
33rd Design Automation Conference 
Permission to make digital/hard copy of all or part of this work for
personal or class-room use is granted without fee provided that copies
are not made
or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear,
and notice is given that copying is
by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permssion and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA 1996 ACM, Inc. 0-89791-833-9/96/0006..$3.50

Scheduling Techniques to Enable Power Management

José Monteiro, Srinivas Devadas Pranav Ashar Ashutosh Mauskar
Department of EECS, MIT C&C Research Labs., NEC USA Synopsys, Inc.

Cambridge, MA Princeton, NJ Mountain View, CA

“Shut-down” techniques are effective in reducing the power
dissipation of logic circuits. Recently, methods have been devel-
oped that identify conditions under which the output of a module
in a logic circuit is not used for a given clock cycle. When these
conditions are met, input latches for that module are disabled,
thus eliminating any switching activity and power dissipation. In
this paper, we introduce these power management techniques in
behavioral synthesis. We present a scheduling algorithm which
maximizes the “shut-down” period of execution units in a sys-
tem. Given a throughput constraint and the number of execution
units available, the algorithm first schedules operations that gen-
erate controlling signals and activates only those modules whose
result is eventually used. We present results which show that this
scheduling technique can save up to 40% in power dissipation.

I. INTRODUCTION

Rapid increases in chip complexity, increasingly faster clocks, and
the proliferation of portable devices have combined to make power
dissipation an important design parameter. The power dissipated by
a digital system determines its heat dissipation as well as battery life.
Power reduction techniques have been proposed at all levels – from
system to device.

It has been demonstrated at the gate and system levels that large
power savings are possible merely by cutting down on wasted power –
commonly referred to as power management. At the system level, this
involves shutting down blocks of hardware that are not being used ([3],
Chapter 10). Detection and shut down of unused hardware is done
automatically in current generations of Pentium and PowerPC proces-
sors. The Fujitsu SPARClite processor provides software controls for
shutting down hardware.

It has been shown in recent work that similar power management
techniques are effective at the sequential [1] and combinational logic
[6], [9] levels also. Application of power management at the gate level
involves first identifying large portions of the circuit that frequently
produce information that is either not essential for determining the val-
ues on the primary outputs, or information that could have been pro-
duced by much simpler hardware. Additional hardware is then added
to the circuit that detects on a per-clock-cycle basis input conditions
under which such a situation arises and shuts down the corresponding
portions of the circuit for that clock cycle.

The goal of our work is to introduce power management into
scheduling algorithms used in behavioral level synthesis. Behav-
ioral synthesis comprises of the sequence of steps by means of which

an algorithmic specification is translated into hardware. These steps
involve breaking down the algorithm into primitive operations, and
associating each operation with the time interval in which it will be
executed (called operation scheduling) and the hardware functional
block that will execute it (called hardware allocation). Clock-period
constraints, throughput constraints, hardware resource constraints and
their combination make this a non-trivial optimization problem.

Decisions taken during behavioral synthesis have a far reaching im-
pact on the power dissipation of the resulting hardware. For example,
throughput-improvement by exploiting concurrency via transforma-
tions like pipelining and loop unrolling enables the hardware to be
operated at lower clock frequencies, and thereby at lower voltages [2].
The lower supply voltage leads to a reduction in power dissipation.
Hardware allocation also has an effect on the switching activity and
thereby on the power dissipation, for example see [8].

Our work is centered around the observation that scheduling has
a significant impact on the potential for power savings via power
management. Based on this observation, we present a scheduling al-
gorithm that is power-management-aware, i.e., it generates a schedule
that maximizes the potential for power management in the resulting
hardware. The proposed algorithm operates under a user determined
combination of throughput, cycle-time and hardware resource con-
straints. Starting from a Silage [4] description, our implementation
of the algorithm generates VHDL code for the controller as well as
the datapath corresponding to the power-management-aware sched-
ule. Validation of power reduction is done via the Synopsys power
estimation tool.

II. POWER MANAGEMENT

A. Data-dependent Power Shut Down

A system-level approach is to identify idle periods for entire mod-
ules and turn off the clock lines for these modules for the duration of
the idle periods ([3], Chapter 10). At the logic level, two effective
shut down techniques have been proposed recently, precomputation
[1], [6] and guarded evaluation [9].

In precomputation, a simple combinational circuit (the precom-
putation logic) is added to the original circuit. Under certain input
conditions, the precomputation logic disables the loading of all or a
subset of input flip-flops and computes some or all of the circuit out-
puts by itself. Under these input conditions, no power is dissipated
in the portions of the original circuit with only disabled flip-flops as
inputs. Sequential precomputation shuts down an entire cone of logic
feeding a primary output using existing flip-flop boundaries. Guarded
evaluation and combinational precomputation take that approach to a
finer grain by identifying cones internal to the circuit that can be shut
down under certain input conditions. In the process, new transition
barriers (guards) in the form of additional latches or OR/AND gates
are created.

These methods can be called Data-dependent Power Shut Down
methods since the shutting down of logic is decided on a per clock
cycle basis given an input vector.

−

MUX

> − Step 1

Step 2

a b a b b a

Fig. 1. CDFG and Schedule for ja� bj Using 2 Control Steps.

>

−

− Step 1

Step 2

Step 3
MUX

>

−− Step 2

Step 3

Step 1

MUX

(a) (b)

Fig. 2. Schedule for ja� bj Using 3 Control Steps.

B. Scheduling for Power Management

The techniques of Section II-A are limited by the predefined logical
structure of the circuit. In this paper, we move one step upwards in
the CAD synthesis pipeline. We propose an algorithm that schedules
operations so as to minimize the amount of unused computation.

In a typical design, the flow of data is determined at run time
based on conditions derived from input values. As an example, say
we need to compute ja � bj. One way to implement it is to do
the comparison a > b and if the result of this operation is true we
compute a � b otherwise we compute b � a. The Control Data
Flow Graph (CDFG) for this simple example is shown in Figure 1.
Assume that one control step is required for each of the three operations
(�, > and MUX). The only precedence constraint for this example is
that the multiplexor operation can only be scheduled after all other
three operations. Existing scheduling algorithms use this flexibility
to minimize the number of execution units needed and/or the number
of control steps. If we are allowed two control steps to compute
ja � bj, then necessarily the operations a > b, a � b and b � a (we
need two subtractors) have to be executed in the first control step
and the multiplexor in the second control step as indicated in Figure
1. If instead we are allowed three control steps, we can get by with
one subtractor and schedule operations a � b and b � a in different
control steps, one in the first control step and the other in the second.
Operation a > b can be scheduled in any of these two control steps
and the multiplexor will be in the third control step, as shown in Figure
2(a).

In either case, both a� b and b�a are computed although only the
result of one of them is eventually used. This is obviously wasteful in
terms of power consumption.

We propose a scheduling algorithm that attempts to assign oper-
ations involved in determining the data flow (in this case a > b) as
early as possible in the initial control steps, thus indicating which
computational units are needed to obtain the final result. Only those
units that eventually get used are activated. The algorithm chooses
a schedule only if the required throughput and hardware constraints

are met. In other words, the algorithm explores any available slack to
obtain a power manageable architecture.

For our example, and assuming we have available three control
steps, our scheduling algorithm will assign a > b to the first control
step and a � b and b � a to the second. Depending on the result of
a > b, only the inputs to one of a� b and b�a will be loaded, thus no
switching activity will occur in the subtractor whose result is not going
to be used. This situation is shown in Figure 2(b), where the dashed
arrows indicate that the execution of the ’�’ operations depends on the
result of the comparator. Here we assumed we have two subtractors
available. If that is not the case, we need to assign one subtract to the
first control step and another to the second, the operation in the first
control step will always be computed, but we can still disable the one
in the second control step when it is not needed.

If only two control steps are allowed, there is no flexibility. The
solution is unique (Figure 1) and our scheduling algorithm will produce
the same result as the traditional method: no power management is
possible.

C. Relationship with Past Research on Identifying Mutually Exclusive
Operations

Two operations are said to be mutually exclusive if the result of only
one of them will be used, whatever the input. The mutual exclusiveness
of two identical operations can be exploited to schedule them in the
same control step and to make them share the same resource. With this
in mind, a few algorithms have been proposed in the past to identify
mutual exclusiveness efficiently (see [5] for a review).

Our application of mutual exclusiveness for power management
is more general in that we also exploit mutual exclusiveness of two
operations that are not identical to each other. Even so, we can leverage
off the previous work on algorithms for identification of mutually
exclusive operations.

III. SCHEDULING ALGORITHM

Given a behavioral description of the system, our objective is to
schedule the operations such that operations whose result goes through
some conditional branch (such as an if or case statement) are only
activated if the condition for their use is met. We want to maximize
the number of operations whose control signals (the signal that selects
the usage of their result) are computed before they are scheduled.
The pseudo-code for an algorithm that does such an optimization
is shown in Figure 3. This algorithm was implemented within the
HYPER framework [7]. HYPER routines were used for the parsing of
the high-level description language (Silage [4]), final scheduling and
VHDL output generation.

In step 1, the behavioral description of the system is converted into
a Control Data Flow Graph (CDFG), where each node corresponds to
an operation. This process creates all precedence conditions among
operations. Also the “As Soon As Possible” (ASAP) and “As Late
As Possible” (ALAP) values for each node are computed. These
values indicate the earliest and latest control step a given node can be
scheduled in. In other words, they represent the slack of a node for the
specified throughput. After this parsing, all conditionals in the system
will correspond to multiplexor nodes. Our goal is to schedule nodes
in the transitive fanin of the control input of each multiplexor before
nodes in the transitive fanin of inputs 0 and 1, and do so for as many
nodes as possible.

The algorithm looks at each multiplexor individually and starts with
those multiplexors closer to the outputs (or farther from the inputs).

1: Generate CDFG ;
2: For each multiplexor mux f
3: Annotate nodes in fanin of the 0, 1 and control inputs of mux ;
4: Compute new ASAP of each node in the fanin of the 0 and 1 inputs ;
5: Compute new ALAP of each node in the fanin of the control input ;
6: If for any node ASAP > ALAP
7: then power management not possible for mux ;
8: else assign new ASAP and ALAP values to nodes ;
9: g
10: Create control edges between last node in the control fanin and top nodes

in 0 and 1 fanin of muxes for which power management is possible ;
11: Execute Hyper scheduling ;
12: Generate final Datapath and Controller circuits ;

Fig. 3. Pseudo-code for Power Management Scheduling Algorithm.

The reason for this is that if we are able to do power management on
a multiplexor closer to the outputs then we will be able to shut down
a larger number of operations in the circuit.

For each multiplexor, the algorithm identifies which nodes are in
the transitive fanin of each input (step 3). If a node is both in the
fanin cone of the 0 and 1 inputs of the multiplexor then no power
management is attempted since the operation is needed no matter
what the result of the condition is. The same applies for nodes that
fanout to other nodes besides the current multiplexor.

In step 4, new ASAP values are computed for the nodes in the
0,1-input fanin assuming they are scheduled after the last node in the
control input fanin of this multiplexor. Similarly, in step 5 new values
ALAP values are computed for the nodes in the control input fanin
assuming they are scheduled before the first node on either the 0 or 1
input fanin.

If at any point any node is assigned an ASAP value greater than the
value for ALAP then no scheduling is possible for this node, meaning
that with the specified throughput value no power management is
possible for the current multiplexor. In that case, the ASAP and
ALAP values for the nodes are reverted (step 7).

Otherwise, the multiplexor is selected to be power managed and
the current ASAP and ALAP values become the new values for the
nodes. In any case, the algorithm now returns to step 3 with the next
multiplexor.

After all multiplexors in the circuit have been processed and those
which can be power managed selected, in step 10 new precedence
edges are created between the last node in the control input fanin and
the top nodes in the 0,1-input fanin of each of these multiplexors. With
this new edges, we allow HYPER’s original scheduling algorithm to
determine a complete schedule (step 11), targeting minimum hardware
resources for the desired throughput.

The final step is to map the scheduled CDFG into execution units
(datapath) and generate the Finite State Machine (controller) that gen-
erates the signals that control the loading of registers and the flow of
data through multiplexors. For the datapath we use HYPER’s algo-
rithm directly. However for the controller we had to develop a new
routine. The controller is somewhat more complex since the loading
of the input registers to some of the execution units will depend on
signals generated by some previous computation.

IV. TECHNIQUES TO IMPROVE POWER MANAGEMENT

Tight constraints on throughput and hardware resources may leave
very little slack for the ordering of operations thus restricting the ef-
fectiveness of our scheduling algorithm. We propose some techniques
that can improve power management under tight constraints.

Circuit Critical Number of Operations
Name Path MUX COMP + - �

dealer 4 3 3 2 1 0
gcd 5 6 2 0 1 0
vender 5 6 3 3 3 2
cordic 48 47 16 43 46 0

TABLE I
CIRCUIT STATISTICS.

A. Multiplexor Reordering

The algorithm presented in Section III selects multiplexors for
power management on an individual basis (cycle 2-9 in pseudo-code
of Figure 3). The selection of a particular multiplexor may impede
the selection of one or more other multiplexors, therefore the order in
which the multiplexors are tested can play an important role on the
number of total modules that can be shut down.

In our algorithm we test the multiplexors closer to the outputs first.
It may happen that we have less savings from power managing the
multiplexor that is closest to the outputs than the savings for another
multiplexor and this multiplexor may not be selected because of the
first being selected. We are currently working on a pre-processing al-
gorithm which performs reordering of multiplexors trying to maximize
the number of modules that can be shut down.

B. Pipelining

A common technique to increase the throughput of a design is to
introduce pipeline stages. A two-stage pipeline means that two input
samples are processed at any given time. The effective number of
control steps needed to process one input sample is reduced by half.

For our purposes we can look at this through a different angle:
adding control steps for pipelining increases the number of control
steps and at the same time improves the throughput or leaves it un-
changed. The addition of new control steps is very useful for power
management since it creates the slack needed to schedule the control
signals first.

The disadvantage of using pipelining is that the latency of the
circuit increases. Also it may lead to some increase in the number of
registers and execution units, increasing the area of the circuit.

V. EXPERIMENTAL RESULTS

In this section we present some preliminary results that compare
the power dissipation of circuits with and without power management.
In Table I we give some statistics about the circuits we present results
for. In the second column of Table I we give the minimum number
of control steps needed to perform the operation. The remaining
columns indicate the number of each different operations that make
up each circuit.

All circuits were initially described in Silage [4]. They were read
into HYPER [7] and a scheduling with power management was ob-
tained using the algorithm described in Section III. Table II shows the
results obtained.

The second column of Table II indicates the number of control
steps we allowed each computation to take and under column three is
the number of multiplexors that were selected for power management
given this number of control steps. The fourth column gives the area
increase due to the extra execution units needed to perform the desired

Circuit Control P.Man. Area Number of Operations Power
Name Steps Muxs Incr. MUX COMP + - � Red.(%)

dealer 4 1 1.20 2.00 2.00 2.00 0.50 0.00 27.00
5 1 1.00 2.00 2.00 2.00 0.50 0.00 27.00
6 2 1.00 2.00 2.00 1.75 0.25 0.00 33.33

gcd 5 1 1.00 5.50 2.00 0.00 0.50 0.00 11.76
6 1 1.00 5.50 2.00 0.00 0.50 0.00 11.76
7 2 1.05 5.50 2.00 0.00 0.25 0.00 16.18

vender 5 4 1.04 4.50 2.50 1.50 1.00 1.00 41.67
6 4 1.00 4.50 2.50 1.50 1.00 1.00 41.67

cordic 48 38 1.00 47.00 16.00 24.00 27.00 0.00 30.16
52 46 1.17 47.00 16.00 22.00 23.00 0.00 34.92

TABLE II
AVERAGE NUMBER OF OPERATIONS EXECUTED USING POWER MANAGEMENT.

Circuit Ctl Area Power
Name Stp Orig New Incr. Orig New %

dealer 6 895 946 1.06 46.5 35.1 24.5
gcd 7 806 892 1.11 31.9 28.7 10.0
vender 6 2338 2283 0.98 106.2 71.4 32.8

TABLE III
POWER ESTIMATION USING SYNOPSYS.

power management. As it can be observed, in most cases there is no
area penalty or the increase is very small.

In the next columns we show the average number of times that
each of the operations is executed in one computation. Here we have
assumed that each multiplexor has equal probability of selecting any
of its inputs.

The last column of Table II gives the estimated power savings
achieved by using power management. To obtain this estimate, we
computed the power consumption of each of the operations using
timing simulation with random input vectors, thus obtaining a relative
weight of the operations in terms of power (MUX: 1; COMP: 4; +: 3;
–: 3; and �: 20). An 8-bit datapath was assumed for all examples.
Recall that without power management all the operations given in
Table I are always executed. These power savings are relative only
to power dissipated in the datapath. The real power savings will
be slightly less since the controller for the power managed circuit is
slightly more complex. As it can be observed, it is possible to achieve
power savings above 40% in the datapath using this scheduling for
power management.

To further validate our power savings estimations we used the Syn-
opsys power analysis tool. The RT level circuits, described in VHDL,
were synthesized to gate-level using Synopsys Design Compiler(TM)
and power estimate obtained with DesignPower(TM). The results are
presented in Table III. For the allowed number of control steps, we
compare the area increase and the power savings of the design without
(Orig) and with (New) power management. These values agree with
our predictions. Recall that the power reduction in Table II refers only
to the datapath. Since the controller is more complex for the power
managed circuit, the savings in Table III are slightly lower in Table II
as expected.

VI. SUMMARY

We have presented a scheduling algorithm which, for a given
throughput, exploits the slack available to operations to obtain a sched-

ule that enables the use of power management techniques. When
possible, controlling signals are scheduled first thus indicating which
operations to activate and which operations to shut down. This more
constrained scheduling process may lead to a larger number of execu-
tion units required. The algorithm obtains a solution that maximizes
the ability to do power management while still meeting user specified
throughput and hardware resource constraints.

VII. ACKNOWLEDGMENTS

This research was supported in part by the Advanced Research
Projects Agency under contract DABT63-94-C-0053, and in part by a
NSF Young Investigator Award with matching funds from Mitsubishi
Corporation. This research was initiated when José Monteiro was
employed at CCRL, NEC USA.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Pa-
paefthymiou. Precomputation-Based Sequential Logic Optimiza-
tion for Low Power. IEEE Transactions on VLSI Systems,
2(4):426–436, December 1994.

[2] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. Broderson.
HYPER-LP: A System for Power Minimization Using Architec-
tural Transformations. In Proc. of the ICCAD, pages 300–303,
November 1992.

[3] Anantha Chandrakasan and Robert Brodersen. Low Power Digital
CMOS Design. Kluwer Academic Publishers, 1995.

[4] P. Hilfinger. A High-level Language and Silicon Compiler for
Digital Signal Processing. In Proc. of the Custom Integrated
Circuits Conference, pages 213–216, May 1985.

[5] H. Juan, V. Chaiyakul, and D. Gajski. Condition Graphs for
High-Quality Behvioral Synthesis. In Proc. of the ICCAD, pages
170–174, November 1994.

[6] J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh. Opti-
mization of Combinational and Sequential Logic Circuits for Low
Power Using Precomputation. In Proc. of the Chapel Hill Conf.
on Advanced Research on VLSI, pages 430–444, March 1995.

[7] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast Prototyp-
ing of Datapath-Intensive Architectures. IEEE Design and Test,
8(2):40–51, June 1991.

[8] A. Raghunathan and N. Jha. Behavioral Synthesis for Low Power.
In Proc. of the ICCD, pages 318–322, October 1994.

[9] V. Tiwari, P. Ashar, and S. Malik. Guarded evaluation: Pushing
power management to logic synthesis/design. In International
Symposium on Low Power Design, pages 221–226, April 1995.

