
Scheduling to Minimize Gaps and Power Consumption

Erik D. Demaine∗

Computer Science & AI Lab
M.I.T.

Cambridge, MA
edemaine@mit.edu

Mohammad Ghodsi†
Dept. of Computer Engineering
Sharif University of Technology

Tehran, Iran
ghodsi@ce.sharif.edu

Mohammad Taghi Hajiaghay i ∗†
Computer Science & AI Lab

M.I.T.
Cambridge, MA

hajiagha@mit.edu
Amin S. Sayedi-Roshkhar
Dept. of Computer Engineering
Sharif University of Technology

Tehran, Iran
sayedi@ce.sharif.edu

Morteza Zadimoghaddam
Dept. of Computer Engineering
Sharif University of Technology

Tehran, Iran
zadimoghaddam@ce.sharif.edu

ABSTRACT
This paper considers scheduling tasks while minimizing the
power consumption of one or more processors, each of which
can go to sleep at a fixed cost α. There are two natural
versions of this problem, both considered extensively in re-
cent work: minimize the total power consumption (includ-
ing computation time), or minimize the number of “gaps”
in execution. For both versions in a multiprocessor system,
we develop a polynomial-time algorithm based on sophis-
ticated dynamic programming. In a generalization of the
power-saving problem, where each task can execute in any
of a specified set of time intervals, we develop a (1 + 2

3α)-
approximation, and show that dependence on α is neces-
sary. In contrast, the analogous multi-interval gap schedul-
ing problem is set-cover hard (and thus not o(lg n)-approxi-
mable), even in the special cases of just two intervals per job
or just three unit intervals per job. We also prove several
other hardness-of-approximation results. Finally, we give
an O(

√
n)-approximation for maximizing throughput given

a hard upper bound on the number of gaps.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Design, Performance

∗Supported in part by NSF under grant number ITR ANI-
0205445.
†Supported in part by Institute for Theoretical Physics and
Mathematics (IPM) under grant numbers CS1385-2-01 and
CS1384-6-01.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

Keywords
Power minimization, multiprocessor scheduling, sleep state

1. INTRODUCTION
Power is a growing concern in computer science, moti-

vated by batteries increasing in capacity much more slowly
than computation power, and by small mobile devices such
as cell phones, PDAs, and sensors increasing in prevalence;
see, e.g., the recent surveys in theory [7] and in practice [3].
A common approach in practice for reducing power con-
sumption is to add a “sleep state” which requires essentially
no power but disallows computation. However, each tran-
sition from the sleep state to the regular, active state con-
sumes a fixed amount of power, so we cannot simply go to
sleep whenever computation is not required. The schedul-
ing problem is thus to determine when to switch to the sleep
state in order to minimize the total power consumption.

We consider two precise formulations of this problem. In
power minimization [8, 1], the objective is to minimize the
total transition costs plus the total time spent in the active
state. In gap scheduling [2, 5], the device goes into a sleep
state whenever it is idle, and the objective is to minimize
the total number of transitions (because the time spent in
the active state is fixed by the input jobs). Though mini-
mizing total power (as in power minimization) is the most
natural measure, minimizing the number of transitions (as
in gap scheduling) seems stronger from the point of view of
approximation algorithms.

In all previous work on these problems, tasks have arrival
times, deadlines, and processing times, and the goal is to
find a pre-emptive schedule that satisfies all deadlines. We
consider a generalization, called multi-interval scheduling, in
which each task has a list of one or more time intervals dur-
ing which it can execute (e.g., when the necessary resources
are available), and the goal is to complete every task. One
practical special case of this generalization, also considered
in this paper, is multiprocessor scheduling where each task
can run on any processor, and individual processors can go
into the sleep state. (To see that multiprocessor scheduling
is a special case of interval scheduling, view the processor
executions as laid out one after the other, so that idle gaps
correspond; then a task with an arrival time and deadline
becomes executable in an arithmetic sequence of time in-
tervals.) This problem is particularly interesting given the

46

increasing prevalence of multicore and multiprocessor archi-
tectures.

Previous work.
It remained a challenging open problem for several years

whether the offline version of both problems, in the one-
interval case where each job has one interval (arrival time
and deadline), was NP-hard or polynomially solvable. For
exact solutions, offline power saving and offline gap schedul-
ing are the same problem (they differ only with respect to
approximation). This open problem was posed at the 2002
Dagstuhl Seminar on Online Algorithms, and in [8, 7].

Most preliminary work on this problem considered power
saving, which is easier in terms of approximation. For of-
fline power saving, Irani, Shukla, and Gupta [8] developed a
polynomial-time 3-approximation. For online power saving,
where jobs become known only at their arrival time, Augus-
tine, Irani, and Swamy [1] obtained a (3+2

√
2)-competitive

strategy, while the best lower bound on competitive ratio
is 2 [8, 2].

The open problem was finally solved by Baptiste [2], who
gave a surprising and clever dynamic program that solves
the offline one-interval problem (both power saving and gap
scheduling) optimally in polynomial time. At his SODA
2006 talk, he posed a harder version of this open problem:
what about multi-interval scheduling? This is the topic of
our paper.

Offline one-interval gap scheduling also has a simple
greedy 3-approximation algorithm [5]. The algorithm tries
all possible gaps and chooses the largest gap that still leaves
a feasible schedule (whose existence can be checked by
maximum-cardinality matching). Then it removes this in-
terval of time and repeats the process until no more gaps can
be introduced. An initial analysis shows that this greedy
algorithm is an O(lg n)-approximation, by analogy to set
cover, but with substantially more work, it is proved to be
a 3-approximation.

Note that, without a power or gap objective, the offline
one-interval problem is one of the most basic and fundamen-
tal scheduling problems. This problem has a simple optimal
greedy solution, earliest deadline first, as well as other ap-
proaches via linear programming or bipartite matching.

Our focus is on offline problems, because multi-interval
power saving and even one-interval gap scheduling are not
interesting in the online context. If an online algorithm is
guaranteed to find a feasible schedule whenever possible,
then it must follow the earliest-deadline-first schedule, ex-
ecuting jobs whenever they become available. For multi-
interval scheduling, the earliest-deadline-first schedule is not
well-defined, and indeed any online algorithm cannot find a
feasible schedule when possible. To see this, suppose two
jobs come at time 0, one with intervals [0, 1] and [1, 2] and
the other with intervals [0, 1] and [2, 3]; we cannot tell which
job to run at time 0, for fear of a third job coming at time
1 or 2 and requiring immediate execution. On the other
hand, for one-interval gap scheduling, suppose n jobs arrive
at time 0 with a deadline of 3n, and n jobs arrive at times
n, n + 2, n + 4, . . . with deadlines of one unit after their ar-
rival. The optimal gap schedule waits for the n latter jobs
to arrive and schedules the former n jobs in between the
gaps, for a gap cost of O(1). Any online solution guaran-
teed to find a feasible solution must schedule the former n
jobs immediately, for a gap cost of n, to handle the instance

where the latter jobs are instead 2n jobs arriving at times
n, n + 1, n + 2, So any correct online algorithm must
have a competitive ratio of at least n.

Our results.
Our first positive result (Section 2) is for the important

case of (one-interval) multiprocessor scheduling, which can
be viewed as a special case of multi-interval scheduling where
each task can execute in an arithmetic sequence of time in-
tervals with fixed period. Here we obtain a polynomial-time
algorithm, nontrivially building on the dynamic program of
[2] by obtaining additional structure. Somewhat surpris-
ingly, the running time of the dynamic is polynomial in both
n and the number p of processors, not e.g. nO(p). Because
our algorithm is exact, it solves both the power-saving and
gap versions of the problem.

For multi-interval power saving with a transition cost of α,
we develop a (1+ 2

3α)-approximation algorithm (Section 3).
This result builds on some classic previous work on set pack-
ing by Hurkens and Schrijver [6]. (In maximum set packing,
given a collection of sets, the goal is to find a maximum
subcollection of pairwise-disjoint sets.) We also show that
no polynomial-time approximation factor can be indepen-
dent of α unless P = NP (Section 4.2). Furthermore, if α
is part of the input, we show that multi-interval power sav-
ing is set-cover hard (Section 4.1), and therefore cannot be
approximated within a o(lg n) factor unless P = NP [4].

Next we show through a series of reductions that multi-
interval gap scheduling is set-cover hard, even in two spe-
cial cases. In the first case (Section 5.1), each job has only
two intervals (two-interval gap scheduling). In the second
case (Section 5.2), each job has at most three intervals each
of which is one unit in length (three-unit gap scheduling).
Slightly more positive (Section 5.3), if each job has at most
two intervals each of which is one unit in length (two-unit
gap scheduling), then we show that the problem is equiva-
lent to the variation where all intervals of all jobs are disjoint
(disjoint-interval gap scheduling), which we prove cannot be
approximated within any constant factor.

Finally, we consider swapping the roles of the hard con-
straint and the objective function in gap scheduling (Sec-
tion 6). Namely, if we allow at most k gaps (i.e., at most k
“restarts”), what is the maximum number of jobs that we
can schedule? We give an O(

√
n)-approximation algorithm

for this minimum-restart problem. A simple example of this
scenario is hiring a consultant who bills by the day. The
consultant goes home whenever there is no work to do; if
you ask the consultant back later that day, it counts as a
new day (restarting). Each job can be executed at specified
times during specified days, but not at night, so the consul-
tant goes home each night. What can you get the consultant
do given a hiring budget of only k days?

2. MULTIPROCESSOR GAP
SCHEDULING: HOMOGENEOUS
ARITHMETIC INTERVALS

In multiprocessor gap scheduling, we have p processors
P1, P2, . . . , Pp and n jobs j1, j2, . . . , jn; each job ji has an
integer arrival time ai, integer deadline di, and unit pro-
cessing time. A feasible schedule assigns each job ji to a
unique processor/time pair (pi, ti) where the integer ti sat-
isfies ai ≤ ti ≤ di. A gap on processor Pq is a finite maximal

47

interval of time during which no jobs are scheduled on Pq .
Our goal is to determine whether there is a feasible sched-
ule, and if so, to find one that minimizes the total number
of gaps summed over all processors.

Building on Baptiste’s clever dynamic program [2], we
obtain the following result:

Theorem 1. There is a (n7p5)-time algorithm for p-pro-
cessor gap scheduling of n jobs.

The p-processor problem can be seen as a special case
of the multi-interval problem, where each job has p inter-
vals and the intervals for a job are of the form I, I + x, I +
2x, . . . , I +(p−1)x. To see this connection, view the proces-
sor executions as laid out one after the other on the timeline,
where each processor runs for less than x units.

Thus, as a consequence of Theorem 1, we also obtain a
polynomial-time algorithm for arithmetic p-interval schedul-
ing when the arithmetic series all have the same long pe-
riod x. This result is in surprising contrast to our nega-
tive results: for example, 2-unit gap scheduling, where each
job’s intervals are necessarily arithmetic, is inapproximable
within any constant factor. The only difference in this case is
that the arithmetic series have different (and possibly small)
periods.

Before we can describe our dynamic program, we need a
structural result characterizing some optimal solutions:

Lemma 1. Any feasible instance of multiprocessor gap
scheduling has an optimal solution in which, if a job j is
scheduled at time t on processor Pq, then all lower-numbered
processors P1, P2, . . . , Pq−1 are also occupied at time t.

Proof. Permuting jobs and idleness among processors
does not affect feasibility; it could only affect the number of
gaps. Instead of counting gaps, we can count the jobs for
which the previous time unit of their own processor lacks a
job. For any time t, suppose that the optimal solution has
" jobs scheduled during time unit t and "′ jobs scheduled
during time unit t + 1. We know that at least "′ − " gaps
must created at the boundary between times t and t + 1. If
we move the jobs at time t to the " lowest-numbered pro-
cessors P1, P2, . . . , P!, and move the jobs at time t + 1 to
the "′ lowest-numbered processors P1, P2, . . . , P!′ , then the
number of gaps in the schedule on the boundary between
times t and t + 1 is not more than "′ − ". Therefore, by
moving all jobs in this way, the total number of gaps does
not increase.

Now we can present our dynamic program for multipro-
cessor gap scheduling:

Proof of Theorem 1. We use dynamic programming
to solve the problem. Define Ct1,t2,k,q,!1,!2 to be the num-
ber of gaps in the optimal solution for our subproblem de-
fined as follows. We want to schedule jobs j1, j2, . . . , jk in
the interval I = [t1, t2]. We are promised that the release
time of each ji is within I and that, among all jobs with
release time in I , j1, j2, . . . , jk are those with earliest dead-
lines. We are given that, at time t2, we can only use pro-
cessors Pq+1, Pq+2, . . . , Pp numbered greater than q: pro-
cessors P1, P2, . . . , Pq are assumed to be occupied. We are
required to schedule exactly "1 jobs at time t1 and "2 jobs at
time t2. By Lemma 1, the former "1 jobs must be schedule

on processors P1, P2, . . . , P!1 , while the latter "2 jobs must
be scheduled on processors Pq+1, Pq+2, . . . , Pq+!2 .

To solve the subproblem, we consider the job jk that has
the latest deadline among the jobs j1, j2, . . . , jk. For this job
to actually be jk, we presort the jobs by increasing deadline
at the beginning of the algorithm. Suppose that jk is sched-
uled at time t′ and suppose that t′ is maximal among all
optimal solutions. Suppose that there are i jobs scheduled
after t′ and there are k− i− 1 jobs (excluding jk) scheduled
at or before t′. The jobs scheduled after jk must be released
after t′; otherwise, we could swap the scheduled times of jk

and of such a job, which is feasible because jk has the latest
deadline among the jobs, thereby resulting in a greater t′, a
contradiction. In this way, we reach two subproblems with
intervals [t1, t

′] and [t′ + 1, t2]. We also know that the num-
ber of jobs that must be scheduled in the first and second
intervals (excluding jk itself) are k− i−1 and i respectively.

Now we consider two possibilities: (1) t′ < t2 and (2) t′ =
t2. In the first case, we can suppose an optimal solution in
which jk is scheduled on the first processor: if some other job
is scheduled on that processor, we can swap its assignment
with jk’s. Therefore, at time t′, the jobs of the first inter-
val cannot be scheduled on the first processor, which can
be represented by setting q′ = 1 for this subproblem. The
subproblem for the second interval simply inherits q′ = q.
In the second case, we can suppose an optimal solution in
which jk is scheduled on the (q + 1)st processor: again, if
some other job is schedule on that processor, we can swap
its assignment with jk’s. Thus, at time t′ = t2, the jobs
cannot be scheduled on the first q +1 processors in the sub-
problem, so we set q′ = q+1. In this case there is no second
subproblem.

For calculating Ct1,t2,k,q,!1,!2 , we have four cases: (1) t′ =
t2; (2) t′ = t2 − 1; (3) t1 < t′ < t2 − 1; and (4) t′ = t1. In
the first case, Ct1,t2,k,q,!1,!2 can be computed directly from
Ct1,t2,k−1,q+1,!1,!2−1. In the second case, we need to guess
the number "′ of processors occupied at time t′ = t2 − 1.
In this way, the solution can be computed using values
Ct1,t2−1,k−i−1,1,!1,!′ and Ct2,t2,i,q,!2,!2 for 0 ≤ "′ ≤ p. In
the third case, we need to guess the numbers of processors
occupied at times t′ and t′ + 1, call them "′ and "′′ respec-
tively. Thus the solution can be calculated using the values
Ct1,t′,k−i−1,1,!1,!′ and Ct′+1,t2,i,q,!′′,!2 for 0 ≤ "′, "′′ ≤ p.
Finally, in the fourth case, similar to the second case, we
can find the solution using the values Ct1,t1,k−i−1,1,!1,!1 and
Ct1+1,t2,i,q,!′,!2 for 0 ≤ "′ ≤ p.

As in Baptiste’s dynamic program [2], we can argue that
the number of choices for t1 and t2 is polynomial in n.
Specifically, Baptiste proved that there is an optimal sched-
ule in which the starting time of any job i is within distance
n of some release date or deadline. Hence, t1, t2, and t′

can have at most n2 values. Therefore, the size of array C is
n2×n2×n×p×p×p = n5p3. We use O(p2n2) operations to
calculate each entry of the array C. Thus, the total number
of operations needed for solving the problem is O(n7p5).

As mentioned in the introduction, because our algorithm
is exact, it essentially solves both the power-minimization
and gap-scheduling problems. However, there is a subtle dif-
ference, which we now address. In the multiprocessor power-
minimization problem, a processor is allowed to stay in the
active state even during a gap (when no job is scheduled).
Thus a gap of length " incurs a cost of min{",α}. We show
that the polynomial-time dynamic program described above
can be adapted to solve this problem as well.

48

Lemma 2. Any feasible instance of multiprocessor power
minimization has an optimal solution in which, if a processor
Pq is in the active state at time t, then all lower-numbered
processors P1, P2, . . . , Pq−1 are also in the active state at
time t.

Proof. The proof is almost identical to the proof of
Lemma 1. Instead of counting the gaps, we can simply count
the active time units of the processors which the processor
is in sleep state in the previous time unit. Suppose that in
optimal solution, we have n1 active processors in time unit t
and n2 active processors in time unit t + 1 (for an arbitrary
t). We know that at least n2 −n1 gaps will be created here.
If we move active time units to the first processors, the num-
ber of produced gaps will not be more than this. Therefore,
by moving all active time units to the first processors, the
total number of gaps will not increase.

Now using Lemma 2 and because permuting jobs or
scheduling a job in another active state of a processor does
not change the number of gaps, we conclude that there is
an optimal solution in which, for any time unit t, if there
are a active processors and b ≤ a processors are executing a
job during time unit t, then exactly the first b processors are
executing a job and the first a processors are in the active
state during time unit t. Now the following theorem can be
concluded with the new active state.

Theorem 2. The multiprocessor power minimization
problem can be solved in polynomial time even if a processor
can be in the active state without executing a job.

Proof. The proof is similar to the proof of Theorem 1.
We define Ct1,t2,k,l,p1,p2 as before, except that p1 and p2 are
no longer the number of occupied processors in time units
t1 and t2; instead, p1 and p2 are the number of processors
that are in the active state during time units t1 and t2. The
rest of the proof is the same.

3.
(
1 + 2

3
α

)
-APPROXIMATION FOR

MULTI-INTERVAL POWER
MINIMIZATION

In the multi-interval power minimization problem, we have
n jobs j1, j2, . . . , jn; each job ji has a unit processing time
and a specified set of times Ti at which it can execute. A
feasible schedule is an assignment of each job ji to a unique
integer time ti ∈ Ti. A gap is a finite maximal interval
of time during which no jobs are scheduled. The processor
might be in active state even in gaps. The power consump-
tion of a schedule is the number of time units during which
the processor is in active state, plus α times the number
of transitions to the active state. Our goal is to determine
whether there is a feasible schedule, and if so, to find one
that minimizes the power consumption.

Every schedule is within a 1 + α factor of optimal, be-
cause each job incurs power consumption of either 1 (for
execution) or 1 + α (for waking up and execution). In Sec-
tion 4.2, we show that such a dependence on α is necessary.
In this section, we reduce the dependence on α:

Theorem 3. For any constant ε > 0, multi-interval
power minimization has a polynomial-time

`
1 +

`
2
3 + ε

´
α

´
-

approximation algorithm.

We start with a preliminary result about extending partial
schedules which exploits the connection between scheduling
and bipartite matching:

Lemma 3. Given a feasible schedule S′ for some subset of
n′ ≤ n jobs that uses g gaps, if there exists a feasible schedule
for all n jobs, then we can construct a feasible schedule S
for all n jobs that uses at most g + n − n′ gaps.

Proof. We start with schedule S′ for the n′ and itera-
tively add additional jobs from the n−n′ remaining jobs. We
construct a bipartite graph G = (X ∪Y, E) with bipartition
(X, Y), where X is the set of jobs and Y is the set of time
units. We place an edge e = (ji, t) ∈ E precisely when job ji

is allowed to be scheduled at time t, i.e., t ∈ Ti. Our current
schedule S corresponds to a matching in graph G that leaves
some subset of vertices in X unmatched. The existence of
a feasible schedule for all jobs implies the existence of a
matching in G that matches every vertex in X. Therefore,
the problem of adding another job to the schedule reduces
to finding an augmenting path in G, which can be solved in
time polynomial in the number n of jobs; see, e.g., [10]. Re-
versing an augmenting path adds exactly one new execution
time to the schedule, thus increasing the number of gaps by
at most one. After reversing n− n′ such augmenting paths,
we reach a feasible schedule S for all n jobs using at most
n − n′ + g gaps.

Our next lemma requires some notation. Given a feasible
schedule S that performs a subset of some n′ ≤ n jobs, let
TS denote the set of n′ time units during which the jobs are
scheduled. Also let LS,k,i = {t | t ≡ i (mod k) and t + m ∈
TS for all 0 ≤ m < k}, and let L′

S,k,i = {t | t′ ≤ t <
t′ + k for some t′ ∈ LS,k,i}. Define a span to be a maximal
interval of time in which jobs are scheduled (the opposite
of a gap). Thus the number of spans is one more than the
number of gaps.

Lemma 4. Suppose that S is a feasible schedule of all n
jobs in M spans. For any k > 1, there is an i with 0 ≤ i < k
such that |LS,k,i| ≥ n−M(k−1)

k .

Proof. For each i with 0 ≤ i < k, let Ti = TS \ L′
S,k,i.

Consider an arbitrary span of S, I = [t1, t2]. We prove that
average size of I ∩ Ti for 0 ≤ i < k is at most k − 1. We
consider three cases: (1) |I | < k; (2) k ≤ |I | ≤ 2k − 2; and
(3) |I | > 2k−2. In the first case, |I | < k, the claim is trivial.

In the second case, |I | ≤ 2k − 2, so for |I |− k + 1 values
of i, |I∩Ti| = |I |−k, while for the other values |I∩Ti| = |I |.
Hence the average size of Ti is

h
(|I |− k + 1)(|I |− k) + (2k−

|I |− 1) |I |
i
/k = k2−k

k = k − 1.

In the third case, |I | > 2k − 2, so at least one member of
L′

S,k,i appears in I . Thus, for any i with 0 ≤ i < k, |I ∩ Ti|
is strictly less than |I |. The time units of I that are in Ti

form two time intervals [t1, t1 + ai − 1] and [t2 − bi + 1, t2]
where ai and bi are nonnegative integers and |Ti ∩ I | =
ai + bi. By definition, we have ai+1 ≡ ai + 1 (mod k) and

bi+1 ≡ bi − 1 (mod k). Therefore,
Pk−1

i=0 ai = k(k−1)
2 andPk−1

i=0 bi = k(k−1)
2 . We conclude that the average size of

|I ∩ Ti| = ai + bi is k − 1.
Because we have M spans, the average size of Ti is at

most M(k − 1) and there exists an 0 ≤ i < k such that
|Ti| ≤ M(k−1). Thus we have L′

S,k,i = n−Ti ≥ n−M(k−1)

and LS,k,i ≥ n−M(k−1)
k .

49

Next we show a connection to k-set packing. In this prob-
lem, we are given a collection C of subsets of an underlying
base set S, with the property that each set in C has cardinal-
ity at least k, where k ≥ 3. A set packing is a subcollection
C′ ⊆ C of disjoint sets: X∩Y = ∅ for X, Y ∈ C′. The goal is
to find a set packing of maximum cardinality. Hurkens and
Shrijver [6] developed a (k

2 +ε)-approximation algorithm for
the k-set packing problem, for any ε > 0.

Lemma 5. Suppose that there exists a feasible schedule S
of all n jobs in M spans. For any constant k > 1 and any
ε > 0, there is a polynomial-time algorithm that schedules`
n−M(k− 1)

´
·
“

2
k+1 − ε

”
jobs in n−M(k−1)

k

“
2

k+1 − ε
”

+1
spans.

Proof. For any i with 0 ≤ i < k, we construct an in-
stance of (k+1)-set packing problem as follows. The under-
lying base set S is {j1, j2, . . . , jn}∪{t | t ≡ i (mod k)}. The
collection C is defined as follows: if ja0 , ja2 , . . . , jak−1 is a se-
quence of jobs, and if there exists a time t ∈ S such that, for
any l with 0 ≤ l < k, jal can be scheduled at time t+ l, then
we insert set {ja0 , ja1 , . . . , jak−1 , t} into the collection C. By
Lemma 4, for some i, this instance of the (k+1)-set packing

problem has a set packing of size at least n−M(k−1)
k . The

polynomial-time approximation algorithm [6] gives us a set

packing of size at least A = n−M(k−1)
k

“
2

k+1 − ε
”
. There-

fore, we can schedule k A jobs in these A intervals, implying
at most A gaps and thus at most A + 1 spans.

Combining Lemmas 3 and 5, we obtain the following re-
sult:

Corollary 1. Suppose that there exists a feasible sched-
ule S of all n jobs in M spans. For any constant k > 1
and any ε > 0, there is a polynomial-time algorithm that

schedules all jobs in n−
“

n−M(k−1)
k

”
·
“

2
k+1 − ε

”
·(k−1)+1

spans.

We are now ready to conclude a polynomial-time`
1 +

`
2
3 + ε

´
α

´
-approximation algorithm:

Proof of Theorem 3. Suppose that the optimal solu-
tion has M spans. For simplicity, we assume that the last
job also incurs a cost of α to return the system to the sleep
state; this assumption can be avoided by a suitable tweaking
of ε.

By Corollary 1, if we let k = 2, we can schedule all jobs in`
2
3 + ε

´
n +

`
1
3 − ε

´
M spans. Thus the power consumption

is at most n+
``

2
3 + ε

´
n +

`
1
3 − ε

´
M

´
α if we keep processor

in the active state precisely when it is doing a job. Now we
consider two cases to compute the optimal cost. First, if
α ≤ 1, then it is cost effective to keep processor in the sleep
state between spans. Thus the optimal solution has a power

consumption of n+M α. Because both fractions
n+(2

3+ε)n α

n

and
(1

3−ε)Mα

Mα are at most 1 +
`

2
3 + ε

´
α, the upper bound

on the approximation factor
n+((2

3+ε)n+(1
3−ε)M)α

n+M α is also

at most 1 +
`

2
3 + ε

´
α. On the other hand, if α > 1, then

the optimal solution has a power consumption of at least

n + M . We know that n
n+M ≤ 1 and

((2
3+ε)n+(1

3−ε)M)α

n+M ≤`
2
3 + ε

´
α. Thus the approximation factor is at most 1 +`

2
3 + ε

´
α.

4. HARDNESS OF APPROXIMATION
FOR MULTI-INTERVAL
POWER MINIMIZATION

In this section we prove inapproximability results for
multi-interval power minimization (as defined in Section 3).
Our results are based on reductions from versions of set
cover, and assume only that P ,= NP.

4.1 Ω(lg n) Hardness
First we prove that, if the transition cost α is part of the

input, then the problem is set-cover hard:

Theorem 4. Multi-interval power minimization has no
polynomial-time o(lg n)-approximation algorithm unless P =
NP.

Proof. We give an approximation-preserving reduction
from set cover, which is not o(lg n)-approximable unless
P = NP [4]. Let (E, C) be an instance of set cover,
where E = {e1, e2, . . . , en} is the universe of elements and
C = {c1, c2, . . . , cs} is a collection of subsets of E. We build
an instance of multi-interval power minimization as follows.
For each set ci ∈ C, construct an interval Ii of length |ci|.
Construct these intervals so that the distance between any
two of them is larger than n3. For each element ei ∈ E,
define a job ji that is allowed to be executed during any
interval Ik for which ei ∈ ck. Also construct one interval
Is+1 of size 1 and a job js+1 that is allowed to be executed
only during Is+1. Define α = n.

A set cover S of size k is easy to convert into a solution to
multi-interval power minimization with cost (1 + k)n. For
each job, assign it to the interval Ii corresponding to a set
ci ∈ S. (By definition of set cover, such a set always exists.)
Within each interval Ii, execute the assigned jobs consec-
utively. (Because the length of interval Ii is |ci|, there is
enough time to execute the at most |ci| assigned jobs.) The
number of spans is thus k plus one for the extra interval I ′,
so the number of gaps is k, for a power consumption of
n + k α = n + k n.

Conversely, a solution to multi-interval power minimiza-
tion with cost (1+k)n can also be converted into a set cover
of size at most k. If k ≥ n, such a set cover is trivial: pick
any set for each element in E. Otherwise, we construct a
set cover S consisting of each set ci whose corresponding
interval Ii executes at least one job. The processor can-
not stay awake between two intervals, because the > n3

distance would incur a power consumption of more than
n3 > (1+ k) n (assuming n ≥ 2). Thus the number of spans
is at least the number of intervals that execute at least one
job, counting I ′, which is |S| + 1. Hence the number of
gaps is at least |S|, so the power consumption is at least
n + |S|α = n + |S|n. But we supposed that the power con-
sumption is (1 + k) n, so (1 + k) n ≥ n + |S|n, i.e., |S| ≤ k.

Because these transformations scale uniformly by a factor
of n (other than the negligible ±1), a o(lg n)-approximation
for multi-interval power minimization would imply a o(lg n)-
approximation for set cover, and thus P = NP.

4.2 Ω(lg α) Hardness
Next we prove that the approximation factor must depend

on α at least logarithmically:

Theorem 5. Multi-interval power minimization with

50

transition cost α has no polynomial-time o(lg α)-approx-
imation algorithm unless P = NP.

Proof. The reduction is similar to that of Theorem 4. In
this case, however, the source problem is a restriction of set
cover, B-set cover, where every set ci has size at most B.
This problem is not ε lg B-approximable for some ε > 0
assuming P ,= NP [9]. The only difference in our reduction
is that we let α = B instead of n. As before, we can show
that there is a set cover of size k if and only if the constructed
instance of multi-interval power minimization has a schedule
with power consumption n + k α = n + k B.

Suppose that the optimal schedule has a power consump-
tion of n + k B. Because each set has size at most B, the
optimal set cover has size at least n/B, and hence k ≥ n/B.
Thus k B ≥ n.

Now, if we had an (1
2ε lg B)-approximation for multi-

interval power minimization, we would obtain a schedule
with power consumption at most (n + k B) 1

2ε lg B. Be-
cause k B ≥ n, this approximate power consumption is at
most n + k B ε lg B. Using the equivalence, we obtain a set
cover of size k ε lg B. In other words, we obtain a (ε lg B)-
approximation to set cover, which for sufficiently small ε > 0
implies that P = NP.

5. HARDNESS OF APPROXIMATION FOR
GAP SCHEDULING

In the multi-interval gap scheduling problem, we have n
jobs j1, j2, . . . , jn; each job ji has a unit processing time
and a specified set of times Ti at which it can execute. A
feasible schedule is an assignment of each job ji to a unique
integer time ti ∈ Ti. A gap is a finite maximal interval of
time during which no jobs are scheduled. Our goal is to find
a feasible schedule that minimizes the number of gaps.

For simplicity, we define one of the infinite intervals to
be a gap as well. This change does not change the optimal
solution, and has a negligible impact on approximation.

5.1 Ω(lg n) Hardness for 2-Interval Gap
Scheduling

To get started, we prove that (general) gap scheduling is
set-cover hard:

Theorem 6. Multi-interval gap scheduling has no
polynomial-time o(lg n)-approximation algorithm unless
P = NP.

Proof. This result follows by a simple adaptation of the
proof of Theorem 4. We can use the same reduction from
set cover. Before we showed that there is a set cover of
size k if and only if the constructed instance has a power
consumption of n + k α. But such a power consumption
implies having exactly k gaps. Thus there is a set cover
of size k if and only if there is a feasible schedule with k
gaps. Therefore, a o(lg n)-approximation for multi-interval
gap scheduling would imply a o(lg n)-approximation for set
cover, and thus P = NP.

Corollary 2. It is NP-hard to approximate multi-
interval gap scheduling within a o(lg N) factor, where N is
the size of input.

Proof. According to [4], it is NP-hard to approximate
set cover within a o(lg n) factor even when the input size

is bounded from above by a polynomial of the number of
elements. Thus, approximating set cover within a o(lg N)
factor is also NP-hard where N is the size of input. Using
the reduction in Theorem 6, we conclude the hardness result
for multi-interval gap scheduling.

Theorem 7. It is NP-hard to approximate 2-interval gap
scheduling within a o(lg N) factor, where N is the size of
input.

Proof. We give an approximation-preserving reduction
from multi-interval gap scheduling to 2-interval gap schedul-
ing. For an arbitrary job j in a given instance of multi-
interval gap scheduling, if the number of intervals assigned
to j is greater than two, we can replace j by some new jobs
each executable in exactly two intervals.

Suppose that a given job j can be executed in k intervals.
We assign a new interval to this job, called an extra interval,
whose length is 2k − 1. We create k dummy jobs such that
ith dummy job could only be executed in the 2i−1-st unit of
extra interval. Additionally, for each interval Ii (1 ≤ i ≤ k)
assigned to j, we add job ri which could be executed either
in Ii or in extra interval. We put the extra intervals related
to all jobs consecutively such that no gap may be formed
between them. In this way, we produce an instance of 2-
interval gap scheduling because neither dummy jobs nor ris
have more than two intervals to be executed in.

There is an optimal solution in the presented construction
such that extra interval is completely occupied; no gap is
within extra interval. If there exists a free unit in extra
interval, there must be at least one job which could run
in that unit. By moving this job to that position, it fills
the space between two dummy jobs; therefore, the overall
number of gaps will not increase. Iterating the process can
fill all extra intervals completely.

If all extra intervals are completely filled, it means that
exactly one of the ris assigned to each j is out of extra in-
terval. This ri must be executed in the corresponding Ii.
Thus, an algorithm selects the appropriate Ii for each job
and performs the job somewhere in it; a selected job related
to j can be executed in all places which j could. Therefore,
the jobs which are out of extra interval would completely re-
semble the instance of multi-interval gap scheduling. Thus,
the solution for this instance of 2-interval gap scheduling
has exactly one more gap than the related instance of gap
scheduling because extra interval itself creates a gap. We
remark that all extra intervals come consecutively and there
is no free space between them.

To avoid the excessive gap which comes from extra in-
terval, we try to put extra interval exactly after the last
occupied unit. Although we do not know the exact posi-
tions where a job will occupy in the optimal solution, we
can guess that by trying all possible positions. In this way,
the excessive gap will be destroyed and the solution for 2-
interval gap scheduling will be exactly the same as the one
for multi-interval gap scheduling. In our construction, the
input size of 2-interval gap scheduling problem is bounded
above by a polynomial of the input size of multi-interval gap
scheduling. We conclude that the logarithm of input sizes
of these two instances are of the same order. Therefore,
2-interval gap scheduling cannot be approximated within a
o(lg N) factor.

51

5.2 Ω(lg n) Hardness for 3-Unit Gap
Scheduling

Theorem 8. It is NP-hard to approximate 3-unit gap
within o(lg N) factor, where N is the size of input.

Proof. We show that 3-unit gap can solve multi-interval
gap scheduling to conclude that 3-unit gap cannot be ap-
proximated within o(lg N) factor. For an arbitrary job j
in a given instance of multi-interval gap scheduling, if the
number of time units assigned to j is greater than three,
we replace j by some new jobs such that each job can be
executed in at most three time units.

Suppose that a given job j can be executed in k units
say t1, . . . , tk. We assign a new interval to this job called
extra-interval whose length is 2k − 1. We create k dummy
jobs such that ith dummy job can only be executed in the
2i − 1-st unit of extra-interval. For each unit ti where 1 ≤
i ≤ k − 1, we add a job ji which could be run in the 2ith
or ((2i + 2) mod 2k)th unit of extra-interval or in ti. We
also add a job jk which could be run in tk or in the second
or fourth place of extra-interval. We put all extra-intervals
consecutively, thus, no gap will be formed between them.
According to the construction, each ji can be run in exactly
3 units. Therefore, if we replace j by jis for all jobs, we
reach an instance of 3-unit gap.

According to the above construction, every combination of
k−1 jobs ja1 , ja2 , . . . , jak−1 could be scheduled to fill extra-
interval completely. If {a1, a2, . . . , ak−1} = {1, 2, . . . , k− 1},
then we perform job ji in the 2ith unit of extra-interval.
Otherwise, suppose that we want to run jk instead of an-
other job say jq . If q = 1 or q = 2, we can schedule jk exactly
in its place. Otherwise, for each job ji where 1 ≤ i ≤ q − 1,
perform it in (2i + 2)nd unit of extra-interval. In this way,
2qth place of extra-interval will be filled and the second unit
in extra-interval will be free. Now, we schedule jk in the sec-
ond unit. Therefore, extra-interval can be filled with every
set of k − 1 jobs.

There is an optimal solution in the presented construc-
tion such that extra-interval is completely occupied; no gap
is within extra-interval. If there exists a free unit in extra-
interval, using the previous statement, there must be at least
one job which could run in that unit. By moving this job
to that position, it fills the space between two dummy jobs;
therefore, the overall number of gaps will not increase. Iter-
ating the process can fill all extra-intervals completely.

If all extra-intervals are completely filled, it means that
exactly one of the jis assigned to each j is out of extra-
interval. This ji must be executed in the correspondent ti.
Thus, an algorithm can select the appropriate ji for each job
j; Therefore, a selected job related to j can be executed in all
places which j could. In this way the jobs which are out of
extra-interval would completely resemble the multi-interval
gap scheduling instance. The solution for this instance of 3-
unit gap has exactly one more gap than the related instance
of multi-interval gap scheduling because extra-interval itself
creates a gap. We remark that all extra intervals come con-
secutively and there is no free space between them.

To avoid the excessive gap which comes from extra-
interval, we try to put extra-interval exactly after the last
occupied unit. Although we do not know the exact positions
where a job will occupy in the optimal solution, we can guess
that by trying all possible positions. In this way, the exces-
sive gap will be destroyed and the solution for 3-unit gap

will be exactly the same as the one for multi-interval gap
scheduling. If we create additional job ji only for necessary
units (the units which an optimal solution may use them),
according to [2, Prop. 2.1] the input size of 3-unit gap prob-
lem is bounded from above by a polynomial of the input size
of multi-interval gap scheduling problem. We conclude that
the logarithm of input sizes of these two instances are of the
same order. Therefore, the 3-unit gap problem also could
not be approximated within the o(lg N) factor.

5.3 Ω(1) Hardness for 2-Unit and 1-Unit Gap
Scheduling

A gap’ is a sequence of consecutive time units in which no
job interval exists, and consequently, no job can be sched-
uled. We can suppose that, in the 2-unit and 1-unit gap
scheduling problems, each gap’ has one time unit. Other-
wise, we could reduce the gap’ to one time unit, and be-
cause no job can be scheduled in a gap’, reducing it does
not change the problem.

Theorem 9. A polynomial-time c-approximation algo-
rithm for disjoint-unit gap scheduling yields a polynomial-
time (c + ε)-approximation algorithm for two-unit gap
scheduling; and a polynomial-time c-approximation algo-
rithm for two-unit gap scheduling yields a polynomial-time
(c+ε)-approximation algorithm for disjoint-unit gap schedul-
ing.

Proof. Consider an instance of two-unit gap scheduling
with jobs J1, J2, . . . , Jn. For 1 ≤ i ≤ n, let Ti be the set of
units during which job Ji can be scheduled, with |Ti| ≤ 2.
We construct a bipartite graph G(X, Y) which X is the set
of jobs and Y =

Sn
i=1 Ti. There is an edge between job Ji

and time unit t if and only if t ∈ Ti. We can schedule the
jobs for different connected components of graph G inde-
pendently. Consider a connected component H(X ′, Y ′) of
G which contains jobs X ′ = {Ja1 , Ja2 , . . . , Jak} and time
units Y ′ = {t1, t2, . . . , tk′}. Let E′ be the number of edges
of H . We know that |Tai | ≤ 2, thus, |E′| ≤ 2k. On the other
hand, connectivity of H implies that k + k′ − 1 ≤ |E′|, con-
sequently, k′ ≤ k + 1. Because there exists a valid solution,
all jobs of set X ′ must be scheduled only in time units of Y ′

which implies that k ≤ k′. Therefore, k′ is equal to k or k+1.
If k′ = k, it makes no difference how to schedule the jobs of
set X ′, because all time units will be used anyway. In the
other case, where k′ = k + 1, any scheduling leaves system
idle in exactly one of the time units Y ′ = {t1, t2, . . . , tk′}.
We prove that, for any i with 1 ≤ i ≤ k+1, all k jobs can be
scheduled in time units Y ′ − {ti}. We know that all jobs of
set X ′ can be scheduled. Without loss of generality, suppose
that these jobs can be scheduled in time units t1, t2, . . . , tk

which means that there exists a matching M between ver-
tices X ′ and Y ′ − tk+1. We want to prove that the jobs can
be scheduled in time units Y ′ − {ti} (1 ≤ i ≤ k). There is a
path P between ti and tk+1 because ti and tk+1 are in the
same connected component. According to the fact that ver-
tices of part X of this path have at most two neighbors, they
occur in this path by their both edges which one of them is
in the matching M and the other one is not. Therefore,
path P is an alternating path of matching M . Switching
the edges of this alternating path gives us a matching that
saturates vertex tk+1 and does not saturate vertex ti. Thus,
we can schedule all jobs of set X ′ in time units Y ′ − {ti}.

52

We construct our instance of disjoint-unit gap scheduling
problem as follows. For connected components H(X ′, Y ′)
where |Y ′| = |X ′| + 1, we put a job which can be done in
time units of the set Y ′. For any gap’ I = {t}, we put a job
which can be scheduled only in time unit t.

For any scheduling of the jobs in the new instance of the
disjoint-unit gap scheduling problem, there is a scheduling
of jobs for the two-unit gap scheduling problem such that
the state of the system is reversed for all time units. Thus,
the number of gaps in these two instances are almost equal
(differ by at most 1). This difference can create a 1/OPT ad-
ditive difference in approximation factors of these two prob-
lems, where OPT is the number of gaps in the optimum
solution of the two-unit gap scheduling problem. Because
the problem can be solved in polynomial time for small val-
ues of OPT, the difference can be reduced to an arbitrarily
small value ε.

Now consider an instance of disjoint-unit gap scheduling
with jobs J1, J2, . . . , Jn. For 1 ≤ i ≤ n, let Ti be the set of
units during which job Ji can be scheduled, with |Ti ∩Tj | =
0. For every job ji with |Ti| = k > 1, we put k − 1 jobs.
Suppose T = {t1, t2, . . . , tk}. The mth job can be done in tm

and tm+1, for all 1 ≤ m ≤ k−1. For any gap’ I = {t}, we put
a job that can be scheduled only in time unit t. Similarly
we can can show that the optimal solutions of these two
instances are almost equal (differ by at most one).

Construction of the new instances can be done in poly-
nomial time because of the specific constraints on the two-
unit gap scheduling and the disjoint-unit gap scheduling in-
stances. Thus approximation factors of problem two-unit
gap scheduling and disjoint-unit gap scheduling differ by at
most ε.

Using B-set cover, we show that disjoint-unit gap schedul-
ing has no constant-factor approximation:

Theorem 10. It is NP-hard to approximate disjoint-unit
gap scheduling within any constant factor c.

Proof. We prove that, if disjoint-unit gap scheduling
can be approximated within a factor of c, then B-set cover
can also be approximated within the same factor, for any
constant B. Let (E, C) be an instance of B-set cover,
where E = {e1, e2, . . . , em} is the universe of elements, and
C = {c1, c2, . . . , cs} is a set of subsets of E each of which
has at most B elements. We convert the B-set-cover in-
stance into an instance of disjoint-unit gap scheduling. For
each subset A ⊆ ci where 1 ≤ i ≤ s, let l be an interval
whose length is equal to |A|, and suppose no two intervals
like A overlap. Consider a job ji for each element ei ∈ E.
Let ji be executed in jth unit of interval l if ei is the jth
smallest element of A. Because B is constant, the number
of subsets of each ci ∈ C is constant, so the size of above in-
stance of disjoint-unit gap scheduling is bounded from above
by a polynomial with respect to the size of B-set-cover in-
stance. Next we show that, with the provided construction,
disjoint-unit gap scheduling is as hard as B-set cover.

The solution of B-set-cover instance could be changed into
a solution with the same size for disjoint-unit gap scheduling
as follows; in a solution of B-set cover, we choose some sets
of C such that each element of the universe can be assigned
to a chosen set. Suppose set ci is chosen and A ⊆ ci is the set
of assigned elements to ci. In disjoint-unit gap scheduling
instance, we schedule the correspondent jobs to elements of

A exactly in the interval which we considered for A. Thus,
all jobs are scheduled and the number of gaps is equal to the
solution of the B-set-cover instance. On the other hand, a
solution for disjoint-unit gap scheduling could also be con-
verted to a valid one for the B-set-cover instance; select a
set if the correspondent interval of at least one of its subsets
contains some jobs. Because all intervals are disjoint, the
number of gaps required for performing all jobs cannot be
less than the number of intervals with at least one execution.
Hence, a valid solution for disjoint-unit gap scheduling can
create a solution of the same or smaller size for the set-cover
problem; consequently, the optimal solution for disjoint-unit
gap scheduling can be converted to the optimal solution for
the set-cover instance.

Combining Theorems 9 and 10, we obtain the following
result.

Corollary 3. It is NP-hard to approximate two-unit
gap scheduling within any constant factor c.

6. O(
√

N)-APPROXIMATION FOR
MAXIMIZING THROUGHPUT FOR
GIVEN GAP BOUND

The minimum-restart problem is a variation of multi-
interval gap scheduling. As usual, we have n jobs
j1, j2, . . . , jn, and each job ji has a unit processing time and
a specified set of times Ti at which it can execute. We are
also given a bound k on the number of gaps. Our goal is
to find a feasible schedule for the maximum number of jobs
subject to having at most k gaps.

Theorem 11. There is an polynomial-time O(
√

n)-
approximation algorithm for the minimum-restart problem.

Proof. The approximation algorithm is greedy with k
steps. In each step, we select the biggest time interval [a, b]
such that b − a + 1 unscheduled jobs can be scheduled in
it without any collision. We can find such interval using a
maximum matching algorithm in each iteration. Then we
schedule those b − a + 1 jobs in it.

A working interval is a pair (I, X) where I is a time in-
terval with size l and X is a set of l jobs which can be
scheduled in I without any collision. Suppose our algo-
rithm chooses working intervals A = {A1 = (I1, X1), A2 =
(I2, X2), . . . , Ak = (Ik, X2)} respectively (A1 at first itera-
tion, then A2 and so on). Let Y = {B1, B2, . . . , Bk} be the
set of working intervals of the optimum solution. We say
two working intervals overlap if and only if either their time
intervals overlap or intersection of their set of jobs is not
empty.

Now we prove that the number of jobs scheduled in opti-
mum solution is no more than 2

√
n times of the number of

scheduled jobs in our solution. For any i, if Xi >
√

n then
we have scheduled at least

√
n jobs and our algorithm would

be an O(
√

n)-approximation. In the other case, let Yi be the
set of working intervals in optimum solution which overlap
with Ai and do not overlap with any Ai′ for 1 ≤ i′ < i.
We know that the number of scheduled jobs in any working
interval of Yi is at most the number of scheduled jobs in Ai

otherwise we could choose that working interval instead of
Ai in our greedy algorithm. According to the fact that work-
ing intervals of Yi are disjoint and all of them overlap with

53

Ai, |Yi| is at most |Ii|+ |Xi| = 2|Xi| because each time unit
or job of Ai can be used in at most one working interval of
Yi. Consequently, the number of scheduled jobs using work-
ing intervals of Yi is at most |Yi||Ai| ≤ 2|Xi||Ai| ≤ 2

√
n|Ai|

which means that, for any i with 1 ≤ i ≤ k, the number
of scheduled jobs using working intervals of Yi is at most
O(

√
n) times of the number of scheduled jobs in Ai.

Let Y ′ be the set of working intervals in Y that do not
overlap with any Ai with 1 ≤ i ≤ k, and let A′ be the set
of working intervals such as Ai such that Yi is empty. As
we know, the number of working intervals in Y is equal to
the number of working intervals in A, thus, |Y ′| could not
be more than |A′|. According to the greedy algorithm, the
number of scheduled jobs in any working interval of A′ is not
less than the number of scheduled jobs in any working inter-
val of Y ′ because the working intervals of Y ′ do not overlap
with any working interval of A′. Therefore, the number of
scheduled jobs using working intervals of A′ is not less than
the number of scheduled jobs of Y ′. We conclude that the
number of all scheduled jobs in our solution is not less than
O(

√
n) times of the number of scheduled jobs in optimum

solution.

7. REFERENCES
[1] J. Augustine, S. Irani, and C. Swamy. Optimal

power-down strategies. In Proceedings of the 45th
Symposium on Foundations of Computer Science,
pages 530–539, Rome, Italy, October 2004.

[2] P. Baptiste. Scheduling unit tasks to minimize the
number of idle periods: a polynomial time algorithm
for offline dynamic power management. In Proceedings

of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithm, pages 364–367, Miami, Florida,
2006.

[3] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of
design techniques for system-level dynamic power
management. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 8(3):299–316, 2000.

[4] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45(4):634–652, 1998.

[5] U. Feige, M. Hajiaghayi, S. Khanna, and S. Naor. On
approximation of minimum-gap scheduling.
Unpublished manuscript, 2006.

[6] C. A. J. Hurkens and A. Schrijver. On the size of
systems of sets every t of which have an SDR, with an
application to the worst-case ratio of heuristics for
packing problems. SIAM Journal on Discrete
Mathematics, 2(1):68–72, 1989.

[7] S. Irani and K. R. Pruhs. Algorithmic problems in
power management. SIGACT News, 36(2):63–76,
2005.

[8] S. Irani, S. Shukla, and R. Gupta. Algorithms for
power savings. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
37–46, Baltimore, Maryland, 2003.

[9] L. Trevisan. Non-approximability results for
optimization problems on bounded degree instances.
In Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, pages 453–461, 2001.

[10] D. B. West. Introduction to Graph Theory. Prentice
Hall Inc., Upper Saddle River, NJ, 1996.

54

	1 Introduction
	2 Multiprocessor Gap Scheduling: Homogeneous Arithmetic Intervals
	3 (1+23)-Approximation for Multi-Interval Power Minimization
	4 Hardness of Approximation for Multi-Interval Power Minimization
	4.1 (lgn) Hardness
	4.2 (lg) Hardness

	5 Hardness of Approximation for Gap Scheduling
	5.1 (lgn) Hardness for 2-Interval Gap Scheduling
	5.2 (lgn) Hardness for 3-Unit Gap Scheduling
	5.3 (1) Hardness for 2-Unit and 1-Unit Gap Scheduling

	6 O(n)-Approximation for Maximizing Throughput for Given Gap Bound
	7 References

