resources and the communication links between them as the
nodes and edges of an undirected platform graph. Each node
is a computing resource (a processor, or a cluster, or
whatever) capable of computing and/or communicating
with its neighbors at (possibly) different rates.

We assume that one specific node, referred to as the
master, initially holds (or generates the data for) a large
collection of independent, identical tasks to be allocated on
the grid. Think of a task as being associated with a file that
contains all the data required for the execution of the task.
The question for the master is to decide which tasks to
execute itself, and how many tasks (i.e., task files) to
forward to each of its neighbors. Due to heterogeneity, the
neighbors may receive different amounts of work (maybe
none for some of them). Each neighbor faces in turn the
same dilemma: determine how many tasks to execute and
how many to delegate to other processors.

The master-slave scheduling problem is motivated by
problems that are addressed by collaborative computing
efforts such as SETI@home [16] and those distributed
computing projects organized by companies such as
Entropia [8]. Several papers have recently revisited the
master-slave paradigm for processor clusters or grids, and
we refer to Section 6 for comparison and discussion.

Because the number of tasks to be executed on the
computing platform is expected to be very large (otherwise,
why deploy the corresponding application on computa-
tional grids?), we target steady state optimization problems
rather than standard makespan minimization problems.
While minimizing the makespan, i.e., the total execution
time, is a NP-hard problem in most practical situations [9],
[18], [7], it turns out that the optimal steady state can be
characterized very efficiently, with low-degree polynomial
complexity. The optimal steady state is defined as follows
(see Section 2.2): For each processor, determine the fraction
of time spent computing and the fraction of time spent
sending or receiving tasks along each communication link,
so that the (averaged) overall number of tasks processed at
each time-step is maximum.

The main contribution of this paper is the determination
of the optimal steady state in a wide general framework. We
derive three main results that we summarize below:

. The first result holds for arbitrary platform graphs
whose underlying interconnection network may be
very complex and, in particular, may include multi-
ple paths and cycles (just as the Internet does). The
master may well need to send tasks along multiple
paths to properly feed a very fast but remote
computing resource. In this context, we compute
the optimal steady state using a linear programming
formulation, which nicely encompasses the situation
where there are several masters instead of a single
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one. We also show (see Section 5.1) that steady state
scheduling is asymptotically optimal, among all
possible schedules (not only periodic ones).

. The second result holds for a tree-shaped platform
graph, i.e., when the underlying interconnection
network is an oriented tree rooted at the master. For
such platforms, we derive a closed-form formula
that characterizes the optimal steady state, which
can then be computed via a simple bottom-up
traversal of the tree. Interestingly, the optimal steady
state is achieved through a bandwidth-centric sche-
duling strategy: If enough bandwidth is available to
the node, then all children are kept busy; if
bandwidth is limited, then tasks should be allocated
only to children which have sufficiently fast com-
munication times, in order of fastest communication
time. The advantage of the bandwidth-centric
approach is that it can directly support autonomous
task scheduling based only on information local to
each node; no global information is needed.

. The third result provides a comparison of the
computing power of tree-shaped platforms versus
arbitrary platform graphs. Given a network topology
that may well include cycles and multiple paths,
how does one extract the “best” spanning tree, i.e.,
the spanning tree rooted at the master which allows
for the maximum number of tasks to be processed by
all the computing resources? We show that the
problem of extracting the optimal spanning tree is
NP-complete. Even worse, we show that there exist
heterogeneous networks for which the optimal
spanning tree has a throughput which is arbitrarily
bad compared with the throughput that can be
achieved by the optimal (multiple-path) solution.

The rest of the paper is organized as follows: Section 2 is
devoted to arbitrary platform graphs. We introduce the base
model of communication and computation in Section 2.1.We
formally state the equations governing the steady state in
Section 2.2. In Section 2.3, we show how to determine the
optimal steady state for an arbitrary platform graph, using a
linear programming approach. Next, in Section 3, we deal
with tree-shaped platform graphs:We provide a closed-form
formula and a constructive method to compute the optimal
steady state for such a platform. In Section 4, we discuss
different hypotheses on the processing and communication
capabilities of the computing resources: We show how to
handle the case of processors operating with different
characteristics and, in particular, different capabilities of
overlapping communications with (independent) commu-
nications. In Section 5.1, we prove that steady state schedul-
ing is always asymptotically optimal. Section 5.2 provides the
negative complexity results stated above for the problem of
extracting the optimal spanning tree (that of maximum
steady state throughput) out of a given general platform.We
briefly survey relatedwork in Section 6. Finally,wegive some
remarks and conclusions in Section 7.

2 OPTIMAL STEADY STATE FOR GENERAL

PLATFORM GRAPHS

In this section, we formally state the optimization problem
to be solved. We start with the architectural model in
Section 2.1. Next, we explain all the equations governing the

steady state operation on an arbitrary platform graph
(Section 2.2). Then, in Section 2.3, we show how to cast
the problem of determining the optimal steady state in
terms of a linear programming problem to be solved in
rational numbers (hence, of polynomial complexity). We
deal with the extension to several masters in Section 2.3.3.
We conclude this section by working out a little example in
Section 2.4.

2.1 Architectural Model

The target architectural/application framework is repre-
sented by a node-weighted edge-weighted graph
G ¼ ðV ;E;w; cÞ, as illustrated in Fig. 1. Let p ¼ jV j be the
number of nodes. Each node Pi 2 V represents a computing
resource of weight wi, meaning that node Pi requires wi

units of time to process one task (so the smaller wi, the faster
the processor node Pi). There is a master processor, i.e., a
node Pm which plays a particular role. Pm initially holds the
data for a large (say unlimited) collection of independent
tasks to be executed. Think of each task as being associated
with a file that contains all the data required for the
execution of the task. Tasks are atomic; their computation or
communication cannot be preempted.

Each edge eij : Pi ! Pj is labeled by a value cij which
represents the time needed to communicate one (data file
associated with a) task between Pi and Pj, in either
direction: We assume that the link between Pi and Pj is
bidirectional and symmetric, i.e., that it takes the same
amount of time to send (the data for) one task from Pi to Pj

as in the reverse direction, from Pj to Pi. A variant would be
to assume two unidirectional links, one in each direction,
with possibly different label values, and we explain below
how to modify the formulas to handle this variant. If there
is no communication link between Pi and Pj, we let cij ¼
þ1 so that cij < þ1 means that Pi and Pj are neighbors in
the communication graph.

Note that we can include in cij the time needed for the
receiving processor to return the result to the sending
processor when it is finished. For the purpose of computing
steady state behavior, it does not matter what fraction of the
communication time is spent sending a problem and what
fraction is spent receiving the results. To simplify the
exposition, we will henceforth assume that all the time is
spent sending the task data and no time is needed to
communicate the results back. We assume that all wi are
positive rational numbers. We disallow wi ¼ 0 since it
would permit node Pi to perform an infinite number of
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tasks, but we allow wi ¼ þ1; then, Pi has no computing
power, but can still forward tasks to other processors.
Similarly, we assume that all cij are positive rational
numbers (or equal to þ1 if there is no link between Pi

and Pj).

There are several scenarios for the operation of the

processors, which are surveyed in Section 4. In this section,

we concentrate on the full overlap, single-port model, which

we also call the base model. In this model, a processor node

can simultaneously receive data from one of its neighbors,

perform some (independent) computation, and send data to

one of its neighbors. At any given time-step, there are at

most two communications involving a given processor, one

sent and the other received.

We state the communication model more precisely: If Pi

sends (the data file associated with) a task to Pj at time-step

t, then: 1) Pj cannot start executing or sending this task

before time-step tþ cij; 2) Pj cannot initiate another receive

operation before time-step tþ cij (but, it can perform a send

operation and independent computation); and 3) Pi cannot

initiate another send operation before time-step tþ cij (but,

it can perform a receive operation and independent

computation).

2.2 Steady State Operation

Given the resources of a weighted graph G operating under

the base model, we aim at determining the best steady state

scheduling policy. After a start-up phase, we want the

resources to operate in a periodic mode.

To formally define the steady state, we need some

notation. Let nðiÞ denote the index set of the neighbors of

processor Pi. During one time unit:

. �i is the fraction of time spent by Pi computing.

. sij is the fraction of time spent by Pi sending tasks to
each neighbor processor Pj, for j 2 nðiÞ, i.e., for each
eij 2 E.

. rij is the fraction of time spent by Pi receiving tasks
from each neighbor processor Pj, for j 2 nðiÞ, i.e., for
each eij 2 E.

We search for rational values for all these variables. The

first set of constraints is that they all must belong to the

interval ½0; 1�, as they correspond to the fraction of activity

during one time unit:

8i; 0 � �i � 1; ð1Þ
8i; 8j 2 nðiÞ; 0 � sij � 1; ð2Þ
8i; 8j 2 nðiÞ; 0 � rij � 1: ð3Þ

The second set of constraints is that the number sij=cij of

tasks sent by Pi to Pj is equal to the number of tasks rji=cij
received by Pj from Pi:

8eij 2 E; sij ¼ rji: ð4Þ

Remember that the communication graph is assumed to be

symmetric: eij 2 E ) eji 2 E and, therefore, we also have

sji ¼ rij. It may well be the case that each link will only be

used in one direction in the final solution, i.e., that either rij
or sij will be zero, but we cannot guarantee this a priori.

There are specific constraints for the base model:

One-port model for outgoing communications. Because
send operations to the neighbors of Pi are assumed to be
sequential, we have the equation

8i;
X
j2nðiÞ

sij � 1: ð5Þ

One-port model for incoming communications. Because
receive operations from the neighbors of Pi are assumed
to be sequential, we have the equation

8i;
X
j2nðiÞ

rij � 1: ð6Þ

Full overlap. Because of the full overlap hypothesis, there is
no further constraint on �i: 0 � �i � 1 and �i ¼ 1 would
mean that Pi is kept busy processing tasks all the time.

Limited bandwidth. This constraint is due to our hypoth-
esis that the same link eij may be used in both directions
simultaneously. We have to guarantee that the link
bandwidth is not exceeded. The constraint translates
into:

8eij 2 E; sij þ rij � 1: ð7Þ

We can slightly reformulate (7) by introducing bij, the
link bandwidth, expressed in tasks per second (i.e.,
bij ¼ 1=cij). In each time unit, there are

sij
cij

tasks sent by Pi

to Pj, and
rij
cij

tasks received by Pi to Pj, so constraint (7) can
be written

8eij 2 E;
sij
cij

þ rij
cij

� bij:

Conservation laws. The last constraints deal with conserva-
tion laws: For every processor Pi which is not the master,
the number of tasks received by Pi, i.e.,

P
j2nðiÞ

rij
cij
, should

be equal to the number of tasks that Pi consumes itself,
i.e., �i

wi
, plus the number of tasks forwarded to its

neighbors, i.e.,
P

j2nðiÞ
sij
cij
. We derive the equation:

8i 6¼ m;
X
j2nðiÞ

rij
cij

¼ �i

wi
þ

X
j2nðiÞ

sij
cij

: ð8Þ

It is important to understand that (8) really applies to the
steady state operation.Wecanassumean initializationphase,
during which tasks are forwarded to processors and no
computation is performed. Then, during each time-period in
steady state, each processor can simultaneously perform
some computations, and send/receive some other tasks. This
is why (8) is sufficient; we do not have to detail which
operation is performed at which time-step because the tasks
all commute, they are mutually independent.

Equation (8) does not hold for the master processor Pm

because it holds an infinite number of tasks. Without loss of
generality, we can enforce that rmj ¼ 0 for all j 2 nðmÞ: The
master does not need to receive any tasks from its neighbors.
Note that it would be easy to handle unidirectional links: If
eij : Pi ! Pj is unidirectional (that is, if for some reasonPi can
send tasks toPj, but not vice versa),we let rij ¼ sji ¼ 0 andwe
suppress (7), which is automatically fulfilled. Similarly, it is
straightforward to replace each bidirectional link eij by two
oriented arcs aij (from Pi to Pj) and aji (from Pj to Pi),
respectively, weighted with cij and cji.
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2.3 Solution

2.3.1 Optimal Throughput

The equations above constitute a linear programming
problem, whose objective function is the number of tasks
consumed within one unit of time, i.e., the throughput
ntaskðGÞ ¼

P
i
�i

wi
. Here is a summary:

Note that we can enforce �m ¼ 1 because the master will
keep on processing tasks all the time, but we do not have to
because this condition will automatically be fulfilled by the
solution. We can state the first main result of this paper.

Theorem 1. The solution to the previous linear programming
problem provides the optimal solution to MSSG(G).

Because we have a linear programming problem in
rational numbers, we obtain rational values for all variables
in polynomial time (polynomial in jV j þ jEj, the size of the
heterogeneous platform). When we have the optimal
solution, we take the least common multiple of the
denominators and, thus, we derive an integer period T for
the steady state operation.

Finally, we point out that we can restrict to solutions
where each link is used only in one direction. Although
there may exist optimal solutions of MSSG(G) for which it is
not the case, we can always transform such solutions into
solutions where each link is used only in one direction
(without changing the throughput): if both rij and sij are
nonzero, with, say, rij � sij, use r0ij ¼ rij � sij and s0ij ¼ 0 to
derive an equivalent solution.

2.3.2 Reconstructing the Schedule

There are several subtle points when reconstructing the
actual periodic schedule. Once the linear programming
problem is solved, we get the period T of the schedule, and
the integer number of messages going through each link.
First, because it arises from the linear program, logT is
indeed a number polynomial in the problem size, but T
itself is not. Hence, describing what happens at every time-
step during the period would be exponential in the problem
size, and we need a more “compact” description of the
schedule. Second, we need to exhibit an orchestration of the
message transfers where only independent communica-
tions, i.e., involving disjoint pairs of senders and receivers,
can take place simultaneously.

Both problems are solved as follows: From our platform
graph G, and using the result of the linear program, we
build a bipartite graph: For each node Pi inG, we create two
nodes Psend

i and Precv
i . For each communication from Pi to

Pj, we insert an edge between Psend
i and Precv

j , which is
weighted by the length of the communication. We are
looking for a decomposition of this bipartite graph into a set

of subgraphs where a node (sender or receiver) is occupied
by at most one communication task. This means that at
most one edge reaches each node in the subgraph. In other
words, only communications corresponding to a matching
in the bipartite graph can be performed simultaneously,
and the desired decomposition of the graph is in fact an
edge coloring. The weighted edge coloring algorithm of [15,
vol. A, chapter 20] provides in time OðjEj2Þ a polynomial
number of matchings, which are used to perform the
different communications, and which provides the desired
polynomial-size description of the schedule. See [5] for
further details. We point out that reconstructing the final
schedule is much easier for tree-shaped platforms, as
shown in Section 3.

Notice that it is necessary for each node to be able to hold
in a buffer some number of tasks that it has received, but
not yet computed or sent. Also, depending on the schedule,
it may be necessary to preload some number of tasks into
the node during the initialization period. The maximum
number of such buffered tasks is at most T per node. The
issue of limiting the number of buffered tasks to a more
practical number is explored in [13].

2.3.3 With Several Masters

The extension for several masters is straightforward.
Assume that there are k masters Pm1

, Pm2
, . . . , Pmk

, each
holding (the initial data for) a large collection of tasks. For
each index mq, 1 � q � k:

1. Suppress (8) for i ¼ mq (the conservation law does
not apply to a master).

2. Add the constraints rmq;j ¼ 0 for all j 2 mðqÞ (a
master does not need to receive any task).

We then solve the new MSSG(G) problem.

2.4 Example

Consider the toy example of Fig. 2, with p ¼ 4 processors
(P1 is the unique master). If we feed the values wi and ci into
the linear program, and compute the solution using a tool
such as the Maple simplex package, we obtain the optimal
throughput ntaskðGÞ ¼ 7

4 . This means that the whole plat-
form is equivalent to a single processor with processing
capability w ¼ 1

ntaskðGÞ ¼ 4
7 , i.e., capable of processing seven

tasks every four seconds.
With the values of �i, sij, and rij returned in the solution

of the linear program, we retrieve the periodic steady state
behavior. Every 12 time-units:
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. The master processor P1 computes 12 tasks (�1 ¼ 1),
sends two tasks to P2 (in six time-steps, s12 ¼ 1=3),
and sends seven tasks to P3 (in seven time-steps,
s13 ¼ 7=12).

. Processor P3 receives seven tasks from the master P1

(in seven times-steps, r31 ¼ 7=12), computes three
tasks (�3 ¼ 1), and sends four tasks to P4 (in 12 time-
steps, s34 ¼ 1).

. Processor P4 receives four tasks from P3 (in 12 time-
steps, r43 ¼ 1), computes two tasks (�4 ¼ 1), and
sends two tasks to P2 (in six time-steps, s42 ¼ 1=2).

. Processor P2 receives four tasks, two from the master
P1 (in 4 time-steps, r21 ¼ 1=3), and two from P4 (in
six time-steps, r24 ¼ 1=2), and it computes four tasks
(�2 ¼ 1).

This makes a total of 12þ 3þ 2þ 4 ¼ 21 tasks every 12 time-

steps, and we do retrieve the value ntaskðGÞ ¼ 21
12 ¼ 7

4 . This

steady state is illustrated in Fig. 3. Note that all processors

are executing tasks all the time, so the solution achieves a

full utilization of the computing resources. It is interesting

to point out that P2 receives its tasks along two paths, the

first half directly from the master, and the second half being

forwarded through P3 and P4.
In the introduction, we briefly mentioned the difficulty

of extracting a spanning tree of high throughput from a

given interconnection graph, and we come back to this

point in Section 5. We can perform an exhaustive search for

our little example because there are only four possible trees

rooted in P1. To compute the throughput of a given tree, we

can either use the linear programming approach, or traverse

the tree using the bandwidth-centric algorithm of Section 3

(with a cost linear in the processor number). In the example,

we obtain the following results:

1. If we suppress the edge between P1 and P2, the
throughput of the corresponding tree T1 is
ntaskðT1Þ ¼ 38

24 .
2. If we suppress the edge between P1 and P3, the

throughput of the corresponding tree T2 is
ntaskðT2Þ ¼ 36

24 .
3. If we suppress the edge between P2 and P4, the

throughput of the corresponding tree T3 is
ntaskðT3Þ ¼ 41

24 .
4. If we suppress the edge between P3 and P4, the

throughput of the corresponding tree T4 is
ntaskðT4Þ ¼ 39

24 .

We see that the third tree T3 is the best one, with a
throughput ntaskðT3Þ ¼ 41

24 very close to the optimal solution
ntaskðGÞ ¼ 42

24 for the whole graph.

3 BANDWIDTH-CENTRIC STRATEGY FOR

TREE SHAPED PLATFORMS

In this section, we deal with tree-shaped platforms. The root
of the tree is always the master. For such platforms, we
derive a closed-form expression of the solution of the linear
program MSSG(G). We also show that a simple traversal of
the tree enables to compute the solution of MSSG(G) in
linear time (linear in the size of the platform).

3.1 Star Graph

We start with simple star graphs before dealing with
arbitrary tree graphs. A star graph F , as shown in Fig. 4,
consists of a node P0 and its k children P1; . . . ; Pk. In the full
overlap, single-port model, P0 can communicate with a single
child at a time: It needs ci units of time to communicate a
task to child Pi. Concurrently, P0 can receive data from its
own parent, say P�1, requiring c0 time per task. We give
three examples in Figs. 5, 6, and 7: In the first, all children
operate at full rate, and in the latter two, the communication
bandwidth is the limiting factor.

Proposition 1. With the above notations, the minimal value of
ntaskðF Þ for the star graph F is obtained as follows:

1. Sort the children by increasing communication times.
Renumber them so that c1 � c2 . . . � ck.

2. Let p be the largest index so that
Pp

i¼1
ci
wi
� 1. If p < k,

let " ¼ 1�
Pp

i¼1
ci
wi
; otherwise, let " ¼ 0.

3. Then, ntaskðF Þ ¼ min 1
c0
; 1

w0
þ
Pp

i¼1
1
wi
þ "

cpþ1

� �
.

Intuitively, the processors cannot consume more tasks
than sent by P�1, hence, the first term of the minimum. For

BANINO ET AL.: SCHEDULING STRATEGIES FOR MASTER-SLAVE TASKING ON HETEROGENEOUS PROCESSOR PLATFORMS 5

Fig. 3. Steady state for the example with four processors.

Fig. 4. Star graph.



the second term, when p ¼ k, the result is expected: It

basically says that children can be fed with tasks fast

enough so that they are all kept computing steadily.

However, if p < k, the result is surprising: In the situation

when the communication bandwidth is limited, some

children will partially starve: In the optimal solution, these

are those with slow communication rates, whatever their

processing speeds. In other words, a slow processor with a

fast communication link is to be preferred to a fast

processor with a slow communication link.

Proof. We use the same notation as in Section 2.3. For

0 � i � k, �i is the fraction of time spent by Pi

computing. For 0 � i � k, we let si (instead of s0;i) be

the fraction of time spent by P0 sending tasks to child Pi.

Note that we know that tasks flow from P0 to its

children, hence, r0;i ¼ 0 (where r0;i is the fraction of time

spent by P0 receiving tasks from Pi). Finally, let r�1 be

the fraction of time spent by P0 receiving tasks from its

own parent. We have the following linear program:

The last equation stands for the conservation equation
for each child Pi: Because no task is forwarded, each
received task is consumed in place. We normalize these

equations by introducing the rates Ri: R�1 ¼ s�1

c0
is the

rate of tasks per second received from the parent P�1,

R0 ¼ �0

w0
is the rate they are executed in the parent node

P0, and Ri ¼ si
ci
¼ �i

wi
, for 1 � i � k, is the rate they are sent

to and executed on the ith child. We obtain the following

formulation:

Base Problem : Maximize
Xk
i¼0

Ri; subject to

ðB0Þ Ri � 1
wi

for 0 � i � k ðB2Þ Ri � 1
wi

for 0 � i � k

ðB1Þ R�1 ¼
Pk

i¼0 Ri � 1
c0

ðB3Þ
Pk

i¼1 Rici � 1

Let R be the solution of the Base Problem. We claim

that R ¼ min 1
c0
; 1
w0

þ S
� �

(unless c0 ¼ 0, in that case

R ¼ 1
w0

þ S), where S is the solution to the following

problem:

Auxiliary problem : Maximize
Xk
i¼1

Ri; subject to

ð1Þ Riwi � 1 for 1 � i � k; ð2Þ
Xk
i¼1

Rici � 1:
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Because the auxiliary problem is less constrained than

the original one,we immediately have that 1
w0

þ S � R.We

also have 1
c0
� R because of (B0) and (B1), hence,

min 1
c0
; 1
w0

þ S
� �

� R. To show the reverse inequality, there

are two cases, according to the value of min 1
c0
; 1
w0

þ S
� �

.

Assume first thatmin 1
c0
; 1
w0

þ S
� �

¼ 1
c0
. Let ðR1; . . . ; RkÞ be

the optimal solution of the auxiliary problem:S ¼
Pk

i¼1 Ri

and 1
w0

+ S � 1
c0
. Let � =

1
c0

1
w0
þS

� 1. Then,
�

1
c0
, �
w0
, �R1, . . . ,

�Rk

�
is a solution to the base problem whose objective

function is equal to 1
c0
. Therefore, 1

c0
� R.

Assume now that min 1
c0
; 1
w0

þ S
� �

= 1
w0

þ S. Let

ðR1; . . . ; RkÞ be the optimal solution of the auxiliary

problem: S ¼
Pk

i¼1 Ri and 1
w0

þ S � 1
c0
. Let R0 ¼ 1

w0
and

R�1 ¼
Pk

i¼0 Ri. Then, ðR�1; R0; R1; . . . ; RkÞ is a solution to

the base problem (note that (B1) is satisfied because of the

hypothesis). Hence, 1
w0

þ S � R. This concludes the reduc-

tion to the auxiliary problem.

We can now come to the solution of the auxiliary

problem. As in the statement of the theorem, let p be the

largest index so that
Pp

i¼1
ci
wi
� 1. LetR�

i ¼ 1
wi

for 1 � i � p.

If p < k, letR�
pþ1 ¼ "

cpþ1
,where " ¼ 1�

Pp
i¼1

ci
wi
. If pþ 1 < k,

let R�
i ¼ 0 for pþ 2 � i � k. We claim that ðR�

i Þ is the

optimal solution of the optimization problem:

. First, it is indeed a solution. We have R�
pþ1 �

1
wpþ1

when p < k. This comes directly from the

definition of p: Since
Ppþ1

i¼1
ci
wi
> 1, we have

" ¼ 1�
Pp

i¼1
ci
wi
<

cpþ1

wpþ1
, hence, "

cpþ1
� 1

wpþ1
. As for

(2),
Pj

i¼1 Rici ¼
Pj

i¼1
ci
wi

� 1 for all j � p, by

definition of p. And. if p < k,
Ppþ1

i¼1 Rici ¼ 1, by

definition of Rpþ1.

. Second, it is the solution that maximizes the

objective function. To see this, consider all the
optimal solutions, i.e., all the solutions that achieve

the optimal value of the objective function. Among

these optimal solutions, consider one solution ðRiÞ
such that R1 is maximal. Assume by contradiction

that R1 < R�
1 ¼ 1

w1
. Then, there exists at least one

index j > 2 such that Rj > R�
j ; otherwise, the

solution would not be optimal. Now, since the ci
are sorted, we have c1 � cj. We do not change the

value of the objective function ifwe letR1 ¼ R1 þ �

and Rj ¼ Rj � � , where � is an arbitrary small

nonnegative rational number. However, we do

have a new solution to the optimization problem,

because ðR1 þ �Þc1 + ðRj � �Þcj � R1c1 + Rjcj.

Hence, we have an optimal solution with a larger

R1 than the original one, a contradiction.Hence,we
have shown that there exist optimal solutions such

thatR1 ¼ R�
1. We restrict to such solutions without

loss of generality and we iterate the process: We

finally derive that ðR�
i Þ is an optimal solution.

The optimal solution of the auxiliary problem is S ¼
Pk

i¼1 Ri ¼
Pp

i¼1
1
wi
þ "

cpþ1
:

The optimal solution of the base problem is

R ¼ min 1
c0
; 1
w0

þ S
� �

, which establishes our claim.

A less formal (but much shorter) proof of Proposition 1

is the following: Sorting the ci and feeding as many tasks

as possible to the children taken in that order maximizes
the number of tasks that are communicated to the

children; hence, the number of tasks that are processed

by the children. Add those processed by the parent, and

take the minimum with the input rate to derive the

optimal value. Note that the proof in Proposition 1 is

fully constructive: The number of tasks to be computed

by the parent and to be sent to each child is directly

computed from the optimal solution ðR�
i Þ. tu

3.2 Arbitrary Tree Graphs

The best allocation of tasks to processor nodes is deter-

mined using a bottom-up traversal of the tree:

Proposition 2. Let T be an arbitrary tree graph. The maximal

value of ntaskðF Þ for the whole tree T is obtained as follows:

1. Consider any subtree F consisting of several leaves

and their parent. Replace this tree with a single node

whose weight is w ¼ 1
ntaskðF Þ , where ntaskðF Þ is given

by Proposition 1.
2. Iterate the process until there remains a single node.
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Then, the minimal value is equal to the weight of the single
node.

Proof. The proof is immediate: In steady state, a star graph

F consisting of a parent and several leaves behaves

exactly as a single node of weight w ¼ 1
ntaskðF Þ , where

ntaskðF Þ is determined by Proposition 1. For the root

node, we can assume a link from a virtual parent with

infinite capacity, i.e., c0 ¼ 0.
Again, the proof is fully constructive and the optimal

task allocation is computed using the bottom-up
approach. Fig. 8 is a small example. tu

4 OTHER OPERATING MODELS

In this section, we discuss models of operation other than
the full-overlap, single-port model, or base model. For each
new model, we show which equations to modify in the
linear program MSSG(G). In other words, we perform a
series of model reductions to convert each instance of a
processor operating a given model into an instance with the
base model.

We list different models, starting from the most powerful
machines down to purely sequential processors.

Mðr�jjs�jjwÞ: Full overlap, multiple-port. In this first
model, a processor node can simultaneously receive
data from all its neighbors, perform some (independent)
computation, and send data to all of its neighbors. This
model is not realistic if the number of neighbors is large.

MðrjjsjjwjjÞ: Full overlap, single-port. In this second

model, a processor node can simultaneously receive

data from one neighbor, perform some (independent)

computation, and send data to one neighbor. At any

given time-step, there are at most two communications

taking place, one incoming and one outgoing. This

model is representative of a large class of modern

machines and is the base model which we have already

dealt with.

Mðrjjs; wÞ: Receive-in-Parallel, single-port. In this third

model, as in the next two, a processor node has one

single level of parallelism: It can perform two actions

simultaneously. In the Mðrjjs; wÞ model, a processor can

simultaneously receive data from one neighbor, and

either perform some (independent) computation, or send

data to one neighbor.

Mðsjjr; wÞ: Send-in-Parallel, single-port. In this fourth

model, a processor node can simultaneously send data

to one neighbor and either perform some (independent)

computation, or receive data from one neighbor.

Mðwjjr; sÞ: Work-in-Parallel, single-port. In this fifth

model, a processor node can simultaneously compute

and execute a single communication, either sending to or

receiving from one neighbor.

Mðr; s; wÞ: No internal parallelism. In this sixth and last

model, a processor node can only do one thing at a time:
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either receiving from one neighbor, or computing, or

sending data to one neighbor.

Reduction for Mðr�jjs�jjwÞ, the Full overlap, multiple-port
model. In this model, we allow for an unlimited number of
simultaneous communications, either incoming or out-
going. It is quite easy to take this new constraint into
account: Simply suppress (5) and (6) in the linear program!
Indeed, under the new model, (2) and (3) are sufficient to
characterize the activity of each processor.

Instead of allowing an unlimited number of simulta-

neous communications, we could be more restrictive and

restrict each processor to k1 incoming and k2 outgoing

communications. In other words, there are k1 receiving

ports and k2 sending ports. Let rkij be the time spent by

processor Pi to receive tasks from processor Pj on receiving

port k for 1 � k � k1. Similarly, let skij be the time spent by Pi

to send tasks to Pj on sending port k, for 1 � k � k2. The

new constraints simply are

8i; 8k; 1 � k � k1; 0 �
X
j2nðiÞ

rkij � 1; ð9Þ

8i; 8k; 1 � k � k2; 0 �
X
j2nðiÞ

skij � 1: ð10Þ

Reduction for Mðrjjs; wÞ, the Receive-in-Parallel, single
port model. This model is less powerful than the base
model: the processor can simultaneously receive a task from
one of its neighbors, and either perform some computation,
or send a task to one of its neighbors. To take this new
constraint into account, simply replace (5) and (1) by

8i; �i þ
X
j2nðiÞ

sij � 1 ð11Þ

Reduction for Mðsjjr; wÞ, the Send-in-Parallel, single port
model. In this model, a processor can simultaneously send a
task to one of its neighbors, and either perform some
computation, or receive a task from one of its neighbors. To
take this new constraint into account, simply replace (6) by

8i; �i þ
X
j2nðiÞ

rij � 1: ð12Þ

Reduction for Mðwjjr; sÞ, the Work-in-Parallel, single port
model. In this model, a processor can simultaneously
perform some computation, and either receive from, or
send a task to, one of its neighbors, To take this new
constraint into account, simply replace (5) and (6) by

8i;
X
j2nðiÞ

sij þ
X
j2nðiÞ

rij � 1: ð13Þ

Reduction for Mðr; s; wÞ, the No internal parallelism
model. In this model, a processor can only do one thing
at a time: receive, send, or compute tasks. This time, we
have to replace (1), (5), and (6) by

8i;
X
j2nðiÞ

sij þ �i þ
X
j2nðiÞ

rij � 1: ð14Þ

Strongly heterogeneous platforms. Finally, it is important
to point out that the processor nodes may operate under
different models. Instead of writing the same equations for

each node, we pick up different equations for each node,
those corresponding to the desired operation models.

5 COMPLEXITY RESULTS

5.1 Asymptotic Optimality

In this section, we prove that steady state scheduling is
asymptotically optimal. Given a platform graph G ¼
ðV ;E;w; cÞ and a time bound K, define optðG;KÞ as the
optimal number of tasks that can be computed using the
whole platform, within K time-units. We have the follow-
ing result.

Lemma 1. optðG;KÞ � ntasksðGÞ �K.

Proof. Consider an optimal scheduling. For each processor
Pi, let tiðKÞ be the total number of tasks that have been
executed by Pi within the K time-units. Similarly, for
each edge eij in the graph, let ti;jðKÞ be the total number
of tasks that have been forwarded by Pi to Pj within the
K time-units. The following equations hold true.

. tiðKÞ � wi � K (time for Pi to process its tasks).

.
P

j2nðiÞ ti;jðKÞ � cij � K (time for Pi to forward
outgoing tasks in the one-port model).

.
P

j2nðiÞ tj;iðKÞ: � cij � K (time for Pi to receive
incoming tasks in the one-port model).

.
P

j2nðiÞ tj;iðKÞ ¼ tiðKÞ þ
P

j2nðiÞ ti;jðKÞ (conserva-
tion equation).

Let �i ¼ witiðKÞ
K , sij ¼ cijti;jðKÞ

K , and rij ¼ cijtj;iðKÞ
K ¼ sji. All

the equations of the linear program MSSG(G) hold,
hence,

P
i
�i

wi
� ntasksðGÞ, the optimal value. Going back to

the original variables, we derive:

optðG;KÞ ¼
X
i

tiðKÞ � ntasksðGÞ �K:

ut

Basically, Lemma 1 says that no scheduling can execute

more tasks than the steady state. There remains to bound

the initialization and the clean-up phase to come up with a

well-defined scheduling algorithm based upon steady state

operation. Consider the following algorithm (assume K is

large enough):

. Solve the linear program MSSG(G): Compute the
maximal throughput ntasksðGÞ, compute all the
values �i, rij, and rij, and determine the time-period
T . For each processor Pi, determine peri, the total
number of tasks that it receives per period. Note that
all these quantities are independent of K: They
depend only upon the characteristics wi and cij of
the platform graph.

. Initialization: The master sends peri tasks to each
processor Pi. This requires I units of time, where I is
a constant independent of K.

. Let J be the maximum time for each processor to
consume peri tasks (J ¼ maxifperi:wig). Again, J is a
constant independent of K.

. Let r ¼ bK�I�J
T c.

. Steady state scheduling: During r periods of time T ,
operate the platform in steady state, according to the
solution of MSSG(G).
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. Clean-up: Do not forward any task, but consume in
place all remaining tasks. This requires at most J
time-units. Do nothing during the very last units
(K � I � J may not be evenly divisible by T ).

. The number of tasks processed by this algorithm
within K time-units is equal to steadyðG;KÞ =
ðrþ 1Þ � T � ntasksðGÞ.

Proposition 3. The previous scheduling algorithm based upon

steady state operation is asymptotically optimal:

lim
K!þ1

steadyðG;KÞ
optðG;KÞ ¼ 1:

Proof. Using Lemma 1, optðG;KÞ � ntasksðGÞ:K. From the

description of the algorithm, we have steadyðG;KÞ =

ððrþ 1ÞT Þ:ntasksðGÞ � ðK � I � JÞ:ntasksðGÞ, whence the

result because I, J , T , and ntasksðGÞ are constants

independent of K. tu

5.2 Spanning Trees

For a general interconnection graph, the solution of the

linear programming problem may lead to the use of

multiple paths (this is the case for the toy example of

Section 2.4). As already mentioned, it may be of interest to

extract the best spanning tree (the one with maximum

throughput) out of the graph. Using a tree greatly simplifies

the implementation (because of the unique route from the

master to any processor). Also, the bandwidth-centric

algorithm presented in [4] is local and demand-driven,

therefore, is very robust to small variations in resources

capabilities.

This section provides “negative” results: First, extracting

the best tree is NP-hard. But, even if we are ready to pay a

high (probably exponential) cost to determine the best tree,

there exist graphs for which the throughput of the best tree

is arbitrarily bad compared to the throughput that can be

achieved while the whole graph.

5.2.1 Finding the Best Spanning Tree

Our aim is to find the spanning tree that maximizes the
throughput, i.e., the number of tasks that can be processed
within one unit of time at steady state. Formally, we can
state the problem as follows:

Defintion 1 (BEST-TREE(G)). Let G ¼ ðV ;E;w; cÞ be the

node-weighted edge-weighted graph representing the architec-

tural framework. Find the tree T ¼ ðV ;E0; w; cÞ that is a

subgraph of G rooted at the master, such that the number of

tasks ntaskðT Þ that can be processed in steady state within one

time-unit, using only those edges of the tree, is maximized.

The associated decision problem is the following:

Definition 2 (BEST-TREE-DEC(G;�)). Let G ¼ ðV ;E;w; cÞ
be the node-weighted edge-weighted graph representing the

architectural framework. Is there a tree T ¼ ðV ;E0; w; cÞ that
is a subgraph of G rooted at the master, such that

ntaskðT Þ � �?

Theorem 2. BEST-TREE-DEC(G;�) is NP-Complete.

Proof. The problem BEST-TREE-DEC(G;�) is proven to be
NP-complete in [3] by reduction from 2-PARTITION,
which is known to be NP-Complete [9]. tu

5.2.2 Inapproximability of a Graph by a Tree

One natural and interesting question is the following: How

bad may the approximation of a graph by a tree be? The

following theorem states the inapproximability of a general

graph by a tree with respect to throughput.

Theorem 3. Given any positive integer K, there exists a graph G
such that, for any tree T that is a subgraph of G and rooted at
the master, we have

ntaskðGÞ
ntaskðT Þ

� K:

Proof. Consider the graph depicted in Fig. 9.
One can easily check that, using all the communication

resources, it is possible to process one task within each

time unit, i.e., ntaskðGÞ ¼ 1. However, any tree T extracted

from G is equivalent to the chain depicted in Fig. 10 since

P 0
0 is the only computing resource. Moreover, because of
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the slow link between Pi and P 0
i , the number of tasks that

can be processed within one unit of time is bounded by 1
K

and, thus,

8T; ntaskðGÞ
ntaskðT Þ

� K:

ut

6 RELATED PROBLEMS

We classify several related papers along the following lines:

Scheduling task graphs on heterogeneous platforms.
Several heuristics have been introduced to schedule
(acyclic) task graphs on different-speed processors, see
[21], among others. Unfortunately, all these heuristics
assume no restriction on the communication resources,
which renders them somewhat unrealistic to model real-
life applications. Recent papers [12], [19] suggest taking
communication contention into account.

Scheduling divisible load. Instead of scheduling several
communications, one for each task, the divisible load
approach consists in scheduling a single communication
at the beginning of the operation. The cost of this
communication is proportional to the amount of compu-
tation performed. A star graph is targeted in [20], with
homogeneous links and different-speed processors. The
extension to heterogeneous links is dealt with in [6]. See
also [14], [1] for more results on sharing bag of tasks in
heterogeneous clusters.

Master-slave on the computational grid. Master-slave
scheduling on the grid can be based on a network-flow
approach [17] or on an adaptive strategy [11].Note that the
network-flowapproach of [17] is possible onlywhenusing
a full multiple-port model, where the number of simulta-
neous communications for a given node is not bounded.
Enabling frameworks to facilitate the implementation of
master-slave tasking are described in [10], [22].

7 CONCLUSION

In this paper, we have dealt with master-slave tasking on a
heterogeneous platform. We have shown how to determine
the best steady state scheduling strategy for a general
interconnection graph, using a linear programming ap-
proach. We derive from this steady-state strategy a
asymptotically optimal schedule. We have also given a
closed-form expression and a more efficient algorithm
(linear in the processor number) for tree-shaped platform
graphs using a bandwidth-centric approach. Some simulation
results on demand-driven heuristics based on the band-
width-centric approach are given in [4] and [13].

We have also derived negative theoretical results, namely,
that general interconnection graphs may be arbitrarily more
powerful than spanning trees, and that determining the best
spanning tree is NP-hard. Nevertheless, several low-cost
heuristics that achieve very good performances on a wide
range of simulations are proposed in [2]. These positive
experiments show that, in practice, it is safe to rely on
spanning trees to implement master-slave tasking.

This work can be extended in the following two

directions:

. On the theoretical side, we could try to solve the
problem of maximizing the number of tasks that can
be executed within T time-steps, where T is a given
time-bound. This scheduling problem is more
complicated than the search for the best steady state.
Taking the initialization phase into account renders
the problem quite challenging.

. On the practical side, we need to run actual
experiments rather than simulations. Indeed, it
would be interesting to capture actual architecture
and application parameters, and to compare heur-
istics on real-life problems.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
numerous comments and suggestions, which greatly
improved the final version of the paper.

REFERENCES

[1] M. Adler, Y. Gong, and A.L. Rosenberg, “Optimal Sharing of Bags
of Tasks in Heterogeneous Clusters,” Proc. 15th ACM Symp.
Parallelism in Algorithms and Architectures, pp. 1-10, 2003.

[2] C. Banino, O. Beaumont, A. Legrand, and Y. Robert, “Scheduling
Strategies for Master-Slave Tasking on Heterogeneous Processor
Grids,” Proc. Int’l Conf. Applied Parallel Computing, pp. 423-432,
2002.

[3] C. Banino, O. Beaumont, A. Legrand, and Y. Robert, “Scheduling
Strategies for Master-Slave Tasking on Heterogeneous Processor
Grids,” Technical Report 2002-12, LIP, Mar. 2002.

[4] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert,
“Bandwidth-Centric Allocation of Independent Tasks on Hetero-
geneous Platforms,” Proc. Int’l Parallel and Distributed Processing
Symp., 2002.

[5] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert, “Optimal
Algorithms for the Pipelined Scheduling of Task Graphs on
Heterogeneous Systems,” Technical Report RR-2003-29, LIP, ENS
Lyon, France, May 2003.

[6] S. Charcranoon, T.G. Robertazzi, and S. Luryi, “Optimizing
Computing Costs Using Divisible Load Analysis,” IEEE Trans.
Computers, vol. 49, no. 9, pp. 987-991, Sept. 2000.

[7] Scheduling Theory and Its Applications. P. Chrétienne, E.G. Coffman
Jr., J.K. Lenstra, and Z. Liu, eds. John Wiley and Sons, 1995.

[8] Entropia, http://www.entropia.com, 2003.
[9] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide

to the Theory of NP-Completeness. W.H. Freeman and Company,
1991.

[10] J.P Goux, S. Kulkarni, J. Linderoth, and M. Yoder, “An Enabling
Framework for Master-Worker Applications on the Computa-
tional Grid,” Proc. Ninth IEEE Int’l Symp. High Performance
Distributed Computing, 2000.

[11] E. Heymann, M.A. Senar, E. Luque, and M. Livny, “Adaptive
Scheduling for Master-Worker Applications on the Computational
Grid,” R. Buyya and M. Baker, eds., Proc. Workshop Grid
Computing, pp. 214-227, 2000.

[12] T.S. Hsu, J.C. Lee, D.R. Lopez, and W.A. Royce, “Task Allocation
on a Network of Processors,” IEEE Trans. Computers, vol. 49, no. 12,
pp. 1339-1353, 2000.

[13] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante, “Autono-
mous Protocols for Bandwidth-Centric Scheduling of Independent
Task Applications,” Proc. Int’l Parallel and Distributed Processing
Symp., 2003.

[14] A.L. Rosenberg, “On Sharing Bags of Tasks in Heterogeneous
Networks of Workstations: Greedier is Not Better,” Proc. Int’l Conf.
Cluster Computing, pp. 124-131, 2001.

[15] A. Schrijver, “Combinatorial Optimization: Polyhedra and Effi-
ciency,” Algorithms and Combinatorics, vol. 24, Springer-Verlag,
2003.

[16] SETI, http://setiathome.ssl.berkeley.edu, 2003.

BANINO ET AL.: SCHEDULING STRATEGIES FOR MASTER-SLAVE TASKING ON HETEROGENEOUS PROCESSOR PLATFORMS 11



[17] G. Shao, F. Berman, and R. Wolski, “Master/Slave Computing on
the Grid,” Proc. Heterogeneous Computing Workshop, 2000.

[18] B.A. Shirazi, A.R. Hurson, and K.M. Kavi, Scheduling and Load
Balancing in Parallel and Distributed Systems. IEEE Computer
Science Press, 1995.

[19] O. Sinnen and L. Sousa, “Comparison of Contention-Aware List
Scheduling Heuristics for Cluster Computing,” Proc. Workshop
Scheduling and Resource Management for Cluster Computing, pp. 382-
387, 2001.

[20] J. Sohn, T.G. Robertazzi, and S. Luryi, “Optimizing Computing
Costs Using Divisible Load Analysis,” IEEE Trans. Parallel and
Distributed Systems, vol. 9, no. 3, pp. 225-234, Mar. 1998.

[21] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task Scheduling
Algorithms for Heterogeneous Processors,” Proc. Eighth Hetero-
geneous Computing Workshop, 1999.

[22] J.B. Weissman, “Scheduling Multi-Component Applications in
Heterogeneous Wide-Area Networks,” Proc. Heterogeneous Com-
puting Workshop, 2000.

Cyril Banino is currently a PhD student in
NTNU, the Norvegian University of Science and
Technology. He is mainly interested in high-
performance scientific computing and in combi-
natorial optimization.

Olivier Beaumont received the PhD degree
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