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Abstract 

When the schema of an object-oriented database sys- 

tem is modified, the database needs to be changed in 

such a way that the schema and the database remain 

consistent with each other. This paper describes the 

algorithm implemented in the new forthcoming release 

of the 02 object database for automatically bringing the 

database to a consistent state after a schema update has 

been performed. The algorithm, which uses a deferred 

strategy to update the database, is a revised and extended 

version of the screening algorithm first sketched in [7]. 

1 Introduction 

When the schema of an object-oriented database system 

is modified, the database needs to be changed in such a 

way that the schema and the database remain consistent 

with each other. The decision how to change the database 

is mainly an application-specific issue. This paper focuses 

on two aspects of the new release of the 02 system. The 

first one is how the designer specifies the way objects 

in the database have to be updated as a consequence of 

a (or a series of) schema modification(s). The second 

aspect covers the specifications of the data structures and 

the algorithm used by 02 for automatically bringing the 
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database to a consistent state after a schema update has 

been performed. 

The algorithm uses a deferred strategy to update the 

database, and it is a revised and extended version of the 

screening algorithm first sketched in [7]. 

Choosing to implement database updates ‘as deferred 

updates poses some interesting implementation problems 

when ensuring the correctness of the implementation as 

it will be explained in the rest of the paper. 

1.1 The 02 Database System and How to 

Change its Schema 

The main structure of an 02 schema consists of a set of 

classes related by inheritance and/or composition links. 

An 02 schema contains the definition of types, functions, 

and applications, while an 02 base groups together ob- 

jects and values which are created to conform to a schema. 

An object has an identity, a value, and a behavior de- 

fined with its methods. Objects are class instances and 

values are type instances. A given object can be shared 

(referenced) by several entities (an entity is either an ob- 

ject or a value). By default, objects and values created 

during program execution are not persistent. To become 

persistent, an entity must be directly or indirectly at- 

tached to a name, i.e., a persistent root belonging to the 

schema. 

A class definition consists of a type definition and a 

set of methods. A type is defined recursively from atomic 

types (integer, boolean, char, string, real, . ..). classes, and 

constructors (tuple, set, list, . ..). Methods are coded us- 

ing the 0#2 or the C++ language which allows to express 

manipulations on persistent as well as non-persistent en- 

tities. 

In 02, encapsulation is provided at different levels. 

First, properties (attributes and methods) are private to 

their class by default. Programs are encapsulated into 
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applications. Finally, encapsulation is provided at the 

schema level as elements of a schema cannot be used 

by another schema. In order to increase reusability, 

02 provides an import/export mechanism. 

Schema modifications can be performed in 02 either 

in an incremental way using specific primitives (e.g. 
by adding or deleting attributes in a class) or by re- 

defining the structure of single classes as a whole [12]. 

The 02 schema manipulation primitives available in the 

02 product are briefly presented below [12, 191: 

1. creation of a new class 

2. modification of an existing class 

3. deletion of an existing class 

4. renaming of an existing class 

5. creation of an inheritance link between two classes 

6. deletion of an inheritance link between two classes 

7. creation of a new attribute 

8. modification of an existing attribute 

9. deletion of an existing attribute 

10. renaming of an existing attribute 

No matter how a class is modified, 02 performs only 

those schema modifications that keeps the schema consis- 

tent [5]. 

The rest of the paper is structured as follows: in Sec- 

tion 2 we present from a user perspective how to define 

and use conversion functions as a means to instruct the 

system on how to change objects in the database as a 

consequence of a schema change. In addition to updating 

objects as a consequence of a schema change, 02 allows 

to modify the structure of individual objects by mov- 

ing them from one class to another independently from 

any schema change. This is described in Section 2.3 as 

object migration. Implementation details on conversion 

functions are given in Section 3 and 4. In particular, 

in Section 3.1 we illustrate the problems of implement- 

ing conversion functions, and in Section 3.2 we present 

the data structures used in the implementation. The de- 

tailed algorithm for implementing conversion functions as 

deferred database updates is presented in Section 4. In 

Section 5 we review relevant related work and compare 

our approach with existing ones. Finally, in Section 6, we 

present the conclusions. 

2 Database Updates in 02 

In this section we describe the functionalities that have 

been added in the new release of 02 for automatically 

updating the database after a schema has been modified. 

The semantics of updating the database after a schema 

change depends on the application(s) which use(s) the 

schema. The basic mechanism to update the database 

is very simple: the designer has the possibility to pro- 

gram so called conversion functions which are associated 

to modified classes in the schema and define how objects 

have to be restructured. If no conversion functions are 

provided by the designer, the system provides default con- 

version functions where no programming is required. In- 

stead, default transformation rules are applied to objects 

of modified classes. 

Similar concepts to user-defined database conversion 

functions can be found in GemStone[3], ObjectStore[l3], 

OTGen[lO], whereby Versant [18] and Itasca [9] offer fea- 

tures that are similar to default conversion functions only. 

The definition and modality of use of conversion functions 

is explained in Sections 2.1 and 2.2. 

The main design issue when implementing database 

(user-defined or default) conversion functions, is &en 

such functions have to be executed, that is when the 

database has to be brought up to a consistent state wrt. 

the new schema. 

We had two possible strategies to choose [6, 71: an im- 

mediate strategy, where objects in the database are up- 

dated in any case as soon as the schema modification is 

performed, and a deferred strategy, where objects are up- 

dated only when they are actually used. The two above 

strategies have advantages and disadvantages [6, 71; in 

O2 we have supported both strategies and gave the de- 

signer the possibility to select the one which is most ap- 

propriate for his/her application domains. The imple- 

mentation details are presented in Sections 3 and 4. 

2.1 Default Database Transformations 

In this section we describe what we called default data- 

base conversion functions. If no user-defined conversion 

functions are specified (see Section 2.2), the system trans- 

forms the objects in the database using default transfor- 

mation rules. When a class in the schema is modified, the 

system compares each attribute of the class before and af- 

ter the modification of the class and transforms the values 

of the object attributes according to the default rules as 

followsi : 

An attribute defined in a class before its modification 

and non present in the class after the modification 

(i.e. a deleted attribute) is ignored. 

An attribute which is not present in a class before its 

modification and present after its modification (i.e. a 

new attribute) is initialized with default initial values 

(i.e. 0 for an integer attribute, nil for an attribute 

referring to a class, etc.). 

An attribute present in both the class before the 

change and after the change is transformed according 

to the rules in Table 1. 

‘Note that, in 02, after a class modification has been performed, 

two attributes are considered the same attribute if they have the 

same name. 
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set 

lUPlC3 

class-name 

In the table, attribute initial type refers to the type of an 

attribute before the class modification, whereas attribute 

final type refers to the type of the same attribute after the 

modification of the class. If, for instance, an attribute of 

a class is declared of type real (the attribute initial type), 

and after a schema modification its type is transformed to 

integer (the attribute final type), a C cast is applied which 

truncates the real value. For those attributes where an 

empty entry appears in Table 1, the system initial value 

for the final type is used. 

Let us consider a simple example, the schema 

Car-showroom which we suppose has been defined at time 

to: 

schema creation at time t0: 

create schema Car-showroom; 

class Vendor type tuple (name: string, 
address: tuple ( city : string, 

street : string, 
number : real), 

sold-cars: list( Car )) 

end; 

class Car type tuple (name: string, 
price : real, 
horse-power : integer ) 

end; 

Assume we only have one object in the database for 

class Vendor, with values: name = “Volkswagen”; ad- 

dress = tuple(city: “Frankfurt”, street: “Goethe”, num- 

ber: 5.0); sold-cars = list([l]: Golfid, [2]: Passatid, [3]: 

Corradoid); where Golfid, Passatid, Corradoid are ref- 

erences to Car objects. 

Suppose at time tl the class Vendor in the schema is 

modified as follows: 

initialize the modified attribute 

with the system initial value of 
the attribute final type 

the value remains 

unchanged 

the transformation is done using 
a C cast or a C library function 

the transformation depends on 

the domains of the constructors 

and is obtained recursively 

the fields of the tuple are trans- 

formed individually in the same 

way as attributes of a class 

if the final type is a super&w of 

the initial type the value remains 

unaltered; otherwise nil 

Table 1: Attribute default conversion. 

In the modified class Vendor, the type of the attribute 

address is now a tuple where the tuple field city has been 

deleted, and the tuple field number has become an integer 

instead of a real. Moreover, the attribute sold-cars is now 

a set instead of a list. 

Since no user-defined conversion function is associ- 

ated to the modified class Vendor, a default conversion 

function is applied. The object of class Vendor in the 

database is then automatically converted as follows: the 

attribute name keeps the value “Volkswagen”, the tu- 

ple field number of attribute address is transformed from 

5.0 to 5, and the attribute value of sold-cars becomes 

the set(Golfid, Passatid, Corradoid), i.e. without order 

among values. 

2.2 User-Defined Conversion Functions in 02 

The schema designer can override the default database 

transformations by explicitly associating user-defined 

conversion functions to the class just after its change in 

the schema. 

In this case, the update to a class in the schema is per- 

formed in two phases. The first phase is the update to the 

class, i.e. using schema updates primitives. This phase is 

called class modification phase. The second phase is when 

user-defined conversion function(s) are associated, i.e. de- 

fined and compiled, to the modified class(es). This second 
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phase is called conversion functions definition phase. 

We show the definition of user-defined conversion func- 

tions using the previous example. Assume at time 

t2 the schema designer decides to delete the attribute 

horse-power in class Car, but to retain the information 

by adding the attribute kW in class Car instead. This 

can be done as follows: 

schema modification at time t2: 

begin modification in class Car; 
delete attribute horse-power; 
create attribute kW : integer; 
conversion functions; 

conversion function mod_kW (old : tuple(name:string, price:real, 
horse-power:real)) in class Car 

1 

1; 
self->kW = round( old.horse-power I 1.36 ); 

end modification; 

Two schema update primitives for class Car are 

used after the command begin modif ication in class 

Car. The command conversion function associates the 

user-defined conversion function mod&W to class Car af- 

ter the change. In the body of the conversion function, 

“-9 returns the attribute value of an object. The input 

parameter old of the conversion function refers to a tuple 

value conforming to the type of class Car before the mod- 

ification has been performed. The variable self refers 

to an object of class Car after its modification. In the 

conversion function the transformation is not defined for 

all the attributes of class Car but only for the attribute 

kW. This is because a default transformation is executed 

in any case on objects before a user-defined conversion 

function is executed. This simplifies the writing of user- 

defined conversion functions. In the example, there is no 

need to write trivial transformations such as: 

self->name = old.name, 

self->price = old.price. 

These transformations are performed by the default con- 

versions. 

The command conversion functions is optional. If 

not present, the system transforms the database us- 

ing default transformations instead. The command end 

modif ication specifies the end of the class(es) transfor- 

mation. Conversion functions are logically executed at 

the end of a modification block. The real execution time 

of the conversion functions depends on the implementa- 

tion strategy chosen as it will be described in Sections 3 

and 4. 

Suppose now the attribute sales is added to the class 

Vendor at time ts (see schema modification at time t3 

shown in the next column). 

At time ts class Vendor has been modified as a whole 

with the primitive modify class instead of using the 

primitive create attribute sales in class Vendor. 

The user-defined conversion function associated to class 

schema modification at time t3: 

begin modification in class Vendor; 

modify class Vendor type tuple (name: string, 

address: tuple ( street : string, 
number : integer), 

sold-cars: set( Car ), 
sales : real ) 

end; 

conversion functions; 
conversion function compute-sales (old : tuple( 

name:string, 
address: tuple ( street : string, number : interger), 
sold-cars: set( Car ))) in class Vendor 

{ 

02 Car c; 
for (c in oldsold-cars) { 

self-xsales += c->price; ] 

1; 
end modification; 

Vendor stores in sales the sales turnover for the vendor. 

We should note in the example the difference between 

the conversion function mod-kW associated to Car at 

time tz and the conversion function compute-sales asso- 

ciated to Vendor at time t3 . For the first one the value 

of the “updated” object is computed using only values 

locally defined to the object. The second conversion func- 

tion instead uses the value of objects belonging to another 

class in the schema. 

In [7] we have classified the above conversion functions 

as follows: 

l Simple conversion functions, where the object trans- 

formation is performed using only the local infor- 

mation of the object being accessed (the conversion 

function mod-k W defined at time tz). 

l Complex conversion functions, where the object 

transformation is performed using objects of the 

database other than the current object being ac- 

cessed (the conversion function compute-sales de- 

fined at time t3). 

This is an important distinction when implementing 

conversion functions as we will see in Sections 3 and 4. 

Suppose we make a final schema modification at time 

t4 by deleting the attribute price in class Car: 

schema modification at time tl: 

delete attribute price in class Car; 

At time t4 we did not associate any user-defined con- 

version function to class Car. The default conversion is 

then used for the transformation of the objects. 

In Figure 1 we show a graphical representation of 

the schema modifications performed on the two classes. 

Classes connected by a solid arrow mean a modification 

has been performed on them, the label on the arrow in- 

dicate the presence of default or user-defined conversion 

functions. 
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I to ! tl !t2 / t3 

Figure 1: Schema evolution until time t4. 

j 14 time 

The designer in 02 has the possibility to specify the 

execution time for conversion functions. In particular, 

02 offers a command to execute conversion functions im- 

mediately, as follows: 

transform database; 

After the database transformation is completed, all ob- 

jects in the database conform to the last schema defini- 

tion. The default implementation modality for the exe- 

cution of conversion functions is the deferred approach as 

described in Section 4. 

So far, we have seen how objects of a class are updated 

as a consequence of a class modification using conversion 

functions. It is also possible in 02 to update objects by 

migrating them to other classes in the schema. This is 

addressed in the next section. 

2.3 User-Defined Object Migration Functions 

Object migration refers to the possibility for an individual 

object to change its class during its lifetime. 02 offers 

two ways to migrate objects, i) either a single object can 

change its class, or ii) an entire class extension (or a part 

of it) can be migrated to another class. 

We start looking at the first possibility and then we 

consider class extensions. 

We have defined a system method migrate0 associ- 

ated to the root class Object which, when invoked for a 

particular object, allows the object to migrate from its 

class to any of its subclasses (if any). In the method 

migrate () , the name of the target subclass must be given 

as an input parameter. We considered migration of ob- 

jects to subclasses only, to avoid the possibility of run- 

time type errors if objects were allowed to migrate freely 

to any class in the schema. 

Notwithstanding this limitation, this feature is partic- 

ularly useful especially when: i) .a new class is added to 

the schema and the existing objects of the class’ super- 

classes need to be moved “down” to the new class, ii) a 

class is deleted and objects of that class must be retained 

by migrating them to subclasses. 

The other possibility is to migrate an entire class ex- 

tension (or a part of it) to other subclasses by means of 

a so called migration function. 

The use of migration functions is explained using our 

example. Suppose at time t5 the designer creates a new 

class Sport-car in the Car-showroom schema. After the 

creation of the class, he/she wants to migrate powerful 

cars, i.e. those cars with power kW >= 100, from class 

Cur to class Sport-car. This can be achieved as follows: 

L 

schema modification at time t5: 

class Sport-car inherit Car 
type tuple ( speed : integer ) 

end; 

migration function migrate-cars in class Car 

I 
if ( self->kW >= 100 ) 

self->migrate( “Sport-car” ); 

The migration function migrate-cars is associated to 

class Car. In the body of the migration function the sys- 

tem method migrate is called to migrate each object sat- 

isfying the selection condition to the subclasses Sport-car. 

The example shows the importance of having object 

migration when new classes are added to the schema. Let 

us consider the case of the deletion of a class. Suppose 

the designer wants to delete class Car, but retain some 

of the objects in the database by moving them to an- 

other class. By creating class Sport-car and migrating 

Cur objects to it, if the designer deleted class Cur from 

the schema, he/she would lose only part of the objects, 

namely the ones whose attribute kW is lower than 100. 

Without migration there had been no chance to retain 

any object of class Car. 

As in the case of conversion functions, migration func- 

tions can be executed either with an immediate or a 

deferred modality. By default, 02 uses a deferred ap- 

proach for the migration of objects. It is however possible 

to migrate objects immediately by explicitly calling the 

transform database schema command. More on this in 

Sections 3 and 4. 
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3 The Implementation of Database Up- 

dates in O2 

02 supports both the immediate and the deferred 

database transformation. However, the basic principle 

we followed whem we implemented the mechanism for 

database updates is the following: whatever transforma- 

tion strategy is chosen for implementing a database trans- 

formation, there should be no difference for the schema 

designer as far as the result of the execution of the con- 

version functions is concerned [7]. From the above prin- 

ciple we derived the notion of correctness of a deferred 

database transformation, as first introduced in [7] and 

formally defined in [6]. A correct implementation of a 

deferred database transformation satisfies the following 

criteria: 

The result of a database transformation implemented 
with a deferred modality is the same as if the transforma- 
tion were implemented with an immediate modality. 

The formal proof of correctness for the algorithm we 

will present in Section 4 is given in [6]. 

3.1 Deferred vs. Immediate Updates 

In this section we present the data structures used 

in 02 for supporting immediate and deferred database 

transformations. Since in 02 the immediate database 

transformation is implemented using the deferred one, in 

the rest of the section we will mainly concentrate on the 

implementation details for deferred database transforma- 

tions. 

In Section 2.2 we have made the distinction between 

simple and complex conversion functions. The reasons for 

that is that implementing complex conversion functions 

for a deferred database transformation requires special 

care [7]. To explain why, consider in our usual example 

two objects v of class Vendor and c of class Car con- 

forming to the respective class definitions at time t2 (see 

Figure 1). Object v refers to c through the attribute 

sold-cars. If object c were accessed by an application at 

time t,, with t4 < t,, the system would transform the 

object to conform to its last class definition deleting the 

attribute price from it. If, at time tb, with t, < tar ob- 

ject v is accessed, v will be restructured as well and its 

new value will be computed by applying the conversion 

function compute-sales. 

The problem is that compute-sales accesses object c 

via the attribute price. But c now does not have any- 

more all the information required for the transformation 

of v because it has lost the attribute price when it was 

transformed at time t,. In this special case, the execution 

of compute-sales would result in a run-time type error. In 

general, using default values as described in Section 2.1 

for the restructured object v does not solve the problem, 

as it could result in an incorrect database transformation. 

Let us consider again the database at time t2 and as- 

sume the immediate database transformation had been 

used to transform objects v and c. If at time t3 the system 

had transformed the object v immediately by executing 

the conversion function compute-sales, no run-time type 

error would have occurred because at time t3 the object 

c accessed by the conversion function would have had the 

attribute price. The deletion of price at time t4 would 

therefore not affect the execution of previously defined 

conversion functions. This is the correct transformation 

of the database. 

In Section 3.2 we will present in detail the data struc- 

tures and in Section 4 the algorithm used in 02 for im- 

plementing simple and complex conversion functions us- 

ing deferred database updates which guarantees a correct 

database transformation. The basic idea is to physically 

retain the deleted or the modified information in the ob- 

ject in a so called screened part. This implementation 

strategy is commonly known with the name of sween- 

ing [I]. Applications running against the database do not 

have access to the screened information, but conversion 

functions, instead, have access to the screened informa- 

tion in order to perform a correct database transforma- 

tion. 

When some information is deleted and/or modified in 

the schema, it is only screened out, but not physically 

deleted in the database. When, for instance, a deletion 

of an attribute (or a change in the type which would corre- 

spond to a deletion and an addition of the same attribute) 

is performed, the update is not physically executed on 

the object structure but simply a different representation 

of the object is presented to applications. Using screen- 

ing, 02 manages the different representations of an ob- 

ject, one representation visible to applications and one 

representation visible to conversion functions only. 

3.2 Data Structures 

The physical format of an object, i.e. as it is internally 

stored in the database, contains two parts: the object 

header and the object value, the value itself being com- 

posed of an existing value and a screened value (see Fig- 

ure 2). 

cls: M-class tid: integer existing value screened value 

object header object value 

Figure 2: Structure of an 02 object. 

The object value part is used for storing values that 

reside within the object, such as attribute values. The 

object header contains, among other info, the identifier 

of the object’s class descriptor (~1s) and the type entry 
identifier (t id) according to which format the object itself 

is stored. Each of these two can be viewed as somewhat 

special fields in the physical format of the object. 

The main principle in the implementation of deferred 
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updates is to keep track of the evolution of the schema. 

The O2 schema manager manages a persistent symbol 

table containing schema components such as class defi- 

nitions, type definitions, etc.. 

A simple integer variable called schema state is asso- 

ciated to each schema. The schema state is incremented 

every time a class in the schema undergoes a change. 

All components of a schema are internally maintained 

as meta-objects. Each class in the schema is internally 

represented by a class descriptor which can be considered 

as an instance of the 02 class Meta-class illustrated in 

Figure 3. 

L :lass Meta-class type tuple ( 

sch : integer, /’ schema-id where the class is defined ‘I 
name : string, /’ name of the class ‘I 
visib : char, I’ access mode = public, read, private ‘/ 

type : Meta-type, I’ type of the class ‘/ 
properties : list (Meta-property), I’ attributes and methods ‘I 
parents : list (Meta-class), r direct superclasses ‘I 
children : list (Meta-class), I’ all subclasses ‘/ 
ancestors : list (Meta-class). I’ all superclasses ‘I 
ispartof : list (Meta-class), I’ classes with a component of this class ’ 

cur-tid : integer, I’ current tid of this class ‘I 
history : list (Meta-history-entry), I’ type history of this class */ 

eno; 

I 

J 

Figure 3: The Meta-class definition for describing classes 

in the schema. 

The class Meta-class contains all the information re- 

lated to a class, i.e. its name, its type, its visibility (pri- 

vate vs. public), the list of its parents classes, etc.. In 

particular, to implement a deferred database transforma- 

tion, each class descriptor contains a field cur-tid which 

is used for testing whether an object in the database con- 

forms to the last class definition in the schema or not. 

Another important information in the class descriptor is 

stored in the field history, the list of history entry de- 

scriptors containing the information of the class as it was 

defined “in the past”. 

A history entry descriptor can be considered as an in- 

stance of the class Meta-history-entry (see Figure 4) and 

contains the following fields: 

l the type entry identifier tid, a simple integer num- 

ber, which helps in identifying to which entry an ob- 

ject of the class belongs to. When a class undergoes 

a change, the schema state is assigned to the tid, 

l the type type which corresponds to the type of the 

class visible by applications, 

l the type ex-type which corresponds to the extended 

type of the class including the screened information, 

l the entry struct which contains a list of property 

entry descriptors, 

l a field cf which contains a reference to a conversion 

function descriptor that is used to convert objects to 

conform to a subsequent entry in the history, 

l a field mf which contains a reference to a migration 

function desCTiptOT that is used to migrate objects 

to conform to the appropriate entry in the history of 

a subclass’. 

A property entry descriptor belonging to the struct 

list of a history entry descriptor can be considered as an 

instance of the class Meta-property-entry (see Figure 4). 

It contains the following information: 

l the pid of the attribute; the reason for using such an 

identification is that the external name of a property 

can be changed without affecting the identity of a 

prop W, 

l the schstate, i.e the state of the schema when the 

attribute has been created. The information (pid, 

sch-state) identifies an attribute in a non ambiguous 

way. 

l the off set of the attribute, i.e. the physical position 

of the attribute in the object itself, 

l the type of the attribute, 

l the status of an attribute indicating whether the 

given attribute can be accessed by both application 

and conversion functions (in this case the value is set 

to ecisting), or by conversion functions only (in this 

case the value is set, to screened). 

The last two components of a history entry descrip- 

tor, cf and mf, are the descriptors of a conversion and a 

migration function which can be considered as instances 

of the classes Meta-conversion and Meta-migration (see 

Figure 4). In a conversion function descriptor, the field 

next-state indicates to which entry in the class history 

the conversion function stored as a binary file in the field 

function is supposed to transform objects. The same ap- 

plies for a migration function descriptor. The schstate 

field indicates the state of the schema when the migration 

function has been associated to the class. The schstate 

information is used by the system to determine to which 

history entry of a subclass an object has to be migrated’. 

Recall the example we presented in Section 2. Figure 5 

illustrates the class descriptor of Car after the migration 

function migrate-cars has been defined at time t5. 
The field cur-tid of the class is equal to 5 and corre- 

sponds to the schema state just after the migration func- 

tion migrate-cars has been associated to the class. The 

field history points to a list of four history entry descrip- 

tors, whereby the one with tid = 0 identifies the original 

class information when it has been created at time to. 

The following history entry descriptors identify the infor- 

mation of the class after each class modification or after 

% Section 4 we describe how 02 infers the history entry in the 

target class when executing a migration function. 
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class Meta-history-entry type tuple ( class Meta-property-entry type tuple ( 

tid : integer, 
class Meta-conversion type tuple ( class M&-migration type tuple ( 

pid : integer, next-state : integer, 
type : Me&type, sch-state : integer, function 

sch-state : integer, 
: Meta-blnay ) function : 

ex-type : Meta-type, offset : integer, 
M&-binary ) 

end; 
struct : list(Meta-property-entry), 

end: 
type 

cf : Meta_conversion, status 
: Me&-type, 
: ( existing, screened ) ) 

mf : Meta-migration ) end; 

end; 

Figure 4: The meta-definitions for the different descriptors in the class history. 

class descripror property entry descriptors 
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Figure 5: Descriptor of class Cur along with its history. 

the association of a migration function to the class. For 

reasons of readability, we show only the struct informa- 

tion related to the first history entry descriptor whose tid 
= 5. The field struct points to the list of property entry 

descriptors belonging to the class. The first two property 

entry descriptors refer to attributes in the class which 

are visible by application. This can be recognized by the 

value “existing” in the status field. The last two prop- 

erty entry descriptors refer to screened attributes visible 

by conversion functions only. It is important to note that 

screened attributes are physically stored always after vis- 

ible attributes, i.e. their offset in the chunk of memory 

representing an object is always greater than the one of 

a visible attribute. 

The conversion function descriptor for mod-kW and 

the migration function descriptor for migrate-cars are as- 

sociated to the appropriate history entry descriptors. 

4 The Deferred Database Update Algo- 

rithm 

We first introduce some definitions. The most recent en- 

try in a class history is called current history entry. An 

entry in a class history is called input relevant if this entry 

holds a conversion or a migration function. The current 

history entry is defined as input relevant as well. From 

now on, the class descriptor of a class X is referred to as 

X-desc. 

When a new class X is created, the schema manager 

of 02 instantiates a class descriptor with the appropriate 

information, i.e. the name of the class, the list of parent 

and ancestor classes in the hierarchy, etc.. In particular, 

the field cur-tid is initialized with the schema state as- 

sociated to the schema and a first entry is created in the 

history of the class. 

After a modification is performed on a class X, the 

schema state is incremented and a new entry in the class 

history is created for the modified class X and for all of 

its subclasses which have effectively undergone a modi- 

fication. The newly created entry becomes the current 

history entry and its tid is initialized with the schema 

state. For those subclasses where no modification have 

taken place (e.g. because an attribute has been added to 

X which is already present in its subclasses), no new en- 

try in the class history is created. If a conversion function 

is associated to the class modification, the schema man- 

ager instantiates and initializes a conversion function de- 

scriptor and assigns it to the cf field of the history ent,ry 

descriptor which chronologically precedes the current his- 

tory entry. The function field of the conversion function 

descriptor contains a pointer to the binary code of the 

conversion function. The field next-state contains the 

tid of the current history entry. 

The same happens for a migration function. When a 

migration function is associated to a class X, the schema 

state is incremented and a new entry in the history of X 

is created. The newly created entry becomes the current 

history entry and its tid is initialized with the schema 

state. The schema manager instantiates and initializes 

a migration function descriptor which is then assigned 

to the mf field of the history entry descriptor which 

chronologically precedes the current history entry. The 

function field of the migration function descriptor con- 

tains a pointer to the binary code of the migration func- 

tion. The field schstate contains the tid of the current 

history entry. 

4.1 Basic Deferred Update Algorithm 

The algorithm used by 0s when an object o of class X 

is accessed by an application is the Deferred Update 

Algorithm shown in Figure 6. 

The algorithm first checks whether an object conforms 

to its last class definition in the schema. If yes, the object 

can be used by the application which accessed it without 

being first transformed. If not, 0s identifies the appro- 

priate history entry descriptor in the history of class X to 

which object o conforms to. Three alternatives are then 

possible: i) the history entry descriptor contains a migra- 

tion function which implies a possible migration of o to a 

subclass of X, ii) the history entry descriptor contains a 

conversion function which implies that o must be restruc- 
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, 

Deferred Update Algorithm 

while (o-Aid C> o-As-Aid ) do I’ 0 is not in current format ‘/ 

for ( X-his-desc in o-As->history where X-his-desc-Aid == o-Aid: 

( break ]; I’ find the history entry descriptor to which o conforms ‘I 

if (X-his-desc->mf <> nil) then I’ a migration function has to be applied *I 

apply the migration function X-his-desc->mf->function; 

if (object o has not been migrated) then 
modify the tid of the object to correspond to the tid 
belonging to the chronologically following entry; 

endif; 
else I’ a default or user-defined conversion function has to be applied ‘, 

copy the value of o in a variable old; I’ old is used by the cf’s ‘I 

if (X-his-desc->cf <> nil) then I’ an user-defined cf has to be applied “1 
restructure o to conform to the entry in the history whose 
tid corresponds to X-his-desc->cf.next-state; 
apply the default conversion function; 

apply the conversion function X-his-desc->cf->function; 
o-Aid = X-his-desc->cf.ne&state; 

else I’ a default cf has to be applied ‘I 

restructure o to conform to the next input relevant entry in 

the class history; I” entry with a migr. or user-def. conv. function l / 
apply the default conversion function; 
update the tid to correspond to the one found in the 
next input relevant entry; 

endif; 
endif; 

endwhile; 

Figure 6: The deferred update algorithm. 

tured to conform to a more recent entry in the history of 

class X, iii) the history entry contains neither a conversion 

nor a migration function; object o must be restructured 

and reinitialized using a default conversion function to 

conform to the next input relevant entry in the history. 

Note that, due to how class descriptors are maintained 

by 02, no entry will ever contain both a conversion and 

a migration function. 

4.2 Implementing Complex Conversion Func- 

tions 

The deferred update algorithm presented before works 

fine if only simple conversion functions have been defined 

when evolving the schema. In case of complex conversion 

functions, instead, the transformation of objects accessed 

by complex conversion functions must be stopped before 

reaching the state corresponding to the current history 

entry to avoid database inconsistencies or run-time type 

errors [7]. 

Suppose that a complex conversion function cf associ- 

ated to a history entry with t id = i of a class X trans- 

forms objects of that class to conform to a history entry 

with tid = j, where j > i. If other objects are accessed 

by cf, their transformation should not be propagated up 

to the current history entry, but it must be stopped at a 

history entry which is the one visible by the conversion 

function cf at the time it was defined. The concept of 

visibility is modeled by the tid’s attached to each entry 

in the history of a class. 

The nth history entry of a class Y in the schema is 

visible by cf if: 

Y-desc ->history[n]->tid <= j 

and the chronologically subsequent entry (if any) 

Y-desc ->history[n-I]->tid > j 

where history[nl indicates the nth history en- 

try descriptor in the history list of a class and 

history Cn-II indicates the entry that chronologically 

follows history [n] 3. 

In order to stop the transformation of objects to the 

visible history entry 02 maintains a stack associated to 

each application. Before the execution of an application 

or of a conversion function, the system pushes in the stack 

the appropriate entry number signaling up to which entry 

in the history an object has to be transformed (the actual 

schema state for the application, or a smaller number for 

a conversion function). This number is removed from the 

stack after the execution of a conversion function or the 

execution of an application. 

The correctness of the deferred update algorithm has 

formally been demonstrated in [6]. 

Reconsider the example in Section 2.2 where the com- 

plex conversion function compute-sales accesses objects 

of class Car to perform the computation of the vendor’s 

turnover. Since the conversion function compute-sales is 

supposed to transform objects of class Vendor to conform 

to the history entry with tid = 34, the schema manager 

of 02 pushes the value 3 on the stack. When an object 

c of class Car is accessed by the conversion function, c 

is transformed to conform to the history entry visible by 

compute-sales, i.e. the one with tid = 2. 

4.3 Implementing Object Migration 

If an object o conforming to the history entry descriptor 

of class X with tid = i has to migrate to a target class 

Y due to the presence of a migration function descrip- 

tor, the deferred update algorithm executes the migration 

function stored in the mf field of the history entry descrip- 

tor. When migrating an object, the schema manager of 

O2 must decide to which history entry of the target class 

Y a migrated object has to conform to. This is not nec- 

essarily the current history entry of Y because between 

the definition of the migration function and its execution, 

class Y might have been changed. The schema manager 

of Oz identifies the history entry of the target class Y as 

the one whose tid j is the greatest satisfying the condi- 

tion j <= s, whereby s is the value stored in the field 

s&-state of the migration function descriptor, i.e. the 

$It might happen that objects accessed by a cf have a tid 2 j. 
In this ca.se no transformation is triggered on them because they 
are already containing the information needed by cf. 

4After the modification of class Vendor at time TV, the schema 

state is equal to 3. 
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state of the schema at the time the migration function 

has been defined. 

AS shown in Section 2.3, the real migration of an object 

is performed by the execution of the system’s method 

migrate which is called within a migration function. 

The method migrate, when executed on an object o 

which has to migrate from class X to class Y, is respon- 

sible for the following: 

l copy the value of o in a variable old; 

l find the appropriate target history entry where o has 

to be migrated; 

l restructure o to conform to the target history entry 

of class Y; 

l perform the default transformation on o using the 

information present in old; 

l update the class identifier cls in the header of o to 

be the one of the target class; 

l update the type identifier tid in the header of o to 

be the one of the target history entry of class Y; 

4.4 Implementing Class Deletions 

So far, we discussed how to transform objects in the 

database when a class in the schema has been modified. 

Another important issue is how 02 implements a class 

deletion. 

Basically, when using the deferred database transfor- 

mation, there is no way to control when objects are ac- 

cessed by applications, i.e. when conversion functions are 

effectively executed. In particular, the execution of a 

complex conversion function might require the informa- 

tion of objects whose class has been deleted in the schema. 

Further, since migration of objects is implemented using 

a deferred modality as well, objects of a deleted class can 

be migrated to subclasses of the deleted class. 

To accomplish a deferred database transformation 

when classes are deleted in the schema, the deletion of 

a class is not physically performed, but classes are only 

screened out from being used by applications. Only con- 

version and migration functions are allowed to access the 

information of screened classes. If class Car were deleted 

from the schema Carshowroom5, the schema manager of 

Or. would only set the field visib of the class descriptor 

to “deleted”. This would imply that conversion functions 

accessing objects of class Car can still read the informa- 

tion needed for the transformation. 

4.5 Optimization Issues 

There is no need to screen all deleted classes but only 

those ones whose objects might be accessed by complex 

5Note that in the current version of 02 only leaf classes can be 

deleted. To delete class Car would therefore imply to first remove 

the link with its subclass Sport-car. 

conversion functions or by migration functions. There- 

fore, 02 internally maintains a so called dependency graph 

associated to each schema which allows the schema man- 

ager to understand when deleted classes have to be 

screened. The dependency graph is defined as follows: 

Definition: The dependency graph G is a tuple 

(V, E), extended by a labeling function I : (V x V) + A. 
V is a set of class-vertices, one for each class in the 

schema. E is a set of directed edges (v,w) V, w E V. 
A is a set of attribute names and the special value “mf” 

which identifies a migration function. An edge (w, w) in- 

dicates that there exists at least one complex conversion 

function associated to class w which uses the value of ob- 

jects of class w or that a migration function is associated 

to class v which migrates objects to class w. The func- 

tion Z(V,W] returns the names of the attributes of class v 

used by conversion functions associated to class w and/or 

“mf’ if objects have to be migrated to class w. 

Evolution of the schema implies changing the depen- 

dency graph associated to the schema. By looking at the 

dependency graph it is possible to identify when classes 

have to be screened due to a definition of a complex con- 

version function or a migration function. 

The use of the graph is shown with our usual example, 

the car-showroom schema. In Figure 7 the evolution of 

the dependency graph for the schema ~aT-showToom from 

time to till time t5 is illustrated. The conversion func- 

tion defined at time ti uses only local defined attributes, 

therefore no edge appears in the graph. At time ts, the 

edge is added to the graph because of the definition of 

the complex conversion functions compute-sales. At time 

ts, a new edge is added to the dependency graph due to 

the definition of the migration function migrate-cars. 

! ,p”ceJ [ fp”cc, ( ~Pncc~ bar 

to 12 t3 t4 ts 

Figure 7: Evolution of the dependency graph of schema 

Car-showroom 

The dependency graph has to be checked by the system 

in the following cases: i) a class is modified along with 

a complex conversion function, ii) a class is deleted from 

the schema, iii) a migration function is associated to a 

class. If, for instance, class vendor is deleted from the 

schema, the schema manager of 02 recognizes that there 

is no outgoing arrow for class Vendor in the dependency 

graph and therefore the class can be really removed along 

with its extension. 

If no space optimization is taken into account when 

using screening, i.e. if the information is never deleted in 

the objects, the size of the database risks to grow contin- 
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uously. 

The schema manager of Oz optimizes it by physi- 

cally delete the information in those objects which will 

never be accessed by any complex conversion function. 

This can be easily obtained by checking the dependency 

graph. Objects of classes which do not have any out- 

going arrow in the dependency graph should not con- 

tain screened attributes because no conversion function 

will ever use them. Objects of classes which have an 

outgoing arrow in the dependency graph contain only 

screened attributes whose name appears to be returned 

by the labeling function associated to the arrow. More- 

over, every time the immediate database transformation 

is launched, 02 transforms all the objects to conform to 

the last schema definition. After the transformation, the 

system deletes the edges in the dependency graph and 

therefore the screened part can be dropped from all the 

objects in the database. As a consequence of the imme- 

diate database transformation, all histories of the class 

descriptors are updated to contain only one history entry, 

namely the current history entry with the information of 

the class as visible by applications. 

4.6 Implementing Immediate Database Updates 

In 02, the immediate database transformation is im- 

plemented using the algorithm defined for the deferred 

database transformation. When the designer specifies the 

schema command: 

transform database; 

the schema manager of 02 launches an internal tool which 

is responsible to access all objects in the database which 

are not up to date. When accessed, objects are trans- 

formed according to the algorithm defined for the deferred 

database transformation. 

The tool follows basically two strategies for accessing 

objects which are not up to date. If class extensions are 

maintained by the systems, extensions of updated classes 

have to be iterated to access all objects of that class. 

If extensions are not maintained by the system, the tool 

accesses objects in the database starting from appropriate 

roots of persistence and following the composition links 

between objects. 

As already mentioned, after an immediate database 

transformation, the dependency graph is updated. Fur- 

ther, the history of all classes is deleted and the deleted 

part of screened objects is dropped. 

5 Related Work 

Not all available ODBSs provide the feature of adapt- 

ing the database after a schema modification has been 

performed [15, 161. For those that do it, they differ 

‘Note that 02 does not automatically maintain extensions asso- 

ciated to classes. It is the responsibility of the designer to inform 

the system if extensions are to be kept or not. 

from each other in the approach followed for updating 

objects. Some commercial systems support the possibil- 

ity to define object versions to evolve the database from 

one version to another, examples are Objectivity [14] and 

GemStone [3]. Objectivity does not provide any tool to 

automatically update the database, besides providing ob- 

ject versions. The designer has to write a program which 

reads the value old-val of objects of the old version, com- 

putes the new value new-val and assigns it to the corre- 

spondent objects of the new version. The program can 

be written in order to transform the database both im- 

mediately and lazily. Gemstone, instead, provides a flex- 

ible way for updating object instances. It provides de- 

fault transformation of objects and the possibility to add 

conversion methods to a class. Conversion methods can 

update objects either in groups (for instance the whole 

extension of a class) or individually. The transforma- 

tion of the database is performed in a deferred mode but 

manually, i.e. objects are transformed on demand only 

when applications call the transformation methods. The 

problems pointed out in this paper do not occur when 

versioning is used because objects are never transformed, 

but a new version is created instead. Therefore the infor- 

mation for the transformation of an object can always be 

found in its correspondent old version. 

On the other hand, the majority of the existing com- 

mercially available systems do not use versioning for up- 

dating the database. Applications can run on top of the 

schema as defined after the last modification. Instances 

are converted either immediately or lazily. Objectstore 

[13] makes use of the immediate database transformation. 

So called transformation functions, which override the de- 

fault transformation, can be associated to each modified 

class. Objects are not physically restructured, but a new 

object (conforming the definition of the modified class) is 

created instead. The transformation function reads the 

value in the old object and assigns it (after having made 

some modification on it) to the new object. All references 

to the object have to be updated in order to point to the 

newly created object. This technique resembles the one 

used by those systems providing versions, the only differ- 

ence being that, after the transformation, the old objects 

are discarded. Deferred transformation of objects is pro- 

vided in systems like Itasca [9] and Veersant [18]. They 

both do not provide the user with flexible conversion func- 

tions like the one presented in the paper. Instead, they 

have the possibility to override a default transformation 

assigning new constant values to modified or added at- 

tributes of a class. 

Among research prototype systems, Avance [2], 

CLOSQL [ll], and Encore [17] all use object versioning. 

Orion [l] uses a deferred approach where deletion of at- 

tributes is filtered. Information is not physically deleted, 

but it is no more usable by applications. No conversion 

functions are provided to the schema designer. 
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In summary, if we consider those database systems us- 
ing a deferred database transformation, then no one is 
currently offering conversion functions like the one pre- 
sented in this paper. 

Updating the database using only default transforma- 

tion of objects is clearly not flexible and powerful enough. 

6 Conclusions and Future Work 

In this paper we have discussed how the new release of the 
02 object database has been enhanced to offer an auto- 

matical database modification mechanism after a schema 
change. 02 supports both the immediate database and 
the deferred database transformation, whereby the de- 
ferred transformation is used by default. We have de- 

scribed how 02 transforms objects by means of default 
transformation rules and by means of user-defined con- 
version functions. We also described how to associate 
migration functions to classes in order to move objects 
“down” in the class hierarchy. Object migration is suit- 
able both when new classes are added to the schema 

which are more appropriate classes for existing objects, 
and to retain objects in the database when classes are 
deleted from the schema. Finally, we presented the 

data structures used by 02 for implementing the deferred 
database transformation and the algorithm used by the 
system to transform objects to conform to their last class 
definition to be properly accessed by applications. 

We are currently evaluating the performance of the 
algorithm proposed in this paper and the ones defined 
in [7] using the 007 benchmark [4]. We are defining an 
appropriate benchmark for analyzing the performance of 
immediate vs. deferred database updates [8]. 
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