
Schema and Ontology Matching with COMA++

David Aumueller, Hong-Hai Do, Sabine Massmann, Erhard Rahm
Department of Computer Science, University of Leipzig

Augustusplatz 10/11, Leipzig 04103, Germany
{aumueller, hong, massmann, rahm}@informatik.uni-leipzig.de

ABSTRACT
We demonstrate the schema and ontology matching tool
COMA++. It extends our previous prototype COMA utilizing a
composite approach to combine different match algorithms [3].
COMA++ implements significant improvements and offers a
comprehensive infrastructure to solve large real-world match
problems. It comes with a graphical interface enabling a variety of
user interactions. Using a generic data representation, COMA++
uniformly supports schemas and ontologies, e.g. the powerful
standard languages W3C XML Schema and OWL. COMA++
includes new approaches for ontology matching, in particular the
utilization of shared taxonomies. Furthermore, different match
strategies can be applied including various forms of reusing
previously determined match results and a so-called fragment-
based match approach which decomposes a large match problem
into smaller problems. Finally, COMA++ cannot only be used to
solve match problems but also to comparatively evaluate the
effectiveness of different match algorithms and strategies.

1. INTRODUCTION
Schema and ontology matching aim at identifying semantic
correspondences between metadata structures or models such as
database schemas, XML message formats, and ontologies.
Solving such match problems are of key importance to service
interoperability and data integration in numerous application
domains. To reduce the manual effort required, many techniques
and prototypes have been developed to semi-automatically solve
the match problem [6], [11]. The proposed approaches typically
exploit metadata (e.g. schema characteristics such as element
names, data types and structural properties), characteristics of
data instances, as well as background knowledge from
dictionaries and thesauri.
Most prototypes developed so far focus on some research aspects
and offer only a rudimentary user interface if any. Given the fact
that no fully automatic solution is possible, a user-friendly
interface is essential for the practicability and effectiveness of a
match system. Furthermore, previous prototypes focus on
matching complete input models, which is feasible primarily for
small match problems. Although the reuse of previously
determined match results promises a significant reduction in
manual match work [3], its potential has not yet been fully

exploited in current approaches and systems.
COMA++ extends our previous COMA prototype [3] and
represents a customizable generic matching tool for both schemas
and ontologies. It takes over the flexible composite match
approach of COMA to combine different match algorithms, but
extends its predecessor with major improvements, namely:
comprehensive graphical user interface, generic data model to
uniformly support schemas and ontologies written in different
languages, including SQL, W3C XSD and OWL standards,
repository of schemas, ontologies and match results (mappings)
as well as a variety of high-level operators on these constructs,
e.g. to compose, merge or compare different mappings, a
fragment-based match approach to decompose a large match
problem into smaller problems [10], and new matchers, especially
for ontology matching and reusing existing match results. Finally,
COMA++ can be used as a platform to evaluate different match
algorithms. In a comprehensive evaluation, we achieved high
quality even on large real-world schemas and ontologies. Due to
the highly optimized implementation of the matchers, COMA++
has shown much faster execution times than COMA, especially in
large match problems.
The next section provides an overview of the COMA++
architecture and match processing. Section 3 outlines ontology
support and Section 4 discusses match strategies in COMA++.
We conclude with a brief outlook on what will be demonstrated.

2. OVERVIEW OF COMA++
Figure 1 shows the graphical user interface (GUI) and Figure 2
the underlying architecture of COMA++. The GUI provides
access to the five main parts of COMA++, the Repository to
persistently store all match-related data, the Model and Mapping
Pools to manage schemas, ontologies and mappings in memory,
the Match Customizer to configure matchers and match strategies,
and the Execution Engine to perform match operations.
To maximize the potential for reuse [7], [3], the Repository

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2005, June 14–16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00

Figure 1. User interface of COMA++

centrally stores various types of data related to match processing,
in particular imported schemas and ontologies, produced
mappings, auxiliary information such as domain-specific
taxonomies and synonym tables, and the definition and
configuration of the matchers. We use a generic data model
implemented in a relational DBMS (currently MySQL) to
uniformly store the different kinds of schemas and ontologies as
well as mappings between them.
Models are uniformly represented by directed graphs as the
internal format for matching. The Model Pool provides different
functions to import external schemas and ontologies, and to load
and save them from/to the repository. Formats supported by
COMA++ include XSD, XML Data Reduced (XDR), OWL, and
relational schemas. From the Model Pool, two arbitrary models
can be selected to start a match operation.
Automatic match processing is performed in the Execution
Engine in the form of match iterations, which are the building
blocks for match strategies such as fragment-based matching. As
indicated in Figure 2, match iterations take place in three steps,
component identification to determine the relevant schema
components for matching, matcher execution applying multiple
matchers to compute component similarities, and similarity
combination to combine matcher-specific similarities and derive
the correspondences between the components. The obtained
mapping can be used as input in the next iteration for further
refinement. Each iteration can be individually configured using
the alternatives supported by the Match Customizer, i.e. the
types of components to be considered, the matchers for similarity
computation, and the strategies for similarity combination.
COMA++ supports various methods to determine the components
of a schema, such as nodes, paths, and fragments, as well as to
determine the constituents of a single component, such as its
name tokens, child nodes, etc., which can be considered to
estimate the similarity between two components. Multiple
matchers can be selected from the Matcher Library to compute
the similarity between the identified components, resulting in a
similarity cube. Currently, more than 15 matchers exploiting
different kinds of schema and auxiliary information are available.
COMA++ then employs the combination scheme developed in
COMA with corresponding strategies for the sub-steps
aggregation, direction, and selection [3] to derive a match result
from the similarity cube. The obtained mapping is a set of
correspondences specifying the matching components between
two input models. Each pair of matching components is captured
in a single correspondence, i.e. a 1:1 match. Since components

may occur in multiple correspondences, matches with n:m
cardinality are possible, too.
The Mapping Pool maintains all generated mappings and offers
various functions to further manipulate them, such as to determine
the different/common correspondences between two mappings
(Diff/Intersect), to merge two mappings (Merge), to transitively
combine mappings sharing a same schema (MatchCompose [3]),
and to evaluate the decency of a test mapping against an expected
mapping according to different quality measures (Compare).
Users can also edit each mapping to remove false
correspondences or to add missing ones by clicking on the schema
components shown within the GUI (Edit). The Mapping Pool
offers further functions to load and save mappings from/to the
repository, as well as to import and export them using an
XML/RDF and a CSV format.

3. ONTOLOGY SUPPORT
OWL Support. COMA++ currently supports matching between
ontologies written in W3C OWL-Lite. OWL class hierarchies and
relationship types are read in via the OWL API [1] and mapped to
the generic model representation based on directed acyclic graphs.
While OWL/RDF (Resource Description Framework) nodes are
identified via URIs, as node names in COMA++ we use the RDF
label if available, otherwise the last URI fragment. After
importing the OWL ontologies we can visualize them like
schemas and apply all available matchers, in particular various
name and structural matchers. We tested COMA++ on a set of
recently proposed ontology match problems
(http://co4.inrialpes.fr/align/Contest/). Even without providing
domain-specific taxonomies or synonyms, COMA++ solved most
problems with high accuracy.
Taxonomy Matcher. The new taxonomy matcher matches two
schemas or ontologies with the help of a taxonomy that gets
linked between the source and target of the match task. The
taxonomy thus acts as an intermediary ontology, which is used as
a reference to look up the relatedness of source and target
components – similarly as proposed in [8]. We believe the use of
domain-specific taxonomies is much more promising than
applying huge general dictionaries such as WordNet which likely
cause poor precision in many cases.

Model 1 Beer taxonomy Model 2

sim(m1i,ti)
sim(m2k,tk)

tsim(ti,tk)

Figure 3. Taxonomy-based matching

The similarity measure between two models is determined by a
function of the similarity (distance) between the two matching
elements within the taxonomy, tsim(ti,tk), combined with the
match similarity of the two matching models with the taxonomy.
In the example of Figure 3, the elements Weizen and Kölsch of
Model 1 and 2, respectively, are hyponyms of top fermented beer
in the given Beer taxonomy. That is, they share the same
hypernym and the matcher assigns a similarity value dependent
on the distance between the two terms within the taxonomy. To
determine the intra-taxonomy similarity tsim we are still
experimenting with various alternatives, e.g. those of [2] and [12].

Repository

Graphical
User
Interface

Execution Engine

Schema Pool

External
Schemas,
Ontologies

Mapping Pool

Exported
Mappings

Component
Identification

Matcher
Execution

Similarity
Combination

Schema
Manipulation

Source Id
Name
Structure
Content

SOURCE
Source Id
Name
Structure
Content

SOURCE

Object Rel Id
Source Rel Id
Object1 Id
Object2 Id
Evidence

OBJECT_ REL
Object Rel Id
Source Rel Id
Object1 Id
Object2 Id
Evidence

OBJECT_ REL

n1

n1

11

n n n n
1 1

Object Id
Source Id
Accession
Text
Number

OBJECT
Object Id
Source Id
Accession
Text
Number

OBJECT

Source Rel Id
Source1 Id
Source2 Id
Type

SOURCE_ REL
Source Rel Id
Source1 Id
Source2 Id
Type

SOURCE_ REL

Match Customizer

Matcher
Definitions

Match
Strategies Mapping

Manipulation

Matcher Iteration

Figure 2. Architecture of COMA++

4. MATCH STRATEGIES
COMA++ supports higher-level strategies to address complex
match problems, in particular fragment-based matching and the
reuse of previous match results.
Fragment-based Matching. To cope with large schemas,
COMA++ implements the fragment-based match processing
framework proposed in [10]. Following the divide-and-conquer
idea, it decomposes a large match problem into smaller sub-
problems by matching at the level of schema fragments. With the
reduced problem size, we aim not only at better execution time
but also at better match quality compared to schema-level
matching. Our framework encompasses two matching phases:
1. Identify similar fragments. Depending on a specified fragment

type, this step determines the fragments from the input
schemas and compares them to identify the most similar ones
worth to be fully matched later. Supported fragment
granularities include complete models, so-called subschemas
as independent parts of a schema (e.g. XML message
formats), shared structures, and user-specified fragments.

2. Match fragments. Each pair of similar fragments represents an
individual match problem, which is solved in a single match
operation to identify correspondences between their
components. The result is a set of mappings containing
correspondences between fragment components, which are
then merged into a global match result.

In the automatic mode, two phases are executed in a single pass
using pre-specified strategies. COMA++ also supports step-by-
step fragment matching, allowing the user to verify and make
changes to the outcome of each phase.
Reuse-oriented Matching. The reuse of existing schemas is
addressed in [7], focusing on learning and using component
statistics in a corpus of schemas for matching. In contrast, we
pursue the reuse of previously determined match results. The
main mechanism for our approach is the MatchCompose
operation [3], which performs a join-like operation on a mapping
path consisting of two or more mappings, such as A-B, B-C, and
C-D, successively sharing a common schema, to derive a new
mapping between A and D. While COMA presupposes the
existence of such mapping paths, COMA++ now also considers
cases where such mapping paths are unnecessary (i) or not
available (iii):
i. Direct mappings. This is the ideal case for reuse, in which one

or multiple mappings are already available for the given
match problem.

ii. Complete mapping paths. In this case, COMA++ searches in
the repository for all mapping paths of different lengths, 2, 3,
etc. (i.e. the number of involved mappings), connecting the
two input schemas with each other.

iii. Incomplete mapping paths. In this case, COMA++ searches
for mapping paths involving mappings which are not
available yet, but may be computed with less effort than
directly matching the input schemas. For instance, if A was
already matched to B’, an older version of B, we can combine
this existing mapping with the match result for B’-B to solve
our task A-B. This assumes it is easier to newly match B’-B
than A-B, because only few B components are expected to
change compared to B’.

The last strategy increases the potential for reuse, but also
requires some heuristics to determine such ‘light-weight’ match

tasks. For this purpose, we search for existing mappings involving
models which are similar to at least one of the input models. This
search for similar models is a variation of the identification of
similar fragments in fragment-based matching. Currently, we
consider metadata such as the schema version, used namespaces,
and some simple string matching algorithms on the model names.
COMA++ further supports the utilization of a so-called pivot
schema, e.g. a standard schema or ontology in a domain, acting as
the central schema, against which all new schemas are first
matched. Matching any two schemas can be efficiently performed
by reusing the mappings between them and the pivot schema,
resulting in mapping paths with maximal length of 2.
From the proposed reuse possibilities, the user may choose one or
combine multiple ones to derive a match result. In the automatic
mode, COMA++ ranks the identified possibilities according to the
expected effort by looking at the path length and the size of the
involved mappings and uses a predefined number of best mapping
paths. The mappings derived from the mapping paths represent
possible results for the given match task. Similar to the match
results obtained using multiple matchers, they constitute a
similarity cube and can also be combined to complement each
other by means of the combination scheme (see Section 2).

5. TOOL DEMONSTRATION
We will apply different matchers and match strategies in
COMA++ to match between schemas and ontologies from several
domains. Thereby, various interaction possibilities to influence
the match process will be demonstrated, such as configuration of
matchers and match strategies, step-by-step execution of match
operations, verification and further manipulation of match results.

6. ACKNOWLEDGMENTS
Hong-Hai Do is supported by DFG grant BIZ 6/1-1.

7. REFERENCES
[1] Bechhofer S., R. Volz, P. Lord: Cooking the Semantic Web with the

OWL API. International Semantic Web Conference (ISWC) 2003
[2] Budanitsky A.: Lexical Semantic Relatedness and Its Application in

Natural Language Processing. Tech. Report, Univ. Toronto, 1999
[3] Do, H.H., E. Rahm: COMA – A System for Flexible Combination of

Match Algorithms. VLDB 2002
[4] Do, H.H., S. Melnik, E. Rahm: Comparison of Schema Matching

Evaluations. Proc. Workshop Web and Databases, LNCS 2593, 2003
[5] Doan A., J. Madhavan, P. Domingo, A. Halevy: Learning to Map

between Ontologies on the Semantic Web. WWW 2002
[6] Kalfoglou, Y., M. Schorlemmer: Ontology Mapping - The State of

The Art. Knowledge Engineering Review 18(1), 2003
[7] Madhavan, J., P.A. Bernstein, A.H. Doan, A.Y. Halevy: Corpus-

based Schema Matching. Int. Conf. of Data Engineering (ICDE)
2005

[8] Mena, E. et al: Managing Multiple Information Sources through
Ontologies: Relationship between Vocabulary Heterogeneity and
Loss of Information. Knowledge Representation Meets Databases
(KRDB) 1996

[9] Popa, L., M. Hernández, Y. Velegrakis, R. Miller: Mapping XML
and Relational Schemas with Clio. ICDE 2002 (Demonstration)

[10] Rahm, E., H.H. Do, S. Massmann: Matching Large XML Schemas.
SIGMOD Record 33(4), 2004

[11] Rahm, E., P.A. Bernstein: A Survey of Approaches to Automatic
Schema Matching. VLDB Journal 10 (4), 2001

[12] Weeds, J., D. Weir, D. McCarthy: Characterising Measures of
Lexical Distributional Similarity. Int. Conf. of Computational
Linguistics (COLING) 2004

