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ABSTRACT 
We demonstrate the schema and ontology matching tool 
COMA++. It extends our previous prototype COMA utilizing a 
composite approach to combine different match algorithms [3]. 
COMA++ implements significant improvements and offers a 
comprehensive infrastructure to solve large real-world match 
problems. It comes with a graphical interface enabling a variety of 
user interactions. Using a generic data representation, COMA++ 
uniformly supports schemas and ontologies, e.g. the powerful 
standard languages W3C XML Schema and OWL. COMA++ 
includes new approaches for ontology matching, in particular the 
utilization of shared taxonomies. Furthermore, different match 
strategies can be applied including various forms of reusing 
previously determined match results and a so-called fragment-
based match approach which decomposes a large match problem 
into smaller problems. Finally, COMA++ cannot only be used to 
solve match problems but also to comparatively evaluate the 
effectiveness of different match algorithms and strategies. 

1. INTRODUCTION 
Schema and ontology matching aim at identifying semantic 
correspondences between metadata structures or models such as 
database schemas, XML message formats, and ontologies. 
Solving such match problems are of key importance to service 
interoperability and data integration in numerous application 
domains. To reduce the manual effort required, many techniques 
and prototypes have been developed to semi-automatically solve 
the match problem [6], [11]. The proposed approaches typically 
exploit metadata (e.g. schema characteristics such as element 
names, data types and structural properties), characteristics of 
data instances, as well as background knowledge from 
dictionaries and thesauri. 
Most prototypes developed so far focus on some research aspects 
and offer only a rudimentary user interface if any. Given the fact 
that no fully automatic solution is possible, a user-friendly 
interface is essential for the practicability and effectiveness of a 
match system. Furthermore, previous prototypes focus on 
matching complete input models, which is feasible primarily for 
small match problems. Although the reuse of previously 
determined match results promises a significant reduction in 
manual match work [3], its potential has not yet been fully 

exploited in current approaches and systems. 
COMA++ extends our previous COMA prototype [3] and 
represents a customizable generic matching tool for both schemas 
and ontologies. It takes over the flexible composite match 
approach of COMA to combine different match algorithms, but 
extends its predecessor with major improvements, namely: 
comprehensive graphical user interface, generic data model to 
uniformly support schemas and ontologies written in different 
languages, including SQL, W3C XSD and OWL standards, 
repository of schemas, ontologies and match results (mappings) 
as well as a variety of high-level operators on these constructs, 
e.g. to compose, merge or compare different mappings, a 
fragment-based match approach to decompose a large match 
problem into smaller problems [10], and new matchers, especially 
for ontology matching and reusing existing match results. Finally, 
COMA++ can be used as a platform to evaluate different match 
algorithms. In a comprehensive evaluation, we achieved high 
quality even on large real-world schemas and ontologies. Due to 
the highly optimized implementation of the matchers, COMA++ 
has shown much faster execution times than COMA, especially in 
large match problems. 
The next section provides an overview of the COMA++ 
architecture and match processing. Section 3 outlines ontology 
support and Section 4 discusses match strategies in COMA++. 
We conclude with a brief outlook on what will be demonstrated. 

2. OVERVIEW OF COMA++ 
Figure 1 shows the graphical user interface (GUI) and Figure 2 
the underlying architecture of COMA++. The GUI provides 
access to the five main parts of COMA++, the Repository to 
persistently store all match-related data, the Model and Mapping 
Pools to manage schemas, ontologies and mappings in memory, 
the Match Customizer to configure matchers and match strategies, 
and the Execution Engine to perform match operations.  
To maximize the potential for reuse [7], [3], the Repository 
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Figure 1. User interface of COMA++ 



centrally stores various types of data related to match processing, 
in particular imported schemas and ontologies, produced 
mappings, auxiliary information such as domain-specific 
taxonomies and synonym tables, and the definition and 
configuration of the matchers. We use a generic data model 
implemented in a relational DBMS (currently MySQL) to 
uniformly store the different kinds of schemas and ontologies as 
well as mappings between them.  
Models are uniformly represented by directed graphs as the 
internal format for matching. The Model Pool provides different 
functions to import external schemas and ontologies, and to load 
and save them from/to the repository. Formats supported by 
COMA++ include XSD, XML Data Reduced (XDR), OWL, and 
relational schemas. From the Model Pool, two arbitrary models 
can be selected to start a match operation. 
Automatic match processing is performed in the Execution 
Engine in the form of match iterations, which are the building 
blocks for match strategies such as fragment-based matching. As 
indicated in Figure 2, match iterations take place in three steps, 
component identification to determine the relevant schema 
components for matching, matcher execution applying multiple 
matchers to compute component similarities, and similarity 
combination to combine matcher-specific similarities and derive 
the correspondences between the components. The obtained 
mapping can be used as input in the next iteration for further 
refinement. Each iteration can be individually configured using 
the alternatives supported by the Match Customizer, i.e. the 
types of components to be considered, the matchers for similarity 
computation, and the strategies for similarity combination. 
COMA++ supports various methods to determine the components 
of a schema, such as nodes, paths, and fragments, as well as to 
determine the constituents of a single component, such as its 
name tokens, child nodes, etc., which can be considered to 
estimate the similarity between two components. Multiple 
matchers can be selected from the Matcher Library to compute 
the similarity between the identified components, resulting in a 
similarity cube. Currently, more than 15 matchers exploiting 
different kinds of schema and auxiliary information are available. 
COMA++ then employs the combination scheme developed in 
COMA with corresponding strategies for the sub-steps 
aggregation, direction, and selection [3] to derive a match result 
from the similarity cube. The obtained mapping is a set of 
correspondences specifying the matching components between 
two input models. Each pair of matching components is captured 
in a single correspondence, i.e. a 1:1 match. Since components 

may occur in multiple correspondences, matches with n:m 
cardinality are possible, too.  
The Mapping Pool maintains all generated mappings and offers 
various functions to further manipulate them, such as to determine 
the different/common correspondences between two mappings 
(Diff/Intersect), to merge two mappings (Merge), to transitively 
combine mappings sharing a same schema (MatchCompose [3]), 
and to evaluate the decency of a test mapping against an expected 
mapping according to different quality measures (Compare). 
Users can also edit each mapping to remove false 
correspondences or to add missing ones by clicking on the schema 
components shown within the GUI (Edit). The Mapping Pool 
offers further functions to load and save mappings from/to the 
repository, as well as to import and export them using an 
XML/RDF and a CSV format. 

3. ONTOLOGY SUPPORT 
OWL Support. COMA++ currently supports matching between 
ontologies written in W3C OWL-Lite. OWL class hierarchies and 
relationship types are read in via the OWL API [1] and mapped to 
the generic model representation based on directed acyclic graphs. 
While OWL/RDF (Resource Description Framework) nodes are 
identified via URIs, as node names in COMA++ we use the RDF 
label if available, otherwise the last URI fragment. After 
importing the OWL ontologies we can visualize them like 
schemas and apply all available matchers, in particular various 
name and structural matchers. We tested COMA++ on a set of 
recently proposed ontology match problems 
(http://co4.inrialpes.fr/align/Contest/). Even without providing 
domain-specific taxonomies or synonyms, COMA++ solved most 
problems with high accuracy.  
Taxonomy Matcher. The new taxonomy matcher matches two 
schemas or ontologies with the help of a taxonomy that gets 
linked between the source and target of the match task. The 
taxonomy thus acts as an intermediary ontology, which is used as 
a reference to look up the relatedness of source and target 
components – similarly as proposed in [8]. We believe the use of 
domain-specific taxonomies is much more promising than 
applying huge general dictionaries such as WordNet which likely 
cause poor precision in many cases. 
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Figure 3. Taxonomy-based matching 

The similarity measure between two models is determined by a 
function of the similarity (distance) between the two matching 
elements within the taxonomy, tsim(ti,tk), combined with the 
match similarity of the two matching models with the taxonomy. 
In the example of Figure 3, the elements Weizen and Kölsch of 
Model 1 and 2, respectively, are hyponyms of top fermented beer 
in the given Beer taxonomy. That is, they share the same 
hypernym and the matcher assigns a similarity value dependent 
on the distance between the two terms within the taxonomy. To 
determine the intra-taxonomy similarity tsim we are still 
experimenting with various alternatives, e.g. those of [2] and [12]. 
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Figure 2. Architecture of COMA++ 



4. MATCH STRATEGIES 
COMA++ supports higher-level strategies to address complex 
match problems, in particular fragment-based matching and the 
reuse of previous match results. 
Fragment-based Matching. To cope with large schemas, 
COMA++ implements the fragment-based match processing 
framework proposed in [10]. Following the divide-and-conquer 
idea, it decomposes a large match problem into smaller sub-
problems by matching at the level of schema fragments. With the 
reduced problem size, we aim not only at better execution time 
but also at better match quality compared to schema-level 
matching. Our framework encompasses two matching phases: 
1. Identify similar fragments. Depending on a specified fragment 

type, this step determines the fragments from the input 
schemas and compares them to identify the most similar ones 
worth to be fully matched later. Supported fragment 
granularities include complete models, so-called subschemas 
as independent parts of a schema (e.g. XML message 
formats), shared structures, and user-specified fragments.  

2. Match fragments. Each pair of similar fragments represents an 
individual match problem, which is solved in a single match 
operation to identify correspondences between their 
components. The result is a set of mappings containing 
correspondences between fragment components, which are 
then merged into a global match result.  

In the automatic mode, two phases are executed in a single pass 
using pre-specified strategies. COMA++ also supports step-by-
step fragment matching, allowing the user to verify and make 
changes to the outcome of each phase.  
Reuse-oriented Matching. The reuse of existing schemas is 
addressed in [7], focusing on learning and using component 
statistics in a corpus of schemas for matching. In contrast, we 
pursue the reuse of previously determined match results. The 
main mechanism for our approach is the MatchCompose 
operation [3], which performs a join-like operation on a mapping 
path consisting of two or more mappings, such as A-B, B-C, and 
C-D, successively sharing a common schema, to derive a new 
mapping between A and D. While COMA presupposes the 
existence of such mapping paths, COMA++ now also considers 
cases where such mapping paths are unnecessary (i) or not 
available (iii): 
i. Direct mappings. This is the ideal case for reuse, in which one 

or multiple mappings are already available for the given 
match problem. 

ii. Complete mapping paths. In this case, COMA++ searches in 
the repository for all mapping paths of different lengths, 2, 3, 
etc. (i.e. the number of involved mappings), connecting the 
two input schemas with each other. 

iii. Incomplete mapping paths. In this case, COMA++ searches 
for mapping paths involving mappings which are not 
available yet, but may be computed with less effort than 
directly matching the input schemas. For instance, if A was 
already matched to B’, an older version of B, we can combine 
this existing mapping with the match result for B’-B to solve 
our task A-B. This assumes it is easier to newly match B’-B 
than A-B, because only few B components are expected to 
change compared to B’.  

The last strategy increases the potential for reuse, but also 
requires some heuristics to determine such ‘light-weight’ match 

tasks. For this purpose, we search for existing mappings involving 
models which are similar to at least one of the input models. This 
search for similar models is a variation of the identification of 
similar fragments in fragment-based matching. Currently, we 
consider metadata such as the schema version, used namespaces, 
and some simple string matching algorithms on the model names. 
COMA++ further supports the utilization of a so-called pivot 
schema, e.g. a standard schema or ontology in a domain, acting as 
the central schema, against which all new schemas are first 
matched. Matching any two schemas can be efficiently performed 
by reusing the mappings between them and the pivot schema, 
resulting in mapping paths with maximal length of 2.  
From the proposed reuse possibilities, the user may choose one or 
combine multiple ones to derive a match result. In the automatic 
mode, COMA++ ranks the identified possibilities according to the 
expected effort by looking at the path length and the size of the 
involved mappings and uses a predefined number of best mapping 
paths. The mappings derived from the mapping paths represent 
possible results for the given match task. Similar to the match 
results obtained using multiple matchers, they constitute a 
similarity cube and can also be combined to complement each 
other by means of the combination scheme (see Section 2). 

5. TOOL DEMONSTRATION 
We will apply different matchers and match strategies in 
COMA++ to match between schemas and ontologies from several 
domains. Thereby, various interaction possibilities to influence 
the match process will be demonstrated, such as configuration of 
matchers and match strategies, step-by-step execution of match 
operations, verification and further manipulation of match results.  
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