
Schemaagnostic vs Schemabased Configurations
for Blocking Methods on Homogeneous Data

George Papadakis$, George Alexiou#, George Papastefanatos#, Georgia Koutrika^

^ HP Labs, USA koutrika@hp.com
#IMIS, Research Center “Athena”, Greece {galexiou,gpapas}@imis.athenainnovation.gr

$Dep. of Informatics & Telecommunications, University of Athens, Greece gpapadis@di.uoa.gr

ABSTRACT

Entity Resolution constitutes a core task for data integration that,
due to its quadratic complexity, typically scales to large datasets
through blocking methods. These can be configured in two ways.
The schema-based configuration relies on schema information in
order to select signatures of high distinctiveness and low noise,
while the schema-agnostic one treats every token from all attribute
values as a signature. The latter approach has significant poten-
tial, as it requires no fine-tuning by human experts and it applies
to heterogeneous data. Yet, there is no systematic study on its rel-
ative performance with respect to the schema-based configuration.
This work covers this gap by comparing analytically the two con-
figurations in terms of effectiveness, time efficiency and scalability.
We apply them to 9 established blocking methods and to 11 bench-
marks of structured data. We provide valuable insights into the in-
ternal functionality of the blocking methods with the help of a novel
taxonomy. Our studies reveal that the schema-agnostic configu-
ration offers unsupervised and robust definition of blocking keys
under versatile settings, trading a higher computational cost for a
consistently higher recall than the schema-based one. It also en-
ables the use of state-of-the-art blocking methods without schema
knowledge.

1. INTRODUCTION
Entity Resolution (ER) is an essential task for data cleaning and

integration, which aims to identify all entity profiles that corre-
spond to the same real-world entity. In principle, it compares every
profile with all others, yielding a quadratic complexity that does not
scale well to voluminous data collections. A bulk of relevant re-
search has focused on improving its efficiency [6, 7, 11]. The most
popular approach in this direction is blocking [3, 7, 26]. Unlike the
exhaustive ER techniques, it offers an approximate solution, sac-
rificing some recall in order to enhance precision. In essence, it
clusters similar entity profiles into blocks so that it suffices to per-
form pair-wise comparisons inside each block. The clustering is
based on signatures for higher efficiency: from each entity profile,
blocking methods extract one or more blocking keys that summarize

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 4
Copyright 2015 VLDB Endowment 21508097/15/12.

b2 (BRE_104)

p1 p3

b1 (GEO_CAR)

p2 p4

(b)

(a)

p1 Given name: WILLIAM

Surname: GEORGE

Suburb: BRENTWOOD

Zip Code: 104

p3 Given name: BILL

Surname: GEORGE

Suburb: BRENTWOOD

Zip Code: 104

p2 Given name: GEORGE

Surname: CARTIER

Suburb: 22

Zip Code: 14135

p4 Given name: GEORG

Surname: CARTER

Suburb: 22ND

Zip Code: 14135

(c)

b1 (BRENTWOOD)

p1 p3

b3 (14135)

p2 p4

b2 (104)

p1 p3

b4 (GEORGE)

p1 p2 p3

Figure 1: (a) A set of homogeneous entity profiles, (b) the blocks

created by a schema-based configuration, (c) the blocks created

by a schema-agnostic configuration.

a subset of its attribute values. Subsequently, profiles with identical
or similar blocking keys are placed into the same block.

There are two main approaches for defining blocking keys. The
schema-based configuration exploits a-priori schema information
to come up with blocking keys that summarize the content of the
attributes with the most distinctive values and/or the lowest levels
of noise [6, 7]. It creates blocks that involve few comparisons,
while placing most of the duplicates in at least one common block.

To illustrate this functionality, consider the entities in Figure 1(a),
which are drawn from census data. Observe that p1 and p2 are
matching with p3 and p4, respectively. A possible schema-based
configuration is to represent every entity by a key that concate-
nates the first 3 characters from the values of “Given name” and
“Surname”. In this way, p1 is represented by WIL GEO, p2 by
GEO CAR, p3 by BIL GEO and p4 by GEO CAR. The only key that
appears in at least 2 profiles is GEO CAR, which forms the block
bGEO CAR={p2, p4}. With a single comparison, bGEO CAR identifies
one of the 2 pairs of duplicates (recall=0.5). To detect the sec-
ond pair and raise recall to 1.0, we consider an additional key for
each entity that appends the entire value of “Zip Code” to the first
3 characters from the value of “Suburb”. Indeed, we get the block
bBRE 104={p1, p3}, which contains the missing duplicates. Figure
1(b) presents the blocks resulting from the 2 schema-based keys,
which cover both pairs of duplicates with just 2 comparisons.

The second approach for defining blocking keys does not take
any schema information into account, using as blocking keys all to-
kens from all attribute values [26]. Thus, we call it schema-agnostic

configuration. As an example, consider the blocks in Figure 1(c);
similar to the blocks in Figure 1(b), they place both pairs of dupli-
cate entities, p2≡p4 and p1≡p3, in at least one common block, but
require 6 comparisons, in total.

The schema-based configuration is typically applied to block-
ing methods like Sorted Neighborhood and Suffix Arrays that are

312

crafted for homogeneous data collections [6, 7, 10]. These collec-
tions pertain to structured data, which abide by a specific schema
with known semantics and qualitative characteristics for each at-
tribute. In contrast, the schema-agnostic configuration is typically
combined with blocking methods like Token Blocking crafted for
heterogeneous data collections [26, 27]. These collections con-
tain semi-structured or unstructured data with noise in their at-
tribute values and their attribute names. In this category fall web
data, which comprise user-generated data posted on-line without
any curation. The result is a large diversity of schemata that lack
semantics; Google Base (http://www.google.com/base) alone has
100,000 distinct schemata corresponding 10,000 entity types [21].

Comparing the two configurations, we make several observa-
tions. First, the schema-based one cannot handle heterogeneous
data collections, due to the lack of reliable qualitative meta-data
about the schema(ta) they contain. This issue could be ameliorated
through schema matching, but the relevant techniques do not scale
well to the unprecedented schema heterogeneity of web data [29].
In contrast, the schema-agnostic configuration could be used for
homogeneous data, but its performance has not been tested yet.

Second, the schema-agnostic configuration is quite straightfor-
ward, hence its outcome is predetermined. On the other hand, the
performance of schema-based configuration is very sensitive to the
definition of the blocking keys, where minor modifications can re-
sult in major differences in the quality of the produced blocks [6,
7]. Our schema-based example in Figure 1(b) already demonstrated
that an additional key definition raises recall from 0.5 to 1.0. Fur-
ther, if the two schema-based keys were extracted from the first 5
characters of each value, only the block bBRENT 104 = {p1, p3}would
be generated, thus missing one out of the two pairs of duplicates; on
the other hand if they used the first 2 characters from every value,
there would be a much larger number of blocks and comparisons.
Overall, the schema-based configuration needs fine-tuning, while
the schema-agnostic one essentially has one possible output.

Third, the fine-tuning of schema-based blocking keys can be per-
formed in two ways: either manually, by exploiting human exper-
tise, or automatically, through labeled data that are fed to a clas-
sification algorithm. The latter approach comprises methods that
learn to extract optimal blocking keys from combinations of at-
tribute names [4, 23]. These supervised methods, though, are of
limited utility, because they require different training sets for every
domain, which are rarely available. This means that the schema-
based blocking keys have to be manually configured in most of the
cases, a requirement that significantly restricts their utility [7].

The above observations naturally lead to the following question:
What would happen if we replaced the schema-based configuration

of the blocking methods for homogeneous data with the schema-

agnostic one typically used for heterogeneous data? This can be
accomplished by modifying their functionality such that they treat
every single token in the attribute values as a separate blocking
key. Could the inherent simplicity of the schema-agnostic config-
uration affect positively the performance of the blocking methods?
In which cases is this impact good enough? Or is it the case that
the schema-based configuration can always give significant gains
that overcompensate for its complexity? Are there combinations of
blocking methods and configurations that work best? How does the
size and characteristics of the dataset to which we apply entity res-
olution weigh in the decision on which setting should be chosen?

In this work, we aim to answer these questions by analytically
examining the relative performance of the schema-agnostic and the
schema-based configurations in combination with 9 state-of-the-art
blocking methods for Entity Resolution in structured data. For each
method, we compare its schema-agnostic configuration with 3 dif-

ferent schema-based ones that have been used in [7]. We consider
various configurations for the other parameters of each method and
investigate how these affect its effectiveness and time efficiency.
We employ 4 real-world homogeneous datasets of varying sizes and
characteristics. We also perform a thorough scalability analysis us-
ing 7 synthetic homogeneous datasets of increasing size, ranging
from 10,000 entities with ∼107 comparisons to 2 million entities
with ∼1012 comparisons. To the best of our knowledge, no prior
study has elaborated on the impact of the schema-agnostic configu-
ration on the performance of blocking methods for structured data.

To facilitate the interpretation of the experimental results, we de-
fine a novel two-dimensional taxonomy for the blocking methods
that helps identify the most important parameters that affect the ef-
fectiveness and the time efficiency for each configuration of block-
ing keys. Our studies demonstrate that the schema-agnostic config-
uration can address the main drawbacks of the schema-based one,
offering unsupervised and robust definition of blocking keys under
versatile settings. Its keys reduce precision and increase the over-
head time to a significant extent, but achieve consistently higher re-
call, which is of paramount importance in the context of blocking-
based Entity Resolution. These results have two important prac-
tical implications. First, they show that we can facilitate the use
of state-of-the-art blocking methods for structured data without the
need to know the data schema; while overhead and resolution times
may increase, the methods remain scalable. Second, these blocking
methods are now applicable to heterogeneous web data.

In more detail, we make the following contributions:
• We perform an extensive experimental study to compare the

schema-agnostic with the schema-based configuration of 9 state-
of-the-art blocking methods for homogeneous data with respect to
effectiveness, in terms of their blocks quality, and time efficiency.
•We analytically examine the scalability of both configurations

in combination with the 9 blocking methods over synthetic datasets
of increasing size that range from 10,000 to 2,000,000 entities.
•We coin a two-dimensional taxonomy of the blocking methods,

highlighting the main parameters that determine their performance
in combination with either of the blocking key configurations.
•We have organized the implementation of all blocking methods

and their configurations as an extensible framework, whose code
has been publicly released [1]. We have also published the datasets
used in our study. In this way, we encourage and facilitate other
practitioners and researchers in the field to extend our work.

The rest of the paper is structured as follows: Section 2 presents
the main notions of blocking-based ER and the measures that eval-
uate its performance. Section 3 introduces the blocking methods
of our study and categorizes them in our taxonomy. Section 4 de-
scribes our experimental setup and Section 5 analyzes the outcomes
of our study. Related work is discussed in Section 6 and a summary
of our findings and directions for future work is given in Section 7.

2. BLOCKINGBASED ER
At the core of ER lies the notion of the entity profile p, alterna-

tively called entity or profile in the following. As such, we consider
a set of name-value pairs that is associated with a unique id and de-
scribes a real-world object. A set of entity profiles is called entity

collection E. Given such a collection, the goal of ER is to partition
E into a set of equivalence clusters, D(E), such that every clus-
ter contains all entity profiles that pertain to the same real-world
object. Two such entities, pi and p j, are said to be matching or
duplicates and are symbolized by pi≡p j. This task is also called
Deduplication [6, 7] in the context of homogeneous data collec-
tions and involves a quadratic time complexity, as every entity has
to be compared with all the possibly matching profiles.

313

To scale ER, blocking restricts the executed comparisons to simi-
lar entities. It groups them into clusters, called blocks, and performs
pair-wise comparisons only between the entities of each block bi ⊆

E. The size of bi, i.e., the number of entities it contains, is denoted
by |bi|. The cardinality of bi is denoted by ||bi|| and represents the
total number of comparisons it contains: ||bi|| = |bi|·(|bi| − 1)/2. A
set of blocks is called block collection (B). Its size (|B|) denotes the
number of blocks it contains, while its cardinality denotes the total
number of comparisons it involves: ||B|| =

∑
bi∈B ||bi||.

Following the best practice in the literature, we consider entity
matching as an orthogonal task to blocking [6, 7, 26, 27]. That is,
we assume that two duplicates are detected in B as long as they co-

occur in at least one of its blocks. Provided that the vast majority of
duplicate entities are co-occurring, the performance of ER depends
on the accuracy of the method used for profile comparison. The set
of co-occurring duplicate entities is denoted by D(B), while |D(B)|
symbolizes its size, i.e., their number.

2.1 Evaluation Measures
The effectiveness of a block collection B is assessed using three

well-known measures [6, 7, 26, 27]:
(M1) Pairs Completeness (PC) estimates the recall of B, i.e.,

the portion of duplicates from the input entity collection(s) that co-
occur in at least one block. More formally, PC = |D(B)|/|D(E)|.
PC is defined in [0, 1], with higher values showing higher recall.

(M2) Pairs Quality (PQ) estimates the precision of B, i.e., the
portion of its comparisons that correspond to duplicate entity pro-
files. More formally, PQ = |D(B)|/||B||. PQ takes values in the
interval [0, 1], with higher ones indicating higher precision.

(M3) Reduction Ratio (RR) estimates the portion of comparisons
that are saved by a blocking method in relation to the naive, brute-
force approach. Formally, it is defined as: RR(B, E) = 1− ||B||/||E||,
where ||E|| denotes the computational cost of the naı̈ve approach,
i.e., ||E|| = |E| · (|E| − 1)/2. RR takes values in the interval [0, 1],
with higher values indicating higher efficiency.

In theory, the goal of blocking is to maximize all three measures.
That is, to maximize the number of detected duplicates (|D(B)|),
while minimizing the cardinality of B (||B||). In practice, though,
there is a clear trade-off between PC and PQ-RR: the more com-
parisons are executed (higher ||B||), the more duplicates are detected
(higher |D(B)|), thus increasing PC; given, though, that ||B|| in-
creases quadratically for a linear increase in |D(B)|, PQ and RR are
reduced [13, 14]. Therefore, blocking methods should aim for a
balance between precision (PQ) and recall (PC) that minimizes the
executed comparisons and ensures that most matching entities co-
occur (i.e., high PC). Achieving high PC (> 0.80) is critical; oth-
erwise, blocking will miss a significant portion of duplicates even
if iterative methods, such as iterative blocking [30], are used.

The time efficiency of blocking is assessed using two measures:
(M4) Overhead Time (OTime) is the total time required by a

blocking method to cluster the given entity profiles into blocks, i.e.,
the time between receiving the original entity collection(s) and re-
turning a set of blocks as output.

(M5) Resolution Time (RTime) adds to OTime the time required
for performing all pair-wise profile comparisons with a specific en-
tity matching technique. As such, we consider the Jaccard similar-
ity of the tokens in all attribute values of the compared entities.

3. BLOCKING FOR STRUCTURED DATA
The main blocking methods for structured data have been sum-

marized in the recent survey by Christen [7]. Figure 2 presents an
overview of them, where every edge A→B indicates that method
B improves on method A either by modifying the definition of the

Standard Blocking [7, 12]

Sorted

Neighborhood [16]

Extended Sorted

Neighborhood [7]

Q-grams

Blocking [15]

Extended Q-grams

Blocking [3, 7]

Suffix

Arrays [2]

Extended Suffix

Arrays [7]

Canopy

Clustering [22]

Extended Canopy

Clustering [7]

Figure 2: The main blocking methods for structured data.

blocking keys or by changing the way they are used for the creation
of blocks. We now describe the functionality of every method with
respect to its schema-based and its schema-agnostic configuration.

Standard Blocking (StBl) [7, 12] is the cornerstone technique,
as all other methods rely on it and aim to improve its simple func-
tionality. It represents every entity by one or more keys and cre-
ates blocks on their equality; that is, every block corresponds to a
specific key and contains all entities that have it in their represen-
tation. Its schema-based configuration is illustrated in the example
of Figure 1(b), while Figure 1(c) demonstrates its schema-agnostic

functionality, which is equivalent to Token Blocking [26].
Sorted Neighborhood (SoNe) [16] uses the same blocking keys

as Standard Blocking, but builds blocks on their similarity instead
of their equality: it sorts the blocking keys in alphabetical order and
slides a window of fixed size w over the resulting list of ordered
entities. In every step, it compares the entities that co-occur within
the same window. In the example of Figure 1(b), the sorted list of
keys would be {BRE 104, GEO CAR} and of entities {p1,p3,p2,p4}.

1

Thus, for a window of size w = 2, we get the blocks b1 = {p1, p3},
b2 = {p3, p2}, b3 = {p2, p4}. Its schema-based configuration usually
employs multiple key definitions and forms a separate sorted list for
each of them. The schema-agnostic configuration uses a single list
of sorted keys that comprises all tokens in the values of all entities.
For both configurations, entities with the same key are placed in the
sorted list in a random order.

Extended Sorted Neighborhood (ESoNe) [7] aims for address-
ing the main drawback of Sorted Neighborhood, namely its sensi-
tivity on the window size, w: small windows lead to low recall, but
large ones yield many comparisons and low precision. ESoNe of-
fers more robust performance by sliding the window over the sorted
keys, instead of the sorted entities. In the simplified example of
SoNe, a window of size w = 2 for ESoNe would create a single
block for the two blocking keys, placing all associated entities in it:
b1 = {p1, p3, p2, p4}. Again, the schema-based configuration em-
ploys a different list for each blocking key definition, whereas the
schema-agnostic one uses a single list of sorted keys/tokens.

Q-grams Blocking (QGBl) [15] relies on the blocking keys of
Standard Blocking, but transforms them in a format that ensures
higher resilience to noise. Instead of using the entire keys, it con-
siders their q-grams (i.e., sub-sequences of q characters) and builds
blocks on their equality. Assuming that q = 3, the blocking key
BRE 104 in the example of Figure 1(b) would be transformed into
the following keys: BRE, RE , E 1, 10 and 104. The schema-

based definitions apply this transformation to the keys that are ex-
tracted from specific (combinations of) attribute names, whereas
the schema-agnostic configuration applies it to all tokens in the val-

1For simplicity, we assume that entities with the same blocking key
are sorted by their id and that both blocking keys are extracted from
the same combination of attribute names.

314

Size Limit

Size-free Size-constrained

Block

Definition

Equality-

based

• Standard Blocking

(StBl)

• Q-Grams Blocking

(QGBl)

• Extended Q-

Grams Blocking

(EQGBl)

• Suffix Arrays

(SuAr)

• Extended Suffix

Arrays (ESuAr)

Similarity-

based

• Extended Sorted

Neighborhood

(ESoNe)

• Sorted

Neighborhood

(SoNe)

• Canopy Clustering

(CaCl)

• Extended Canopy

Clustering

(ECaCl)

Figure 3: Two-dimensional taxonomy of blocking methods.

ues of all entities. In both cases, a new block is created for every
q-gram that appears in at least two entities.

Extended Q-grams Blocking (EQGBl) [3, 7] improves on QGBl
by producing blocking keys of higher discriminativeness. In this
way, it tries to decrease the number of pairwise comparisons in the
resulting blocks, without missing any of the detected duplicates.
More specifically, instead of individual q-grams, EQGBl consid-
ers combinations that stem from the concatenation of at least L

q-grams. L is derived from a user-defined parameter, called thresh-
old (T), as follows: L=max(1, ⌊k · T ⌋), where k is the number of
q-grams in the original blocking key. T is defined in the inter-
val [0, 1), with larger values reducing the number of combinations.
In our example, the following combinations are used as keys for
T=0.9 and L=4: BRERE E 1 10104, BRERE E 1104, BRERE 10104,
RE E 1 10104, BRERE E 1 10, BREE 1 10104. Again, the schema-

based configuration extracts such keys from the (combined) values
of selected attribute names, whereas the schema-agnostic one ex-
tracts them from the tokens of all attribute values. Blocks are then
created for every key that appears in at least two entities.

Canopy Clustering (CaCl) [22] uses the same blocking keys as
Q-grams Blocking, but creates blocks on their similarity, instead
of their equality. Initially, it places all entities in a pool of candi-
date matches, P. In every iteration, it removes a random seed pi

from P and compares its blocking keys (q-grams) with that of all
other entities in P. Those entities with a similarity higher than w1

are placed in a new block together with pi, while those exceeding
another threshold w2(>w1) are removed from the pool.

Extended Canopy Clustering (ECaCl) [7] addresses the main
drawback of Canopy Clustering, namely its sensitivity to the val-
ues of the weight thresholds: if w1 is too high, many entities will
be placed in no block. To avoid missing any entity, ECaCl replaces
w1 and w2 with two cardinality thresholds, n1 and n2, such that
1≤n2≤n1. Similar to CaCl, it initially places all entities in a pool
P and iteratively removes a random seed pi from it. In every iter-
ation, it compares pi with all entities still in P using the blocking
keys defined by Q-grams Blocking. Then, instead of using weight
thresholds, it inserts the n1 nearest neighbors in a new block – to-
gether with pi – and removes the n2 nearest neighbors from P.

Suffix Arrays (SuAr) [2] improves the noise-tolerance of Stan-
dard Blocking by applying another transformation to its keys: it
converts them into the suffixes that are longer than a minimum
length lm. In our example, the blocking key BRE 104 would be con-
verted into the suffixes BRE 104, RE 104 and E 104 for lm = 5. The
schema-based configuration applies this transformation to the com-
bined values of selected attribute names, while the schema-agnostic

one applies it to the tokens of all attribute values. Blocks are cre-
ated on the equality of blocking keys. Additionally, SuAr discards
the highly frequent suffixes in order to avoid the creation of very

Blocking

Method

Comparison

Propagation
E B

Block

Filtering

Figure 4: The workflow for size-free blocking methods with

schema-agnostic configuration.

large blocks: keys that appear in more than bM entities are ignored.
Extended Suffix Arrays (ESuAr) [7] improves the robustness of
SuAr by supporting noise at the end of blocking keys. It converts
every key of Standard Blocking into all substrings that are larger
than the minimum length lm. Continuing our example, BRE 104

would be transformed into BRE 104, BRE 10, RE 104, BRE 1, RE 10

and E 104 for lm = 5. The schema-based configuration considers
only the (combined) values of selected attributes, while the schema-

agnostic one considers all tokens from all attribute values. Again,
bM sets an upper limit on the size of the resulting blocks.

3.1 Taxonomy
We now introduce a new taxonomy of the blocking methods that

is formed by two orthogonal criteria, one pertaining to time effi-
ciency and the other to effectiveness.

We call the first criterion block definition, as it categorizes the
blocking methods based on how they use their keys. The equality-

based methods define blocks on the equality of their keys. Thus,
they can be efficiently implemented with an inverted index that
points from blocking keys to entities – a block is simply created
for every posting list that contains at least two entries [7]. To this
category belong StBl, QGBl, EQGBl, SuAr and ESuAr. The remain-
ing methods (SoNe, ESoNe, CaCl, ECaCl) are similarity-based, be-
cause they derive blocks from the similarity of their keys. Their
implementation relies on inverted indices too [7], but they apply
additional processing to the posting lists, thus involving a higher
overhead than the equality-based methods. Hence, we expect this
criterion to be critical for the time efficiency of blocking methods.

The second criterion, called size limit, distinguishes the blocking
methods into size-constrained and size-free ones. The former in-
herently impose a limit on the maximum eligible size of individual
blocks, i.e., on the maximum number of entities per block. This
limitation is expressed through the window size w in SoNe, the pa-
rameter n1 in ECaCl and the parameter bM in SuAr and ESuAr. Al-
ternatively, size-constrained methods impose a limit on the size of
entire block collections, specifying the maximum number of blocks
that can be extracted from the input entity collection E. This limita-
tion applies to CaCl, which creates at most one block per entity. In
contrast, the size-free methods do not impose any limit on the size
or the number of their blocks. StBl, ESoNe, QGBl and EQGBl fall
in this category. We expect this criterion to be decisive for the ef-
fectiveness of blocking methods, since a size limit results in fewer
comparisons, decreasing PC at the benefit of higher PQ and RR.

In combination, the two criteria form the two-dimensional tax-
onomy that is presented in Figure 3 along with the methods belong-
ing to every category. Note that every category is represented by at
least one blocking method. For presentation clarity, the methods of
each category are indicated with a different color. In Section 5, we
examine analytically how these categories affect the effectiveness,
the time efficiency and the scalability of the blocking methods.

4. EXPERIMENTAL SETUP
We implemented all blocking methods and experiments in Java,

version 8. The experiments were performed on a desktop computer
with Intel i7 (3.4GHz) and 16GB of RAM, running Ubuntu 14.04
(kernel version 3.13.0-45). All time measurements were repeated
10 times and the average value is reported.

315

Dcensus Drest Dcora Dcddb D10K D50K D100K D200K D300K D1M D2M

|E| 841 864 1,295 9,763 10,000 50,000 100,000 200,000 300,000 1,000,000 2,000,000
|D(E)| 344 112 17,184 299 8,705 43,071 85,497 172,403 257,034 857,538 1,716,102
|N | 5 5 12 106 12 12 12 12 12 12 12
|V | 3,913 4,319 7,166 183,072 106,108 530,854 1,061,421 2,123,728 3,184,885 10,617,729 21,238,252
| p̄| 4.65 5.00 5.53 18.75 10.61 10.62 10.61 10.62 10.62 10.62 10.62
||E|| 3.53·105 3.73·105 8.38·105 4.77·107 5.00×107 1.25×109 5.00×109 2.00×1010 4.50×1010 5.00×1011 2.00×1012

RT (E) 2 s 3 s 11 s 25 min 10 min 3.5 hrs 14 hrs 77 hrs 134 hrs ∼1,380 hrs ∼5,500 hrs
(a) (b)

Table 1: (a) The real and (b) the synthetic datasets, ordered in increasing size from left to right. |E| stands for the number of entity

profiles, |D(E)| for the number of duplicate pairs, |N| for the number of distinct attribute names, |V | for the total number of name-

value pairs, | p̄| for the mean number of name-value pairs per profile, ||E|| for the number of comparisons executed by the brute-force

approach and RT (E) for the respective resolution time.

4.1 Datasets
Our experimental analysis involves several homogeneous data

collections, both real and synthetic ones, that have been widely
used in the literature [6, 7, 8, 9, 10].

The real datasets were employed in the survey by Christen [7].
Dcensus involves records generated by the US Census Bureau based
on real census data, Drest contains records from the Fodor and Za-
gat restaurant guides, Dcora has bibliographic records of machine
learning publications, and Dcddb contains records of audio CDs,
randomly selected from freeDB (http://www.freedb.org). Their
technical characteristics are presented in Table 1(a). Compared to
their characteristics in [7], there are some differences for Dcensus

and Dcddb. The former was used for Record Linkage in [7] on the
assumption that it can be partitioned in two duplicate-free entity
collections; given, though, that both collections contain duplicates
in themselves, the dataset is only suitable for Deduplication. For
Dcddb, we use an updated, corrected ground-truth that involves half
the original pairs of duplicates [8, 9].

These datasets are small enough for the brute-force approach to
scale. Yet, we used them in our experimental analysis for two rea-
sons: (i) They differ largely in their characteristics, allowing us
to test the blocking methods in versatile conditions. For example,
Dcddb contains multilingual records, while the number of duplicate
pairs is an order of magnitude smaller than the number of entities;
in contrast, Dcora exclusively contains records in English, while the
equivalence clusters are so large that the number of duplicate pairs
is an order of magnitude higher than the number of entities. (ii) Ev-
ery dataset is associated with three different schema-based configu-
rations of blocking keys that have been evaluated in [7]. In this way,
we are able to perform a thorough comparison with the schema-
agnostic configuration for every blocking method and dataset.

The synthetic, homogeneous datasets were created by the Febrl
data generator [5] according to the parameters specified in [7]. First,
duplicate-free census records were produced based on frequency ta-
bles of real-world names and addresses. Then, duplicates of these
records were randomly generated based on real-world error char-
acteristics and modifications. The resulting datasets contain 40%
duplicate records with up to 9 duplicates per record, no more than
3 modifications per attribute, and up to 10 modifications per record.
Their technical characteristics are presented in Table 1(b). Again,
every dataset is associated with three schema-based definitions of
blocking keys that were used in the experimental analysis of [7].

4.2 Evaluated Workflows
In our experimental study, we do not consider the above blocking

methods in isolation. Instead, we combine them with block pro-

cessing techniques in order to improve their performance. These
methods receive as input an existing block collection and transform
it to a new block collection that contains fewer unnecessary com-
parisons. Such comparisons do not contribute to recall, but merely

decrease precision. They come in two forms [26, 27]: the redun-

dant ones repeatedly compare the same entities in different blocks,
while the superfluous ones compare two non-matching entities. In
the example of Figure 1(c), the comparison in b2 is redundant, re-
peated in b1, while the comparison p1-p2 in b4 is superfluous.

We now explain the functionality of the two block processing
techniques we employ in our experiments.

Comparison Propagation cleans a set of overlapping blocks
from all redundant comparisons, without any impact on recall. For
small datasets, this can be accomplished through a central data
structure that stores all executed comparisons in memory. This
naı̈ve approach does not scale to large datasets with (tens of) bil-
lions of comparisons. In this case, the executed comparisons have
to be stored indirectly [26]: every block is associated with an id
indicating its position in the processing order and an inverted index
points from entity ids to block ids; a pairwise comparison is iden-
tified as redundant if the id of the current block is larger than the
least common block id of the involved entities.

Block Filtering [28] applies to the size-free blocking methods
that are coupled with the schema-agnostic configuration. The rea-
son is that their block collections have a power-law distribution in
their block cardinalities. That is, the vast majority of blocks are of
minimum size, involving just one comparison, while the frequency
of blocks decreases with the increase of block cardinality. In this
distribution, the larger a block is, the less likely it is to contain
duplicate entities [25, 26]. Based on this pattern, Block Filtering
operates on individual entities to remove them from the blocks that
are the least important for them. First, it sorts all blocks in as-
cending order of cardinality, from the smallest to the largest one.
Then, it uses a ratio r ∈ [0, 1] to specify the percentage of the most
important (smallest) blocks that every entity is retained in. Block
Filtering targets both redundant and superfluous comparisons at a
small cost in recall, which depends on the configuration of r.

We apply Comparison Propagation to the block collections of
all the blocking methods for both configurations, because they all
yield overlapping blocks. For the size-free methods with schema-
agnostic configuration, we use both Comparison Propagation and
Block Filtering as in the workflow of Figure 4.

4.3 Parameter Tuning
The functionality of every blocking method is determined by one

or more parameters. We can distinguish them in two main types.
The first one specifies the definition of blocking keys and pertains
to Standard Blocking. The second type adjusts the use of Standard
Blocking keys and pertains to the other blocking methods, which
improve on it. We perform a holistic evaluation of both types, by
testing several configurations for each of their parameters.

For the blocking keys of Standard Blocking, we employ three
different schema-based configurations across all datasets. These
configurations were used in the experimental analysis of [7]. Each

316

StBl QGBl EQGBl ESoNe SoNe CaCl ECaCl SuAr ESuAr

BK1 0.169 0.018±0.017 0.051±0.006 0.024±0.016 0.066±0.044 0.481±0.066 0.077±0.029 0.196±0.079 0.134±0.090

BK2 0.159 0.040±0.048 0.135±0.003 0.027±0.017 0.057±0.040 0.704±0.108 0.073±0.030 0.186±0.081 0.132±0.079

BK3 0.113 0.031±0.032 0.091±0.008 0.025±0.015 0.069±0.044 0.492±0.041 0.079±0.031 0.160±0.070 0.137±0.077

BKall 0.054 0.022±0.013 0.023±0.001 0.015±0.011 0.030±0.018 0.227±0.116 0.068±0.026 0.093±0.026 0.080±0.039

Dcensus

BK1 0.011 0.004±0.004 0.010±0.000 0.004±0.002 0.018±0.012 0.252±0.212 0.022±0.007 0.060±0.031 0.050±0.029

BK2 0.001 1.1±0.3·10−3 0.001±0.000 9.7±1.7·10−4 0.008±0.004 0.009±0.002 0.027±0.010 0.044±0.020 0.039±0.019

BK3 0.006 0.002±0.002 0.005±0.000 0.003±0.001 0.011±0.005 0.038±0.006 0.015±0.004 0.029±0.016 0.027±0.015

BKall 0.003 0.002±0.001 0.003±0.001 0.001±0.001 0.005±0.003 0.960±0.013 0.025±0.013 0.024±0.016 0.020±0.015

Drest

BK1 0.458 0.055±0.029 0.277±0.126 0.151±0.073 0.407±0.084 0.951±0.065 0.484±0.080 0.583±0.020 0.479±0.036

BK2 0.026 0.022±0.002 0.026±0.000 0.025±0.001 0.218±0.038 0.767±0.030 0.501±0.063 0.781±0.023 0.611±0.052

BK3 0.583 0.082±0.065 0.392±0.080 0.198±0.095 0.430±0.080 0.976±0.039 0.498±0.083 0.678±0.028 0.569±0.048

BKall 0.049 0.032±0.010 0.077±0.003 0.025±0.005 0.129±0.042 0.975±0.021 0.668±0.076 0.464±0.065 0.435±0.075

Dcora

BK1 0.042 9.1±1.2·10−5 0.016±0.004 0.007±0.005 0.009±0.006 0.042±0.012 0.005±0.002 0.007±0.004 0.006±0.004

BK2 0.001 2.0±0.9·10−5 4.6±2.0·10−4 1.0±0.1·10−3 0.004±0.002 1.1±0.4·10−3 0.002±0.001 0.004±0.002 0.003±0.002

BK3 0.010 2.0±0.9·10−5 1.0±0.7·10−3 0.003±0.001 0.005±0.002 0.004±0.004 0.002±0.001 0.004±0.002 0.003±0.002

BKall 6.1·10−5 3.5±3.3·10−5 1.4±0.5·10−4 4.5±1.3·10−5 2.6±1.9·10−4 0.898±0.024 0.008±0.004 0.002±0.001 1.1±0.7·10−3

Dcddb

Table 2: Average value and standard deviation of PQ (precision) for the four blocking key configurations in combination with the

main blocking methods across the real homogeneous datasets. The category of each method is indicated by its colour.

configuration represents every entity profile by two different block-
ing keys. The keys depend on the dataset’s schema quality and are
formed by concatenating a transformation of the values of 2 to 3
attribute names. We denote these schema-based configurations by
BK1, BK2, BK3. For every dataset, there is also a unique schema-
agnostic configuration that is symbolized by BKall.

For the internal parameters of the other methods, we consider
several values, based again on the experimental analysis of [7]. For
SoNe and ESoNe, we used the following sizes for their window:
w∈{2, 3, 5, 7, 10}. For QGBl, we considered four lengths for its q-
grams: q∈{2, 3, 4, 5}. For EQGBl, we employed the following com-
binations of length q and threshold T : (q,T) ∈ {(2, 0.9), (2, 0.8), (3,
0.9), (3, 0.8)}. For CaCl and ECaCl, we used the Jaccard coeffi-
cient to estimate the similarity between the blocking keys of two
entities. The weight thresholds of the former method were set
to (w1,w2)=(0.8, 0.9) and (w1,w2)=(0.7, 0.8), while the cardinal-
ity thresholds of the latter method were set to (n1, n2)=(10, 5) and
(n1, n2)=(20, 10). Finally, for SuAr and ESuAr, we used exactly the
same configurations: lm∈{3, 5} and bM∈{5, 10, 20}. We applied all
relevant settings to every blocking method and estimated the aver-
age value of the five measures in Section 2 in order to assess its
performance with respect to effectiveness and time efficiency.

Regarding the configuration of the block processing techniques,
Comparison Propagation is parameter-free. Its effect depends on
the redundancy of blocks. In most cases, it reduces the number
of executed comparisons by 10% to 30% [26]. Blocking Filtering
involves a single parameter – the portion r of the retained blocks
per entity. We set to r = 0.64, which retains every entity in around
2/3 of its most important (i.e., smallest) blocks. This value has been
verified to reduce the total cardinality of blocks ||B|| by at least an
order of magnitude for a minor decrease (<5%) in recall [28].

5. EXPERIMENTAL RESULTS
We now compare the schema-agnostic configuration with the

schema-based ones over all blocking methods and datasets in terms
of effectiveness (Section 5.1), time efficiency (Section 5.2) and
scalability (Section 5.3). In our analysis, we consider the two-
dimensional taxonomy in Figure 3 as well as the relation between
the basic and the extended version of the blocking methods.

5.1 Effectiveness
The outcomes of our experiments with respect to PC (M1 in

Section 2.1) and RR (M3 in Section 2.1) are presented in Fig-
ures 5(A) to (I), on the left and the right column, respectively. All
diagrams have the same scale and are aligned in a way that facili-
tates the comparison between the individual methods. PQ (M2 in
Section 2.1) is presented in Table 2. Remember that for all metrics,
higher values correspond to better performance.

Starting with the size-free methods, we observe in Figures 5(A)
to (D) that BKall maintains a robust PC that exceeds 0.95 in al-
most all cases. The only exception is when used with EQGBl over
Dcensus, where recall drops to 0.80: the small entity profiles (low
| p̄| in Table 1(a)) and the high distinctiveness of the blocking keys
lead to a small number of blocks per entity that are further reduced
by Block Filtering. In contrast, the schema-based configurations of
these methods exhibit rather unstable recall, with significant vari-
ation even for the same dataset. In many cases, their recall falls
below 0.80, producing blocks that miss a significant portion of the
existing duplicates. Compared to BKall, their PC is consistently
lower. Furthermore, there is no schema-based configuration that
works well for all the datasets or for all the blocking methods.

With respect to RR, we observe that BK1 and BK3 exhibit equiv-
alent performance across all datasets and methods. BK2 follows
them in close distance over Dcensus and Dcddb, but executes signifi-
cantly more comparisons (lower RR) over Drest and Dcora, due to the
high frequency of its keys. For these two datasets, BKall typically
exhibits higher RR than BK2. In all other cases, though, it scores the
lowest value across all configurations. This should be attributed to
the higher number of keys it involves, which produce a larger num-
ber of blocks. Given that the frequency of its keys is usually higher
than the schema-based configurations, the total cardinality of the
resulting blocks is significantly larger, in general. Their difference
is so large, that despite its higher recall, BKall scores the lowest PQ

(precision) in the vast majority of cases (see Table 2). There are
only few exceptions to this rule, mainly for Drest and Dcora, where
BKall outperforms BK2 with respect to RR.

In the case of size-constrained methods, Figures 5(E) to (I) re-
veal totally different patterns. First of all, there is a uniform behav-
ior with respect to RR, as it exceeds 0.95 in almost all cases – there
are just two exceptions for BKall in combination with SoNe. These

317

BK1 BK2 BK3 BKall

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (A) StBl

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (B) QGBl

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (C) EQGBl

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (D) ESoNe

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (E) SoNe

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (F) CaCl

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (G) ECaCl

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (H) SuAr

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

PC

(i) (I) ESuAr

0.0

0.2

0.4

0.6

0.8

1.0

Dcensus Drest Dcora Dcddb

RR

(ii)

Figure 5: Effectiveness of the four blocking key configurations in combination with all blocking methods across the real datasets

with respect to the average value and the standard deviation of (i) Pairs Completeness (left column) and (ii) Reduction Ratio (right

column). For both measures, higher bars indicate better performance. The category of each method is indicated by its colour.

high values indicate that the blocks cardinality, ||B||, is lower than
the number of comparisons executed by the brute-force approach,
||E||, by 2 to 3 orders of magnitude. In other words, the four config-

urations require practically equal number of comparisons across all
datasets and methods. This should be attributed to the drastic effect
of the size limit, which discards the overly frequent blocking keys.

318

Second, all configurations exhibit a rather unstable behavior with
respect to PC. Among the schema-based ones, there is signifi-
cant deviation even for the same dataset. BKall outperforms them
only in half the cases. Most importantly, few configurations per
blocking method exceed 0.80 for any of the datasets. Particularly
in Dcora, the maximum recall across all size-constrained methods
and configurations is just 0.68. Given that the size-free methods
achieve significantly higher recall over this dataset, we deduce that
it has a limited vocabulary and, thus, most of its duplicate entities
share only very frequent keys (to this attests the low RR over Dcora

for many configurations of size-free methods). This applies to the
other datasets as well, though to a lesser extent. Hence, the size-
constrained methods should be combined with a size limit that is
analogous to the number of input entities |E| in order to produce
blocks with sufficient recall. Instead, we used a fixed, low value
across all datasets in order to repeat the experiments of [7].

On the whole, we conclude that for the size-free methods, the
schema-agnostic configuration excels in PC, while the schema-
based one emphasizes RR and PQ at the cost of insufficient re-
call. For the size-constrained methods, both key configurations
minimize the number of executed comparisons; the recall is usually
higher for the schema-agnostic keys, but it rarely exceeds 0.80. De-
spite the insufficient recall, the low number of comparisons leads to
significantly higher PQ than the size-free methods in most cases.

Another interesting point is to compare every blocking method
with its extended version. Starting with SoNe, we observe that
ESoNe trades higher recall for lower RR and PQ. This should be
expected, as the former is size-constrained and the latter size-free.
All other pairs belong to the same category in our taxonomy. In
the case of QGBl and EQGBl, the latter achieves significantly higher
RR and PQ at the cost of lower PC. The reason is that EQGBl uses
more distinctive keys, which appear in less entities, thus produc-
ing smaller blocks. For CaCl, its extended version increases PC in
most cases, because it places every entity in at least one block. De-
spite the same RR with CaCl, ECaCl executes more comparisons
in absolute numbers and decreases PQ. Exactly the same pattern
applies to SuAr and ESuAr, because the latter uses more keys.

5.2 Time Efficiency
We now examine the time requirements of the four key configu-

rations over the real datasets. Figure 6 shows OTime (M4 in Sec-
tion 2.1) in the left column, and RTime (M5 in Section 2.1) in the
right column. For both metrics, lower values indicate better time ef-
ficiency. All diagrams use exactly the same scale so as to facilitate
the comparison between the two measures and between the vari-
ous blocking methods and configurations. Due to the significant
difference in the size of the four datasets, the vertical axes are log-
arithmic, with their maximum value corresponding to 67 minutes
(4 million milliseconds). The time requirements of the brute-force
approach, RT (E), is reported in Table 1(a) – note that RT (E)=1.5
million milliseconds for Dcddb. We expect that a successful block-
ing method should exhibit a significantly lower resolution time than
the brute-force approach, in addition to a recall over 0.80.

Starting with OTime, we first examine the relative efficiency of
schema-based and schema-agnostic configurations. With a few ex-
ceptions, BKall requires significantly more time than the schema-
based configurations for all datasets and blocking methods. The dif-
ferences increase when moving from left to right, i.e., from smallest
dataset (Dcensus) to the largest one (Dcddb) due to two factors. First,
the larger datasets happen to convey more information per entity
than the smaller ones, as implied by |p̄| in Table 1(a). Hence, the
larger a dataset is, the larger is the difference in the number of keys
used by BKall and the schema-based configurations. Second, larger

datasets produce more comparisons that have to be processed by
Comparison Propagation, increasing its overhead. Consequently,
the distance of BKall from the other configurations rises to 2 orders
of magnitude for many blocking methods over Dcora and Dcddb.

Depending on the blocking method, though, there are additional
factors that increase the distance of BKall from the schema-based
configurations with respect to OTime. For the size-free methods,
Block Filtering brings an additional computational cost. For SoNe
and ESoNe, BKall pays a higher cost for sorting and traversing a
larger list of blocking keys. For CaCl and ECaCl, the workload of
Comparisons Propagation plays a minor role, as all configurations
yield a limited number of comparisons. Instead, OTime depends on
the size of the signatures that represent every entity and are com-
pared with Jaccard similarity. The larger they are, the more time-
consuming is their processing (in Section 6, we discuss possible
ways for accelerating this procedure).

Regarding the relative overhead of the schema-based configura-
tions, there are minor differences between them in most cases, since
none of the above factors apply: they all use the same number of
signatures per entity and yield a similar number of blocking keys
for every dataset. They only differ in the number of comparisons
they forward to Comparison Propagation for processing. Thus, this
factor accounts for all their differences with respect to OTime.

It is also interesting to examine the relative overhead of equality-
and similarity-based methods. We compare StBl in Figure 6(A)
with its similarity-based counterparts, SoNe and ESoNe in Figures
6(E) and (D), respectively. StBl is faster than ESoNe across all
datasets and key configurations, requiring 74% less time on aver-
age. The main reason is that ESoNe is a size-free method that yields
blocks with significantly larger cardinalities than StBl. Thus, it
increases the workload of Comparison Propagation. Compared to
SoNe, StBl requires half the time, on average, when combined with
the schema-based configurations; for BKall, its advantage is bigger
as it requires up to a whole order of magnitude less time than SoNe.
There are just 2 exceptions out of the 20 cases, where the size-
constrained functionality of SoNe yields significantly fewer com-
parisons than StBl, thus involving a lower overhead.

The impact of size constraints becomes clearer when comparing
QGBl in Figure 6(B) with its similarity-based counterparts, CaCl
and ECaCl. The latter method (Figure 6(G)) is faster than QGBl
across all datasets and configurations by 55%, on average. For
BKall, in particular, ECaCl requires at least 85% less time than
QGBl. This counter-intuitive pattern should be attributed to the
high value of parameter n2, which determines the number of en-
tities that ECaCl removes from the pool of candidate matches in
every iteration; the higher n2 is, the less iterations ECaCl performs
and the faster it gets. Furthermore, QGBl yields blocks with signif-
icantly higher cardinality, thus increasing the overhead of Compar-
ison Propagation.

In the case of CaCl (Figure 6(F)), the number of iterations is im-
plicitly specified through w2. The higher w2 is, the fewer entities
are removed from the pool at each round, the more iterations are
performed and the more time it requires. Due to the high weight
thresholds we apply to CaCl, QGBl is faster by 32%, on average,
in 10 out of the 12 combinations with schema-based configura-
tions. For BKall, though, the situation is reversed, with CaCl being
consistently faster by 75%. Again, this is caused by Comparison
Propagation, which slows down QGBl, due to the very large blocks
produced in combination with BKall (low RR in Figure 5(B-ii)).

On the whole, we can conclude that the similarity-based methods
involve a more time-consuming functionality than their equality-
based counterparts in the general case. This relation can only be re-
versed by the overhead of Comparison Propagation in cases where

319

BK1 BK2 BK3 BKall

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (A) StBl

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (B) QGBl

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (C) EQGBl

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (D) ESoNe

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (E) SoNe

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (F) CaCl

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii) (ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (G) ECaCl

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii) (ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (H) SuAr

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii) (ii)

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

OTime

(msec)

(i) (I) ESuAr

1

100

10,000

1,000,000

Dcensus Drest Dcora Dcddb

RTime

(msec)

(ii) (ii)

Figure 6: Time efficiency of the four blocking key configurations in combination with all blocking methods across the real datasets

with respect to the average value and the standard deviation of (i) Overhead Time (left column) and (ii) Resolution Time (right

column). In all diagrams, the vertical axis is logarithmic. For both measures, lower bars indicate better performance. The category

of each method is indicated by its colour.

the former methods execute significantly fewer comparisons than
they latter, due to their combination with a strict size limit.

Regarding RTime, remember that it equals OTime plus the time
required for performing the pairwise comparisons in the resulting

320

blocks. This means that it is highly correlated with OTime, es-
pecially for blocks with low total cardinality. As a result, RTime

maintains the relative efficiency of the 4 key configurations across
most datasets and methods; the only differences arise between the
schema-based configurations, in cases where they differ signifi-
cantly in the number of executed comparisons. Most importantly,
though, RTime saves at least 50% of the time required by the brute-
force approach, RT (E), in the vast majority of cases. For BKall, the
only exceptions are its combination with ESoNe and QGBl over the
3 largest datasets as well as QGBl over Dcora. For the schema-based
configurations, BK2 is slower than RT (E) over Dcora in combina-
tion with StBl, ESoNE, QGBl and EQGBl. All these exceptions cor-
respond to low RR and, thus, involve high time requirements both
for Comparison Propagation and the execution of comparisons.

5.3 Scalability
To assess the scalability of the four key configurations, we ap-

plied them to the seven synthetic datasets of Table 1(b). Figure 7
presents the blocks cardinality, ||B||, on the left column, and recall,
PC, on the right column. Again, the same scale is used in all figures
of each column to facilitate the comparisons. The horizontal axes
are logarithmic and express the number of input entities, |E|. Also
logarithmic are the vertical axes on the left column.

Starting with the size-free methods in Figures 7(A) to (D), we
observe that BKall executes at least an order of magnitude more
comparisons than the schema-based configurations, due to its larger
number of keys. For the same reason, its PC is consistently higher
by at least 20% across most methods; the only exception is QGBl,
where all configurations execute practically the same number of
comparisons and the recall of BKall exceeds that of BK1 by 7%, of
BK2 by 12%, and of BK3 by just 3%. Most importantly, though,
the recall of the schema-based configurations is below 0.80 in most
cases, whereas BKall achieves almost perfect recall. This pattern
demonstrates that the schema-agnostic configuration of the size-
free methods emphasizes recall, while the schema-based configu-
rations focus on precision, at the cost of insufficient PC.

More complex patterns appear in the case of size-constrained

methods in Figures 7(E) to (I). All configurations yield similar ||B||
in combination with all methods except SoNe, where BKall exe-
cutes 2 to 5 times more comparisons (due to the higher number of
blocking keys). With respect to PC, there are three different pat-
terns: (i) For SoNe, SuAr and ESuAr, the recall of BKall starts from
a value higher than 0.90 and decreases steadily with the increase of
the input entities; for D2M , its PC consistently drops to 0.75. The
schema-based configurations exhibit a similar behavior, but they
begin from and end at much lower levels of recall. (ii) For ECaCl,
BKall retains the maximum PC, but its absolute value fluctuates
between 0.45 and 0.40; for the schema-based configurations, PC

drops below 0.40 and decreases for larger input entity collections.
(iii) For CaCl, the relative performance of the configurations is re-
versed. The lowest PC, just 0.10, corresponds to BKall, while the
schema-based configurations fluctuate between 0.15 and 0.22.

Note that the behavior of SoNe, SuAr and ESuAr contradicts the
recall patterns observed in Figures 5 (D-i), (H-i) and (I-i), respec-
tively. The reason is that the synthetic datasets have more diverse
vocabularies than the real ones. Thus, the duplicate entities share
keys that are not frequent enough to be pruned by the size limit.
This does not apply to CaCl and ECaCl, which rely on the simi-
larity rather than the frequency of keys. Their recall continues to
be poor, as their restrictive configurations allow every entity to be
compared with just 2 other profiles, on average. Thus, they need
further fine-tuning in order to produce useful blocks.

Another interesting aspect is to examine which configurations

and blocking methods scale linearly to the increased size of the in-
put entity collections. Given that D2M is 200 times larger than D10K ,
a linear increase in ||B|| requires that the blocks for D2M involve two
orders of magnitude more comparisons than those for D10K . This
condition is satisfied only by the size-constrained blocking meth-
ods – regardless of the key configuration. The size-free blocking
methods are less effective in this respect, relying on Block Filter-
ing for this purpose. Given that we use a fixed configuration for
Block Filtering, its impact depends heavily on the configuration of
blocking keys. Hence, the size-free methods scale linearly only for
BK1 in combination with StBl and ESoNe.

It is also interesting to estimate the portion of saved comparisons
in relation to the brute-force approach (i.e., RR). We can do so
by comparing ||B|| on the left column of Figure 7 with ||E|| in Ta-
ble 1(b). The worst RR corresponds to QGBl, which saves just 68%
of the possible comparisons across all datasets, regardless of the
key configuration. All other blocking methods achieve a very high
RR that practically equals 1.00.2 For the size-constrained methods,
the larger the dataset, the more comparisons they discard: they start
saving 1 to 2 orders of magnitude for D10K and end up saving up
to 6 orders of magnitude for D2M . On the other hand, the size-
free methods reduce the executed comparisons by 1 to 3 orders of
magnitude in combination with all blocking key configurations.

On the whole, we can conclude that BKall scales much better
than the brute-force approach with respect to blocks cardinality and
much better than the schema-based configurations with respect to
recall. For size-free methods, BKall consistently maintains PC well
over 0.90 and maximizes PQ in combination with EQGBl, which
executes more than two orders of magnitude less comparisons than
the brute-force approach. For the size-constrained blocking meth-
ods, except CaCl and ECaCl, the recall of BKall lies higher than
or close to 0.80, while its blocks cardinality scales linearly to the
number of input entities. Its maximum PQ corresponds to SuAr,
which executes 6 orders of magnitude less comparisons than the
brute-force approach.

6. RELATED WORK
General discussions about blocking methods can be found in sev-

eral surveys, books and tutorials about Entity Resolution [6, 11, 13,
14, 20]. In this work, we exclusively consider approximate block-
ing techniques, which sacrifice recall to a minor extent for signif-
icantly higher precision. We do not cover exact blocking meth-
ods, which guarantee that all pairs of duplicates are identified (i.e.,
they achieve perfect recall). Methods of this type are employed by
SILK [17] and Limes [24], but are less popular in the literature,
because the approximate techniques are more flexible in reducing
the number of executed comparisons. We also excluded from our
analysis the blocking methods that are inherently crafted for het-
erogeneous data collections, such as Attribute Clustering [26] and
Total Description [25]; they already involve a schema-agnostic con-
figuration, but are incompatible with the schema-based one.

More relevant to our work is the recent experimental analysis of
approximate blocking methods for structured data by Christen [7].
Our study builds on this work, using the same real homogeneous
datasets, almost the same blocking methods and the same config-
urations for each blocking method. Our conclusions verify those
of [7] for the common part of the experimental study. Yet, we
go beyond this study in several ways: (i) we examine the perfor-
mance of the schema-agnostic configuration for the selected block-
ing methods, (ii) we elucidate the experimental results based on

2Given that so high values would prevent us from drawing detailed
conclusions, we present ||B|| instead of RR in Figures 7(A) to (I).

321

BK1 BK2 BK3 BKall

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (A) StBl

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (B) QGBl

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (C) EQGBl

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (D) ESoNe

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (E) SoNe

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (F) CaCl

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (G) ECaCl

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (H) SuAr

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

10,000 100,000 1,000,000

||B||

|E|
(i) (I) ESuAr

0.0

0.2

0.4

0.6

0.8

1.0

10,000 100,000 1,000,000

PC

|E|
(ii)

Figure 7: Scalability of the four blocking key configurations in combination with all blocking methods across all synthetic datasets

with respect to the average value and the standard deviation of (i) Blocks Cardinality (||B||, left column) and (ii) Pairs Completeness

(PC, right column). For ||B||, lower values indicate better performance and vice versa for PC. The horizontal axes are logarithmic.

our taxonomy of blocking methods, (iii) we consider larger, syn-
thetic datasets for the scalability analysis, (iv) we examine the per-
formance of the three schema-based configurations per dataset in-

dependently of one another, while [7] presents only their average
performance per dataset, (v) we investigate the time requirements
of every configuration and blocking method in detail with respect

322

to both Overhead and Resolution Time, and (vi) we apply Com-
parison Propagation to every method and configuration, improving
precision at no cost in recall. We also replaced StringMap [19] with
Q-Grams Blocking so as to compare EQGBl with its basic version.

Also relevant to our work is a recent experimental evaluation of
the major techniques for efficient string similarity joins [18]. Typ-
ically, these methods are applied to an existing block collection in
order to perform entity matching, comparing the profiles that co-
occur in the same block. It is possible, though, to integrate them
into blocking methods so as to accelerate their processing. More
specifically, both versions of Canopy Clustering can benefit from
such techniques in order to accelerate the comparison of the block-
ing keys of two entities. Indeed, the outcomes of [18] indicate the
most efficient method for similarity join depending on the size of
the blocking keys and the corresponding weight threshold. This is
particularly useful for the schema-agnostic configurations of CaCl
and ECaCl, which involve very large signatures.

7. CONCLUSIONS
Our thorough experimental study leads to several novel conclu-

sions about the performance of blocking methods.
First, different schema-based configurations yield a similar num-

ber of comparisons when applied to the same blocking method and
dataset, but exhibit a rather unstable performance with respect to
PC. Their recall is usually lower than 0.80, especially when com-
bined with size-constrained methods, thus missing a considerable
part of the existing duplicates.

Second, the schema-agnostic configuration of size-free methods
consistently achieves a very high recall that is robust to the effect
of the other parameters. It also saves a large number of the com-
parisons executed by the brute-force approach, especially in com-
bination with StBl and EQGBl. Another advantage of these two
methods is that they involve a low overhead, partly because they
are equality-based. Note also that StBl is parameter-free for the
schema-agnostic configuration.

Third, the size-constrained methods reduce the executed com-
parisons by whole orders of magnitude compared to the brute-force
approach. Yet, their recall is very sensitive to the size limit, which
should be analogous to the number of input entities, taking low val-
ues only in the case of datasets with diverse vocabulary. Their over-
head is also very low, especially when using one of the equality-
based techniques: SuAr and ESuAr. The schema-agnostic is again
the preferable configuration.

On the whole, we conclude that the schema-agnostic configura-
tion offers a reliable, robust alternative to the schema-based block-
ing keys. Further, it turns the blocking methods for structured data
applicable to heterogeneous data and facilitates their use, as it re-
quires no human intervention. On the flip side, it typically executes
a significantly higher number of comparisons, downgrading preci-
sion, and results in a higher resolution time.

In the future, we plan to apply the blocking methods for struc-
tured data to heterogeneous data with the help of their schema-
agnostic configuration. Then, we will compare them with blocking
methods that are inherently crafted for heterogeneous data.

Acknowledgements. This work was partially supported by EU
H2020 BigDataEurope (#644564), OpenAIRE2020 (#643410) and
SlideWiki (#688095) projects.

References
[1] Blocking framework: http://sourceforge.net/projects/erframework.
[2] A. N. Aizawa and K. Oyama. A fast linkage detection scheme for

multi-source information integration. In WIRI, pages 30–39, 2005.

[3] R. Baxter, P. Christen, and T. Churches. A comparison of fast blocking
methods for record linkage. In Workshop on Data Cleaning, Record

Linkage and Object Consolidation, pages 25–27, 2003.
[4] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learn-

ing to scale up record linkage. In ICDM, pages 87–96, 2006.
[5] P. Christen. Febrl -: an open source data cleaning, deduplication and

record linkage system with a graphical user interface. In KDD, pages
1065–1068, 2008.

[6] P. Christen. Data Matching. Data-centric systems and applications.
Springer, 2012.

[7] P. Christen. A survey of indexing techniques for scalable record link-
age and deduplication. IEEE Trans. Knowl. Data Eng., 24(9):1537–
1555, 2012.

[8] U. Draisbach and F. Naumann. A comparison and generalization
of blocking and windowing algorithms for duplicate detection. In
Proceedings of the International Workshop on Quality in Databases

(QDB), pages 51–56, 2009.
[9] U. Draisbach and F. Naumann. Dude: The duplicate detection toolkit.

In Proceedings of the International Workshop on Quality in Databases

(QDB), 2010.
[10] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg. Adaptive

windows for duplicate detection. In ICDE, pages 1073–1083, 2012.
[11] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detec-

tion: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.
[12] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of

the American Statistical Association, 64(328):1183–1210, 1969.
[13] L. Getoor and A. Machanavajjhala. Entity resolution: Theory, practice

& open challenges. PVLDB, 5(12):2018–2019, 2012.
[14] L. Getoor and A. Machanavajjhala. Entity resolution for big data. In

KDD, page 1527, 2013.
[15] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan,

and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[16] M. Hernández and S. Stolfo. The merge/purge problem for large
databases. In SIGMOD, pages 127–138, 1995.

[17] R. Isele, A. Jentzsch, and C. Bizer. Efficient multidimensional block-
ing for link discovery without losing recall. In WebDB, 2011.

[18] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An experi-
mental evaluation. PVLDB, 7(8):625–636, 2014.

[19] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data
sets. In DASFAA, pages 137–146, 2003.

[20] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity
measures and algorithms. In SIGMOD, pages 802–803, 2006.

[21] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko,
and C. Yu. Web-scale data integration: You can afford to pay as you
go. In CIDR, pages 342–350, 2007.

[22] A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD,
pages 169–178, 2000.

[23] M. Michelson and C. A. Knoblock. Learning blocking schemes for
record linkage. In AAAI, pages 440–445, 2006.

[24] A. N. Ngomo and S. Auer. LIMES - A time-efficient approach for
large-scale link discovery on the web of data. In IJCAI, pages 2312–
2317, 2011.

[25] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl.
Beyond 100 million entities: Large-scale blocking-based resolution
for heterogeneous data. In WSDM, pages 53–62, 2012.

[26] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl.
A blocking framework for entity resolution in highly heterogeneous
information spaces. IEEE Trans. Knowl. Data Eng., 25(12):2665–
2682, 2013.

[27] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. Meta-blocking:
Taking entity resolutionto the next level. IEEE Trans. Knowl. Data

Eng., 26(8):1946–1960, 2014.
[28] G. Papadakis, G. Papastefanatos, and T. Palpanas. Boosting the effi-

ciency of large-scale entity resolution with enhanced meta-blocking.
Technical Report, 2014 (available at: http://www.imis.athena-
innovation.gr/en/publications/publication/244).

[29] E. Rahm. Towards large-scale schema and ontology matching. In
Schema Matching and Mapping, pages 3–27. Springer, 2011.

[30] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking. In SIG-

MOD, pages 219–232, 2009.

323

