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Abstractv

Object-oriented database systems usually exhibit specific advantages over traditional
database management systems and programming languages. Among them stand the ease of
writing, maintaining and debugging application programs, -code modularity,
inheritance, persistency and sharability. Of particular interest to software engineering
and computer-aided design applications is also the ability to dynamically change the
object definitions and the opportunity to define incrementally composite objects.
This paper gives an overview of current research efforts directed towards evolving data
definitions in object-oriented database systems. The emphasis is on their ability to
support two. complementary aspects : supporting evolving schemas, and propagating the
changes on the object instances.

Several projects are analyzed : Cadb, Encore, GemStone, Orion, and Sherpa. Current results
indicate that if most of them provide schema evolution facilities, they seldom support automatic
propagation mechanisms.

A proposal is described that enables Sherpa to fully support the propagation of changes
and the dynamic classification of the instances which class definitions are modified. This
approach is an extension of techniques used in artificial intelligence for knowledge
representation. It extends previous classification mechanisms with a dynamic capability which
adequately supports evolving class definitions and instances.

Key-words : object-oriented models, databases, dynamic schemas, inheritance,
propagation, classification.

EVOLUTION DE SCHEMAS DANS LES BASES
D'OBJETS

Résumé

Les bases de données 2 "objets" présentent certains avantages par rapport aux
bases de données traditionnelles, par exemple une certaine facilité d'écriture, de mise a jour
et de débogage des programmes d'application, la modularité et I'héritage de propriétés. La
possibilité de modifier dynamiquement les définitions d'objets et de spécifier de fagon
incrémentalle des objets composés est également un de leurs intéréts pour des
applications comme la CAQO et le Génie Logiciel.

On passe ici en revue quelques études concernant I'évolution de schémas dans les bases d'objets.
L'accent est mis sur l'aptitude & mettre en oeuvre conjointement deux aspects complémentaires :
des schémas évolutifs et la propagation de leurs modifications sur les instances d'objets.
Plusieurs projets sont étudiés : Cadb, Encore, GemStone, Orion et Sherpa. I en ressort
que la plupart offrent la possibilité de modifier les schémas de données, mais qu'ils mettent
rarement en oeuvre la propagation automatique de leurs mises 2 jour.

On propose une solution permettant dans Sherpa de propager les modifications de schémas et
d'implanter la classification automatique des instances. Elle est basée sur une extension de
techniques utilisées en Intelligence Ariificielle pour la représentation des connaissances. Elle
étend les mécanismes de classification habituels par une approche dynamique qui permet de
gérer simultanément des classes et des instances évolutives.

Mots-clés : modeles orientés-objet, bases de données, schémas dynamiques, héritage.
propagation, classification.
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1. INTRODUCTION

Object-oriented systems have received considerable attention in the past few years for several
reasons. The primary focus of such systems is to provide powerful concepts for application
development and programming, e.g modularity, encapsulation, inheritance, overriding, protocols
and polymorphism [16, 24]. Conventional database systems have been simultaneously unable to
support efficiently advanced applications, e.g CAD/CAM and software engineering, which
currently deal with large amounts of evolving and shared composite objects, which are linked by
intricate semantic relationships [9, 12].

Consequently, merging object-oriented programming and database concepts was a promising
research effort. Several projects are currently underway for the development of object-oriented
database systems, e.g GemStone, O2 and Orion [1, 4, 11]. They are intended to support software
engineering, office automation and CAD/CAM applications. As such, they provide facilities to
define, store and retrieve shared and persistent composite objects [3]. Most of them support
changes in the object definitions, i.e evolving database schemas [22]. However, very few have the
ability to propagate the changes on the corresponding instances. This paper proposes an original
contribution to this issue. v

The goal here is to contribute to the characterization of salient features for object-oriented database
systems. The fundamental assumptions are :

- the existence of an object-oriented paradigm for defining and manipulating the data,

- its implementation and usage in an engineering design environment, and as a consequence,

- provision for the data definitions (i.e the database schema or the object class definitions in more
specific terms) to interactively evolve during the application lifetime, to cope with the evolution of
the data and programs.

The last two assumptions are justified by existing design thoeries, which usually rely on trial and
error cycles for the design of complex artifacts. Most of the time, new items are incrementally
defined using existing components which are incorporated in the new objects. Further, previous
work is often reused by incorporating changes in existing objects, in order to derive new objects
that will correspond to the required specifications. This is illustrated throughout the paper by
aircraft design examples.

This paper is not intended to be a comprehensive study of existing research efforts and prototypes.
It gives only a limited survey of specific capabilities. The choice among various systems and
proposals was arbitrary. It is not the will of the authors to provide either a complete comparison or
a valuable benchmarking of their functionalities. Further, systems which were not intended to
provide database functionalities are also mentioned, because they support other interestin g features,
¢.g Loops [16]. Therefore, any statement hereafter should not be interpreted as a judgement or a
position of the authors on the overall quality of the research referenced.

Section 2 presents an overview of various interesting functionalities for object-oriented database
systems intended to support advanced applications such as engineering design.

Several object-oriented systems are analyzed with respect to these functionalities in Section 3. The
emphasis is on schema evolution. The ability to handle the changes and propagate them on the
object instances is detailed. It results that no system provides a full support for object evolution
resulting from changes in the class definitions and the class relationships. Restrictions are detailed
where appropriate.

A proposal is made in Section 4 to control the modifications performed on the schemas and take
automatically into account their impact on the object instances. It uses dynamic inheritance and
classification. Section 5 is a conclusion.

2. SCHEMA EVOLUTION IN OBJECT-ORIENTED SYSTEMS

In the following, the reader is supposed to be familiar with the object-oriented paradigm and
terminology [16, 18].

An object is defined by a structure and an interface. The structure includes a collection of properties
called instance variables, each of which has a value domain which can be either an atomic value,
sometimes called self-defining object (numbers, character strings, ...), or another object class. The
structure corresponds to the notion of type in programming languages [14]. The interface defines
the behavioral semantics of the objects. It includes a set of methods or procedures, which are
invoked by messages to which the objects respond by executing the corresponding code.

Objects are grouped into classes which are collections of instances corresponding to similar
structures and interfaces.



Depending on the system considered, objects may share instance variables and methods by
inheriting them in a class inheritance hierarchy or lattice. Multiple inheritance is possible in a class
lattice, as in Encore and Orion [1, 14]. Classes are related in the inheritance lattice by the
super-class/sub-class relationship.

In the following, a database schema is a set of class definitions interconnected by the super-class/
sub-class relationship. It is represented by a class lattice. No restriction is assumed on references
from classes to specific instances. Stated otherwise, sub-classes do not necessarily partition the
instances of their super- classes. Therefore, the sets of instances in sub-classes are not necessarily
disjoint. This provides for multiple inheritance and multiple references. Further, no recursive and
no cross-referenced definitions are allowed. '

Object and class names are written in uppercase letters, e.g AIRCRAFT, while instance variables

are in lowercase, e.g "range". In Figure 1, STOL (short take-off and landing), MEDIUM range
and AMPHIBIAN aircraft classes inherit the instance variables from the class AIRCRAFT, i.e

"type”, "mtow" (maximum take-off weight), "fuel" capacity and "range”, in a class lattice.
The "type" of an aircraft is an atomic value, e.g "jet" or "turboprop”, the "mtow" is in tons, the
"range” in nautical miles (nm) and the "fuel” capacity in US gallons. The STOL class groups
those aircraft with stol capability, giving their "take-off" and "landing” distances. The
MEDIUM range class describes the "safety” equipment for those particular aircraft with a
"range" between 1,000 and 2,000 nm (this is not described in Figure 1). The AMPHIBIAN class

gives the "floats" characteristics for those particular aircraft with floating equipment [6]. The
SAM-AIRCRAFT class groups the instances of the aircraft which are simultaneously STOL,

AMPHIBIAN and MEDIUM range. An additional instance variable "certified" gives their
particular certification date. , :

AIRCRAFT

AMPHIBIAN

certfid
SAM-AIRCRAFT

Figure 1. Class lattice for aircraft.

It is emphasized here that no classification mechanisms like those used by knowledge
representation schemes in Artificial Intelligence are invoked in object-oriented systems. It results
that inheritance in the usual object-oriented approach does not imply the automatic propagation of
the instances corresponding to the various class definitions in the lattice. For example, the instances
created in the class AIRCRAFT do not automatically belong to any sub-class, unless explicitly
coerced by the user. This is discussed in Section 4 where the dynamic classification of the
instances in an object-oriented database system is proposed.

2.1 Schema change operations

Although different in some aspects, the taxonomy of schema change operations and the related
issues discussed in this section grossly follows that of Orion [1]. Schema change operations fall
into three categories :

- changing class definitions, i.e instance variables or methods,

-modifying the class lattice by changing the relationships between classes, and

- adding or deleting classes in the lattice.

These operations are briefly surveyed in the remainder of this section (Sections 2.1.1 to 2.1.3).
Other relevant issues are discussed in the following subsections, including composite objects and
versions (Sections 2.2.1 to 2.2.3). Various prototypes are later analyzed with respect to these
issues, in Section 3.



2.1.1 Changing class definitions

Changing class definitions includes :

- adding or deleting new instance variables and methods in a class definition,

- modifying existing instance variables and methods, e.g changing their name, their domain or
constraints.

Uniqueness of the names is usnally required between classes and among each class's instance
variables. Potential name conflicts may be readily solved by rejecting the conflicting instance
variable or method [11].

For example, the instance variable "maxload" can be added to the class AIRCRAFT (Figure 2).

Its domain is the maximum weight of cargo allowed.
AIRCRAFT
engines
mtow
fuel
range
maxload

) (floats) AMPHIBIAN

cermied
SAM-AIRCRAFT
Figure 2. Adding instance variables.

2.1.2 Adding and deleting classes

Adding and deleting classes in the class lattice is a common feature in object-oriented data models.
Creating new specialized classes from existing classes is also a basic constructor of object-oriented
schemas.
For example, defining the classes LONG and SHORT ran ge by specialization of the class
AIRCRAFT provides the ability to characterize those aircraft with specific range constraints (Figure
3).

AIRCRAFT

engines )
miow
fuel
range
maxload

cerliied
SAM-AIRCRAFT
Figure 3. Adding new classes.

Specific equipment, such as increased fuel capacity, allow some aircraft like the Airbus A300 to be
certified for long-range intercontinental flights. They have the so-called "extended-range”
capability, e.g the Airbus A300-600R. The class EXTENDED range can be defined as a
specialization of the class AIRCRAFT (Figure 4). _

AIRCRAFT

engines
mtow

fuel
range
maxload

/‘ ~ AMPHIBIAN
LONG )/ safoty ‘

ceartified

SAM-AIRCRAFT
Figure 4. Specializing classes.
4 .




2.1.3 Changing class relationships

Changing the class relationships is another facility which allows taking into account schema
evolution. It may be used for the incremental definition of objects or to model a new semantics : for
example specific instances of MEDIUM range aircraft (e.g A300s) are also instances of the class
EXTENDED range (e.g A300-600R). This is modelled by adding a specialization relationship
between the corresponding classes in the lattice (Figure 5). Further, EXTENDED range can be
made a sub-class of the LONG range class by adding a new relationship, since they must bear
similar capabilities and equipment. Finally, the existing relationship between the AIRCRAFT and
EXTENDED classes may be deleted because it happens that no aircraft is designed primarily as an
EXTENDED range, but rather as a refinment of an existing MEDIUM range one.

In the example, the result of these changes is that :

- the lattice reflects the fact that EXTENDED range aircraft are designed as specific MEDIUM range
aircraft,

- they must comply with the definition of the LONG range class, for example by inheriting
particular performance characteristics. This is described by the specialization relationship between
the LONG and EXTENDED classes (Figure 5).

Name conflicts may result from changes in the class relationships. When multiple inheritance is
available, ordering the super-classes of a given class may avoid to some extent these conflicts. For
example, the instance variables and methods with the lowest order number in the superclass list are
inherited. Overriding allows also locally defined instance variables and methods in a class to

redefine inherited instance variables and methods. For example, the instance variable "range" is
- defined locally in the class EXTENDED range (Figure 4). Specific calculation or constraints can
therefore be invoked on the range instance variable for that particular class.

AIRCRAFT

engines
mtow
fuel
range
maxload

AMPHIBIAN

certfied
SAM-AIRCRAFT

Figure 5. Changing class relationships.

Further, if instance variables and methods are transitively inherited from the superclasses of a
class, constraints and domain conflicts can also occur. For example, range constraints in the
classes STOL, MEDIUM and AMPHIBIAN may overlap. A subclass of SAM-AIRCRAFT
should then inherit the most constrained domain for its range instance variable.

2.2 Relevant issues

The following sections discuss some features currently supported by advanced object-oriented
database systems which interact with evolving schemas. This includes versions of objects,
composite objects and versions of composite objects, which are fundamental to applications such
as engineering design (Sections 2.2.1 to 2.2.3).

2.2.1 Composite objects

Incremental specification of the design artifacts requires changing dynamically the class definitions,
hence the database schema. While many prototypes support only the schema change operations
described in Section 2.1, more sophisticated ones provide advanced semantics concerning the
management of dynamically evolving objects.

While composite objects are often made available, the notion of dependent objects is seldom
supported. This is described in this section. From a more pragmatic point of view, versions of
(composite) objects are sometimes provided. This is detailed in Sections 2.2.2 and 2.2.3.
Composite object definition and manipulation is a major issue in many applications today [3].
‘ 5



While traditional bussiness aplications usually rely on simple record-oriented data structures, the
management of large engineering projects, such as aircraft design, require the manipulation of
thousands of components which participaie in ihe overall design. These pieces of work must be
incorporated in the global object definition and their manipulation requires careful attention. While
off-the-shelf components, i.e existing objects, can be used in many parts of a design, specific
components need always be designed to meet particular requirements. Semantic information’ has
therefore to be taken into account to differentiate between those particular components which are
specific to the design under consideration, namely dependent objects, and the replacable units
which are previously defined. It results that the notions of composite objects and dependent objects
must be differenciated [12].

For example an aircraft is composed of a fuselage, wings, engines and a landing gear. They are
objects on their own and designed independently, but a dependency relationship exists between an
aircraft instance and fuselage, wing or engine instances. It reflects the fact that the existence of the
component classes' instances depend on the existence of the "owner" aircraft instances. It is
therefore more than a mere structural definition, which can be defined straightforwardly, e.g by the

list "mtow", "fuel", etc. It is indeed a semantic relationship between the instances involved. It
can be defined at a generic level, i.e in the corresponding class definitions, or at the specific
instance level. This is shown in bold lines in Figure 6 and all subsequent figures.

AIRCRAFT

mtow
fuel
range
maxioad

FUSELAGE

(Em;ms ) (LANDI GEAR

Figure 6. Composite object aircraft.

For example, each AIRCRAFT instance owns specific instances of the classes FUSELAGE,
WING, etc. In particular, various aircraft belonging to the same model, say B737, can be fitted
with different engines, e.g CFM56 or JT8D from various manufacturers. Each serial number
aircraft owns exclusively different instances of the various engines. Should an aircraft instance be
deleted, all instances referenced through a dependency relationship are deleted. This means that the
deleted aircraft's engines are also deleted. If this is not the wish of the user, the dependency
relationship must be relaxed.

Changes to the definition of composite objects have to be propagated on their components, e.g
deleting a dependency relationship. Similarly, changes to the definition of a component must be
visible to the owner object to enforce the dependency relationship.

2.2.2 Versions

Versioning of objects has been studied for a long time in the database community. Object versions
are also relevant to object-oriented database design because increased computer assistance
encourages trial and error cycles for application development.

Generic instances may be used to model the version derivation hierarchy for a given class (Figure
. ;jI’hé:y may be used to reference objects without specifying in advance the particular version
needed. '

TURBO-FAN UNDUCTED-FAN TURBOPROP
ENGINE ENGINE  ENGINE

¢ y v -
> @D eT7

class <g-p Jeneric

I | generic instance lnsta'nce of
version

L] version instance —>  instance of

Figure 7. Derivation hierarchy for engine versions.
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Specific versions in the derivation hierarchy are called version instances. As shown in Figure 7,
CFMS56 is a version instance of the generic instance "turbo-fan engine". Turbo-fan engines are
fitted on all popular commercial aircraft today. Similar comments apply to the version instances
UDF and CT7 for the generic instances "unducted-fan engine" - a new generation jet engine - and
"turboprop engine" -the most widely used propeller engines nowadays.

Also various options in the B737 model, called 737-100, 737-200 and 737-300 provide for
different seat capacity, within a range of 100 to 150 passengers, and various sophistication in
cockpit equipment, including CRT instrument displays and automatic landing electronics [15]. In
Figure 9, B737 is a generic instance for the class AIRCFRAFT, while B737-300 is a particular
version instance for B737.

Changes to the definition of a class have to be propagated to its generic instances, unless a new
generic or version instance is explicitly created. Modifications performed on a generic instance
should also be propagated to its version instances, unless a new generic instance is created.

Note that the notion of generic instance is specific to the applications. One might argue for example
that "turbo-fan engine" can be made a sub-class of ENGINE, since turbo-fans are particular
engines. They have specific characteristics known by the engineers. This is fundamentally a
schema design issue. It is not discussed here.

2.2.3 Composite object versions

When a dependency relationship exists between a parent class and a component class, for example
between the AIRCRAFT class and the ENGINE class (Section 2.2), it applies to their generic
instances, if any. For example the dependency between the classes AIRCRAFT and ENGINE in
Figure 6 applies to their generic instances "B737" and "turbo-fan engine" (Figure 8).

dependency
T class relationship

L}
| so— | genaric instance 4> generic
instance of

Figure 8. Composite link between generic instances.

This allows generic instances to be referenced dynamically by other objects, i.e without specifying
a priori any particular version instance. Conversely, version instances are referenced statically, i.e
like any other object instance. Binding a particular version instance to a component generic instance
may be allowed. For example the version instance B737-200 can be bound to the generic instance
"turbo-fan engine" in Figure 9. This means that the designers intend to fit turbo-fan engines on the
B737-200s, without specifying more precisely any such engine by now.

AIRCRAFT

fuselage wing

dependency
oum— class relationship

L ]
 I— generic instance - eneric
—

< version instance sta.nce of
. versijon

instance of
component

Figure 9. Composite object versions.
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3. SYSTEMS SURVEY

If most object-oriented systems bear only slight variations in the basic concepts they implement, the
major differences are in their support for schema evolution. A limited survey of existing prototypes
is given in this section, with emphasis on the issues discussed above. This includes Cadb, Encore,
GemStone, Orion and Sherpa.

The notion of inheritance lattice is discussed first (Section 3.1). The operations allowed are
analyzed next (Section 3.2). Composite objects and versioning are detailed in sections 3.3 and 3.4.
Propagating the changes performed on the schemas concerns both the control of their impact on the
class definitions and on the existing object instances. This is discussed in sections 3.5 and 3.6.
While the first issue is often emphasized, the second is often superficially addressed. It requires
indeed classification mechanisms which are usually not made available in the database approach.
This will be discussed later in Section 4.

3.1 Inheritance lattice

Consistency of the schema in GemStone and Orion is specified by a set of invariants that are
enforced by semantic rules [1, 11]. In contrast with GemStone, but like Loops, classes are
organized in Orion in an inheritance lattice [1]. This allows multiple inheritance and complicates
‘somewhat the name conflict problem. As mentionned above (Section 2.1.3), this can be solved by
ordering the superclasses for each class (user defined or default ordering).

In the example in Figure 2, the ordering of the super-classes for the class SAM-AIRCRAFT is
STOL, MEDIUM and AMPHIBIAN. Should the class EXTENDED range (Figure 4) be made a
super-class of SAM-AIRCRAFT, it would be added at the end of its super-class list (i.e STOL,
MEDIUM, AMPHIBIAN and EXTENDED range), unless specified otherwise by the user.

This helps avoiding to some extent name conflicts when renaming or adding new instance
variables. Should any such conflict arise due to inheritance of instance variables and methods,
propagation of the new or modified instance variable does not occur in the conflicting sub-classes
(see Section 3.5).

3.2 Schema change operations

Most systems provide a limited set of schema change facilities. Concepts such as default or shared
values and composite objects in Orion are usually not supported by other systems [3]. Provision
for renaming of classes and instance variables, as well as name conflict resolution, are summarized
in Table 1.

Name Change name] Change name
°°"'”°.' of instance | _: iaqs
resolution variable
Cadb no no no
Encore no no no
Qrion ves yes+ yes
GemStone no yes® no
Sherpa yes yes yes

+ Propagated to subclasses
* Except if inherited (propagated to subclasses)

Table 1. Changing names in the schema.

Modifying the domain of an instance variable is allowed in Orion by generalization only, and

within the limits of the inherited instance variables' domains. This avoids values of existing

Instances to become illegal with respect to an updated domain.

In GemStone, modification of constraints on instance variables is limited to the specialization or

generalization of their domain [11]. Similar changes are allowed in Encore. They are handled in the

latter by creating systematically new versions of the classes (see Section 3.4). Similarly, adding a
8



new class as a leaf in a hierarchy provides in GemStone a means to specialize an existing class by
adding specific instance variables, constraints and methods. The new class inherits all instance
variables and methods from its super-classes, unless otherwise redefined.

Changes to the schema yield new versions of classes in Encore . For example, deleting a class in
the lattice provokes the creation of new versions of its sub-classes, which automatically inherit the
instance variables of its super-classes. This is summarized in Table 2.

Add a Delete a Add an Delete an { Create Delete Change
class class instance var { instance v. | superclass | superclass| constraint
Cadb yes ' yes yes yes yes yes yes
Encore yes yes yes yes yes yes yes
Orion yes ‘ yes yes yes yes yes yes+
SemStone yes yes* yes yes§ no no yes®
Sherpa yes yes yes yes yes yes yes
+ generalize only (propagated to subclassses) ' if class empty
° generalize or specialize (not propagated) § except if inherited (not propagated to subclasses)

Table 2. Schema change operations.
3.3 Composite objects

As mentionned previously, composite objects are basically structural aggregates of sub-parts
involved in the definition of a composite object. A dependency relationship between the
components and the "owner" object must be provided if the semantics of the composite object is to
be applied on the components. For example, composite objects are instantiated as a whole in
Loops, and deleted as a whole in Orion. This dependency is system-defined in Loops, but generic
in Orion, i.e class-defined. In contrast, Cadb supports the dependency relationship at the instance
level. Instances of the components are exclusively owned by one parent instance in the composite
object class, which defines its context. They may be shared by other instances. This is summarized
in Table 3.

One problem in the Orion approach is that composite objects and dependent objects are merged in
the same concept, by the generic composite link property. As described later in Section 4.1, this
constraint should sometimes be relaxed. Since it decouples the (instance-specific) dependency
relationship from the (generic) composite object definition, this problem is irrelevant in Cadb.
Neither GemStone, Encore nor Loops seem to support explicitly a similar notion of dependent
objects.

3.4 Versions of schema, classes and instances

A major goal in Encore is that the modification of object types, i.e class definitions, should remain
transparent to the application programs [14]. The emphasis is on the preservation of the behavior of
the objects using versions of classes. An error-handling mechanism provides the correct version of
a class, corresponding to a specific message version, and vice-versa.

An object instance belongs to exactly one specific version throughout its lifetime. All versions of
classes can be modified and instantiated at any time. Versions of sub-classes are created
automatically upon creation of new versions of classes. Error-handlers are systematically
associated with the new versions in order to provide for consistent access later on. So far however,
no name conflict resolution is provided. Future extensions should also provide for type merging
and splitting.

Orion extends the notion of version to that of versions of schema [22]. As described previously,
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generic instances are provided to support versions of instances [3]. Like Cadb, it supports versions
of composite objects. Composite links between a parent version instance and a component generic
instance are supported, €.g B737-200 and turbo-fan engine, and between a parent version instance
and a component version instance, e.g B737-300 and CFM56 (Figure 9). Neither GemStone nor
Loops seem to support explicitly the notion of version (Table 3).

Versions Versions Versions Dependent
Instances | of classes of schema objects
Cadb yes no no yes °
Encore yes yes* no no
. . §
Orion yes no yes yes
GemStone no no no no
Sherpa yes yes no yes

° instance-specific level
§ generic (class) level

* all versions always instantiable
+ last version instantiable oniy

Table 3. Versioning and dependent objects.

3.5 Propagation of changes on class definitions

Schema changes in GemStone are controlled using a set of invariants that define the legal
configurations of the class hierarchy. For example, chan ging the name of an instance variable in a
class is propagated to its subclasses, provided they do not redefine it locally. Adding a new
instance variable is allowed if it is not already defined in a subclass. Deleting an instance variable in
a class definition is allowed if it is not inherited from a superclass. Further, the deletion is not
propagated to the subclasses. This must be explicitly performed on each subclass.

Specializing and generalizing the domain of an instance variable is not allowed if it is inherited. In
either case, the operation is not propagated to subclasses and has to be explicitly performed as
required. This is described in Table 2.

In contrast with Orion, a class may not be deleted in GemStone and Encore if there are any existing
instances. Since no reference to deleted classes and instances are allowed, classes referencing
deleted ones are forced to refer to their immediate superclass. For example, deleting the class
LONG range aircraft in Figure 5 enforces direct inheritance between the classes AIRCRAFT and
SAM-AIRCRAFT. :

In Orion, one can change the name or add new instance variables in a class definition. This is
propagated to the extent that no name conflict and no local redefinition appears in the sub-classes.
The domain of an instance variable can only be generalized, thus avoiding any impact on existing
instances [1]. For example, the domain of the engines in the class aircraft, e.g the class ENGINE,
can be generalized to include all vehicle engines, but it cannot be later restricted to exclude diesel
engines (Figure 10) - there exist indeed throughout the world a few exotic prototype aircraft

powered by diesel engines.
VEHICLE
ENGINE

Figure 10. Generalizing an instance variable domain.

In Encore, no propagation of schema changes is supported. Rather, a specific notion of compatible
version 1s implemented to handle the mismatch between the successive definitions of an object class
and the corresponding methods. An error-handling mechanism provides for the correct mapping
between the various object versions and the corresponding methods.

Associated with each class is a version set interface which is the union of the specific version
mterches. It includes only the least constrained instance variables and methods, thus providing a
potential interface for all versions. The refinement corresponding to each particular version is dealt
with by an error-handling mechanism which is attached to each particular version [14].
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3.6 Propagation of changes on object instances

Schema modification is not per se an issue. Of primary concern is the capability to-provide some
form of controlled side-effects on the object instances. The spectrum lies between a fully automatic
propagation of the changes and a manual one. '

The first approach is used in GemStone and Orion, while the second is that of Encore. An explicit
convert operator has to be invoked by the user in order to modify in Encore an instance and
conform it to a modified class definition. ~

Another relevant issue for change propagation is the delay by which the modifications are actually
performed on the object instances. Propagation can be immediate or deffered.

Immediate propagation is adopted in GemStone. It is called conversion. The impact of schema
modifications is immediately implemented on the instances involved.

Deffered propagation is used in Orion. It is called screening. The side-effects are propagated only
when the instances are accessed. The first solution emphasizes consistency and information
preservation. It also sacrifices performance. One advantage is that it limits the propagation to the
execution of epilogs in the execution of methods. The second solution emphasizes performance but
requires a permanent propagation mechanism throughout the system's lifetime.

Restrictions always limit propagation to specific cases with respect to the operation involved and
the arguments of the change (see Section 3.5 for example).

Invariants preserving rules in Orion also avoid most propagation problems on object instances.
Screening deleted instance variables and adding default or nil values to a instance variables is
performed when fetching the modified class' objects.

The notions of composite objects and versions complicate somewhat the propagation of changes
performed on the schemas. For example in Orion, adding to an existing class a super-class which
contains a composite link is propagated to the former's sub-classes. They will inherit the new
composite link. For example, replacing the class AIRCRAFT in Figure 5 by the class described in
Figure 6 (where a composite link exists with the class ENGINE) is possible. The modification will
be visible to the classes LONG, MEDIUM, SHORT and EXTENDED range. However, this
implies no automatic inheritance of engine instances.

In contrast with Encore, when new version instances of composite objects are derived, no new
versions of components are created. Composite links to versions instances are set to nil. Composite
links to generic instances, which are dynamically bound, are not modified. For example, deriving a
new B737-400 version from the B737-300 model implies that the ENGINE component is set from

CEFM56 to nil (Figure 11).
(AIRCRAFT)

A

A4
B737

737-20 737-50 B737-400

TURBO-FAN nil

ENGINE
dependency
— class relationship
| semo— | generic instance P generic
> version instance instance of

—e- version
instance of

Figure 11. Deriving new versions.

In contrast, if a new version B737-500 is derived from the B737-200 model, the composite link to
the turbo-fan engine component (a generic instance) will remain unchanged (Figure 11). The 400
model is indeed presently tested for certification, while the 500 model is already planned by the
‘manufacturer [ 15]. '

Because components may usually have only one owner object, it is not possible in Orion to change
a non-composite link to composite. This avoids maintaining reference counts in the components,
which neither have to include any reference to their owner. This is summarized in Table 4.
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Propagation } Immediate Deffered
of changes propagation § propagation
Cadb automatic yes no
Encore manual no yes®
Orion automatic no yes+
GermStone automatic yes* no
Sherpa mixed yes optional

-

conversion
+ screening

° convert operator

Table 4. Propagation of changes.

4. DYNAMIC PROPAGATION OF CHANGES

Propagating the schema changes on the object instances is a capability that systems intended to
support engineering applications must provide. It allows the designers to iteratively check the
side-effects of the data manipulations and to incrementally design the artifacts. It also helps
controlling their consistency with respect to existing objects and to the design rules. While most
systems support schema evolution, they seldom support automatic propagation of the chan ges. A
proposal is made in this section to address this issue. It relies on techniques like classification,
which are usually not provided in database environments, but rather in artificial intelligence for
knowledge representation. It therefore provides a new contribution to the domain of data and
knowledge bases.

The requirements for supporting the incremental design of artifacts are briefly discussed in Section
4.1. Next, an extended notion of object class is informally defined, which takes into account the
completeness of evolving and dependent objects, namely relevant classes (Section 4.2 and 43). A
basic set of schema change operations is then described through examples (Section 4.4). Combined
with relevant classes, it allows grouping the modifications on the object instances, as a result of
changing the schema (Section 4.5 and 4.6).

4.1 Incremental design of objects

Dynamic inheritance and classification provide a means to automatically propagate schema changes
on the object instances. Cadb is one of the first prototype to implement such mechanisms, though
no explicit notion of messages is implemented [12]. Rather, calculated properties are made
available to define instance variables which values depend on other instance variables from one or
more objects. This is described in the example in Figure 17, where the total fuel capacity of an
aircraft is derived from the fuselage and wings capacities.
Cadb is intended to minimize the restrictions usually burdening propagation of changes in other
CAD database systems. Object classes are defined by specification rules, i.e instance variables,
derivation rules and integrity constraints. Object instances are grouped into sets that instantiate the
classes. Composite objects are taken into account together with the notions of dependent objects
and context.
In contrast with other proposals, both top-down and bottom-up design of composite objects are
simultaneously supported. This allows the instantiation of partially known objects and the
incremental design of large objects from existing components. Mixing both approaches is
possible, i.e include existing components and later reference new components yet unknown.
In contrast, Orion allows only top-down design, i.e components may only be instantiated if their
parent exists [3]. For example, engines cannot be created in the example in Figure 6 if the
corresponding aircraft does not exist. It is neither possible to create a CFM56 instance of turbo-fan
engine, without knowing to which instance of B737-300 it belongs in Figure 9. However, for
most aircraft and engine manufacturers, items are designed and fabricated independently. This
allows aircraft to be equipped with various powerplants from one model to the other (B737,
Airbus,...), from one version to another (B737-100, B737-200,...) and from one serial number to
another, depending usually on the carrier airline request. Similarly, older aircraft are periodically
12 :



refitted with new engines. This implies replacing the engine component for those aircraft involved.
While adding the new instances of engines is no problem, keeping the old ones aside is not
possible if a composite link exists between the classes AIRCRAFT and ENGINE. Stated
otherwise, the notion of dependent object as defined in Orion is here too strong.

One solution is to create a new class for the engines being replaced, say SPARE ENGINE (Figure
12). Note that those engines are in real life reconditioned, then used as spare parts and eventually
refitted on other aircraft. This means that they have no owner aircraft for an undefined, but
possibly limited, period of time. The old engines have therefore to be deleted in the ENGINE class,
and new copies must be created in SPARE ENGINE.

VEHICLE
ENGINE

Figuré 12. New class for spare engines.

Incremental design can therefore rely in part on the notion of composite object. As shown in the
example above, dependency relationships must however be carefully defined to avoid
inconsistencies and potential information losses. Crude manipulations of the schema can alleviate to
some extent such problems, e.g the creation.of the class SPARE ENGINE. It is clear however that
controlling incompleteness and inconsistency of the design objects require new concepts and
mechanisms . This is discussed in the next Section. '

4.2 Relevant classes

In Cadb, the completeness and the consistency of the object instances are systematically taken into
account. An extended notion of object class, called relevant class, is implemented. Relevant classes
represent partial and meaningful designs, characterized as potential steps towards a complete class
definition. Every instance is attached to exactly one relevant class, whatever its completeness and
consistency. Relevant classes cannot be related by the subclass-superclass relationship, nor the
generalization- specialization relationship [23]. Being partial definitions, they are not subclasses
with respect to the object-oriented paradigm.They are only used by the system to support the
incremental definition of the artifacts. Further, they are not meant to be incorporated in the
user-defined inheritance lattice.

Relevant classes are characterized automatically by selecting from the powerset of the instance
variables and constraints in a class definition, those corresponding to meaningful combinations,
with respect to semantic rules [8]. The semantic rules can depend on the data model only and can
be augmented by application dependent rules. A formal definition is given in [10].

The rules depending on the data model state for example that the definition of a relevant class must
include all decidable constraints, i.e those constraints which arguments are all instantiated. This
provides a means to take the consistency of the objects systematically into account. For example, if

the mtow of an aircraft is the sum of its maxload, plus its fuel weight, every relevant class,
hence each partially instantiated instance, that includes those two properties must also include its

mtow. The following partial definition is therefore irrelevant because it does not include the

mtow (Figure 13) :
AIRCRAFT

fuel
~ range
maxioad

wing =

Figure 13. An irrelevant aircraft class.

The application semantics provides the opportunity to reduce further the number of relevant
classes. This is defined in Cadb using application dependent rules. For example, the design of a
new aircraft may involve two projects including the fuselage, the wings and the landing gear for the
first one, and leaving the design of the engines to another project, which is actually the way it
works. Each project may use a specific part of the class lattice, each of which is represented by a
set of relevant classes, for example AIRCRAFT1 and AIRCRAFT2 in Figure 14. Note that both
classes include the mtow, fuel, range and maxload instance variables from AIRCRAFT, because all
are required to design engines, wings, etc. And again, this is how it really works.
13



AIRCRAFTA AIRCRAFT2

mtow mtow
fuel fuel
range range

maxload

maxload

LANDING GEAR

¢ ENGINE’

Project 1 , Project 2
Figure 14. Two relevant classes for aircraft.

FUSELAGE

Similarly, European cooperation makes it possible to design and manufacture parts of an Airbus by
dozens of companies throughout Europe, for example wings in Great-Britain and Spain, fore
fuselage in France, rear fuselage in West-Germany and so on. Each company involved must use a
set of relevant classes from the whole AIRCRAFT class for its own purpose, for example
AIRCRAFT3 and AIRCRAFT4 in Figure 15. Note that the range of an aircraft is irrelevant for the
design of the fuselage and wings and is omitted in both definitions.

AIRCRAFT3 AIRCRAFTA

mtow
fuel
maxload

France & W. Germany Great-Britain & Spain
Figure 15. Two other relevant classes for aircraft.

Relevant classes are characterized automatically by selecting all meaningful combinations of
instance variables and methods in the AIRCRAFT class. Their purpose is only to evaluate the
side-effects and propagating the changes made on the schema. They can be made transparent to the
user. The following AIRCRAFTS5 and AIRCRAFTG6 classes are also relevant (Figure 16).

AIRCRAFT6

mtow
fuel
range

maxioad

AIRCRAFTS

FUSELAGE
Figure 16. Some more relevant classes for aircraft.

Incomplete objects, thus incrementally specified instances, are dynamically attached to the relevant
classes. Because they are partial, although meaningful, definitions of the final design, such
Instances can always be attached to exactly one relevant class.

4.3 Dependent objects

Dependent objects are created when top-down design is used to define components which existence
depends on the existence of a parent object. This is similar to the notion of composite objects and
composite link in Orion. The authors are not aware of other systems implementing such concepts.

Contexts are used in Cadb to propagate the changes on the dependent instances. Modifications are
allowed only in the context where an instance is created. Further, derivation rules specifying the
calculation of instance variables which values depend on other instance variables (in the same or
other objects) automatically take into account the changes performed on the objects. For example,
aircraft usually carry fuel tanks in the fuselage and the wings. This requires the redefinition of the
fuel capacity in the example figures above. First a fuel instance variable is added in the classes

FUSELAGE and WING. Next the aircraft fuel capacity is redefined as the sum of the fuel
capacity in the fuselage, plus two times the fuel capacity in the wings (Figure 17). Modifying any
of the fuel values in the classes FUSELAGE or WING is automatically propagated, should an
AIRCRAFT's fuel be fetched later.
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AIRCRAFT

mtow
fuel:=fuselagd
range

maxload

fuel+ 2*wing.fuel

FUSELAGE WING LANDING GEAR
Figure 17. Computation of the aircraft fuel capacity.

4.4 Schema change operations

The modifications allowed on the schema are modelled by finite sequences of four operations.
Namely reduction, augmentation, connection and product.

The reduction and augmentation are used to drop and add instance variables, constraints and
methods to classes. A formal definition is given in [10].

For example, augmenting the class WING with an instance variable "weight" allows further
information to be taken into account. Similarly, reducing the class FUSELAGE to avoid specifying

the fuel capacity of internal tanks is possible by reducing its definition, omitting the "fuel”
instance variable (Figurel8).
Reduction and augmentation have two arguments. The first one is a class name and the second is a
list of instance variables, methods and constraints to be dropped or added to the class definitions.
The operators are symmetrical : the result of a sequence of both reduction and augmentation
operators using the same arguments is to leave the class definitions unchanged.

AIRCRAFT

FUSELAGE WING LANDING GEAR
Figure 18. Augmenting and reducing classes.

The connection and product are used to combine class definitions together, in order to define
composite objects. The connection applied on two argument classes produces a class definition
which is an aggregate of the two arguments. Note that it can be implemented by iteratively applying
the augmentation operator. The connection operator does not reflect any semantic dependency
between its arguments. It is a mere structural aggregation. This departs from the dependency
relationship between an object and its components, as defined in Section 2.2.1. The product has
three arguments : two classes and a list of instance variables, methods and constraints used to
match the argument definitions. It can be implemented using a sequence of augmentation and
reduction operations. The result is a class definition which is an aggregate of the two arguments,
without repeating the matching elements in the list.

For example the class LANDING GEAR can be defined by connecting the classes MAIN GEAR
and NOSE GEAR. It is depicted by double lines in Figure 19. An instance of the class LANDING
GEAR is subsequently an aggregate of instances of NOSE GEAR and MAIN GEAR.

AIRCRAFT

maxioad
o, FANDING GEAR

h :
Fus wn.qG connection
ELAGE SE MAIN argument class
GEAR GEAR

Figure 19. Connecting classes.
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The reduction, augmentation, connection and product operators are designed as low level operators
which provide a limited but powerful set of schema changes. They can be used to define
specializations and generalizations of existing objects (e.g EXTENDED range aircraft), sub-sets of
objects depending on their use by other objects (e.g B737-CFMS56 engines below), and entirely
new objects (e.g LANDING GEAR). They can therefore be used to implement higher level
operators, e.g specialization, generalization and aggregation [10]. For example, it is
straightforward to define a new class for those CFMS56 engines fitted on B737s, say
"B737-CFM56", and make it a sub-class of ENGINE using the augmentation operator. Applying
the augmentation operator allows for example to add servicing information : last service date,

mecanics, hours since last serviced, parts serviced, parts replaced, etc (Figure 20).

VEHICLE )
ENGINE

3
last-service
mecanics
hours
parts-serviced
parts-replaced

B737-CFM36

Figure 20. The class of CFM56 engines on B737s.

4.5 Dynamic classification

An effective classification mechanism is described in this section to propagate the changes
performed on the schema. It uses the notion of relevant classes and elaborates on classification
mechanisms proposed in artificial intelligence for knowledge representation.

Once schema modifications are performed, their impact on the relevant classes are characterized.
For each modified class, the changes are defined and tested on its relevant classes. Should all these
changes be correct with respect to the model and the semantic rules, the corresponding sets of
instances are modified.

This means that modifications can be propagated on whole sets of instances belon ging to relevant
classes as atomic operations. Because every instance belongs to exactly one relevant class, all
instances involved are processed. They need not be scanned and updated individually. Rather, the
reduction or augmentation formula corresponding to each relevant class is systematically applied on
all its instances. Since consistency and side-effects have already been checked on the relevant
classes' definitions, there is no need to further control the changes on each particular instance.
Since relevant classes are defined from a finite set of instance variables and methods, and because
no cyclic definition is allowed, the propagation process always terminates.

Recursive application of this heuristic may result in changing the class membership for the
modified instances. For example, assume that the range constraints on the various AIRCRAFT
sub-classes are as follows (Figure 21) :

- SHORT range class : range < 1,000 nautical miles (nm),
- MEDIUM " : 1,000 < range < 2,000 nm,

- LONG " : range > 2,000 nm,

- EXTENDED " : range > 3,000 nm.

Changing the constraint in the EXTENDED range class from 3,000 to 2,500 nm implies that all
instances of LONG range aircraft having a range between 2,500 and 3,000 nm are now also
instances of the EXTENDED range class (Figure 21). This implies moving those instances
downward in the class lattice. It can be derived automatically by checking the range constraints
corresponding to the various classes. Once characterized, those LONG range instances having a
rzlmge between 2,500 and 3,000 nm can be propagated as a whole set to the EXTENDED range
class.

Subsequently, if the range constraint for the class LONG range is changed from 2,000 to 2,200
nm, all instances of LONG range aircraft having a range between 2,000 and 2,200 nm have to be
moved upward in the lattice to the AIRCRAFT class.

Next if the range constraint on the MEDIUM range class is relaxed to : 1,000 < range < 2,200, the
previous instances are then moved downward from the AIRCRAFT to the MEDIUM class. These
Egp chag %G):S imply a lateral move of the instances from the LONG to the MEDIUM range class

igure 22).
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AIRCRAFT
engines
mtow
fuel
range
maxload

LONG 7000 < rhnge < 2}8Q0  SHORT
2,000 & range) (MEDIUM) (range J 1,000

j9e
EXTENDED

2,500 < range < 3,000

inge
Figure 21. Moving instances of modified classes.

Clearly, propagating the instances in the appropriate classes can yield a large overhead. It requires
checking recursively the constraints in all super-classes and sub-classes of the modified class. As
noted elsewhere, the balance is between information preservation and performance {11]. The
opportunity to deffer the modifications on the instances leaves this responsibility to the user.

4.6 Grouping changes

The example above deals only with the modification of domain constraints. Dynamic classification
applies also to the incremental design of objects. In particular, going back and forth through
various design alternatives subsumes the ability to dynamically change the object definitions. It
follows that controlling the completeness and the consistency of the objects is a crucial issue.

For example, augmenting and reducing class definitions is propagated on the corresponding
relevant classes. Existing instances can therefore be modified dynamically, as a result of changing
class definitions in the schema. Accordingly, they can be moved among the corresponding relevant
classes.

The process is as follows. First, the schema modifications are characterized in terms of relevant
classes. New or modified class definitions exhibit specific relevant classes. These relevant classes
are compared with existing ones to check if additional ones have been produced. Unchanged ones
need no further processing. Pairwise differences between the new and the existing relevant classes
are characterized in terms of new and deleted instances variables or methods, and modified
constraints. The differences are systematically applied on all the instances belonging to the old
- relevant classes. The instances are then propagated to the new relevant classes. This is applied until
all the relevant classes for all the classes involved in the schema change have been processed. Since
relevant classes are attached to classes and because they are in finite number, the propagation
process always terminates.

AIRCRAFT

engines
mtow
fuel
range
maxload

2,000 < range < 2,200

class

EXTENDED
instances

Figure 22. Moving instances laterally.
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For example reducing the AIRCRAFT4 definition in Figure 15 with the mtow and range
instance variables produces a move of all the corresponding instances to the relevant class
AIRCRAFT7 (Figure 23). Also reducing the relevant class AIRCRAFT6 with the ENGINE
component (Figure 18) implies moving all its instances to the class AIRCRAFT4. Further,

augmenting AIRCRAFT7 with the mtow and the range instance variables will move back the
corresponding instances to the reduced class AIRCRAFTS.

AIRCRAFT4 AIRCRAFT?

fuel
mem————
maxioad

s roduction

= augmentation
Figure 23. Dynamic classification resulting from schema changes.

Since modifications are characterized in terms of the relevant classes, there is no need to search for
particular changes on the instances individually. This allows grouping the changes on all the
Instances belonging to the relevant classes, thus improving the effectiveness of the approach. This
issue was previously recognized as a major requirement for class modification in GemStone [11].
As described in Figure 24 given in Appendix, the relevant classes form a connected graph which
edges are labelled by the schema modifications. The AIRCRAFT class is the result of connecting
the classes AIRCRAFT1 and AIRCRAFT? together (Section 4.2). The relevant class AIRCRAFT3 -
to AIRCRAFT7 can be obtained by reducing, augmenting, or connecting together the others.
Figure 24 does not detail all the relevant classes.

A prototype Cadb implementing these features has been implemented in Prolog on Apollo
workstations [12]. It includes approximately 25,000 lines of code. Current extensions directed
toward the full support of dynamic information are underway in the Sherpa project. It is a joint
INRIA-IMAG project.

The goals in Sherpa are to design and implement a prototype knowledge base management system
supporting :

- dynamic instances with automatic propagation of changes on semantically related objects, e.g
dependent objects, , ‘

- dynamic schemas with automatic propagation of changes on the class lattice and on the instances
involved,

- dynamic inference, i.e support for non-monotonic reasoning.

The first two points will borrow from previous work on Cadb. Provision for incompleteness of the
instances will be a major step towards an effective system intended to support engineering design
applications. The last point calls upon artificial intelligence techniques. In particular,
non-monotonic reasoning will be supported by an assumption-based truth maintenance system [2].

4.7 Research issues

Large efforts remain to be done in order to integrate schema evolution and the propagation of
changes in some acceptable prototype. Where previous proposals emphasize the persistency and
sharability of data, our primary focus is to support dynamically evolving schemas and instances.
However sharing and concurrency interfere dramatically with the management of dynamic schemas
and the propagation of changes [3, 11].

One approach is to rely on versions of schemas, in much the same way that engineering
applications call for versions of objects [22]. Various levels of granularity and versatile locking
schemes have also to be designed to take into account changes in the schemas when concurrently
accessing the objects [20].

Further, introducing non-monotonic reasoning and using an assumption-based truth maintenance
system require the support for dynamically evolving contexts [21]. They characterize the set of
1nstances that allow values to be derived from each other. This clearly imposes constraints on
object sharing and class evolution. These issues are being explored at present in Sherpa.
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5. CONCLUSION

When comparing database evolution with recent efforts dedicated to object-oriented systems, it is
clear that important steps have been made towards modelling and manipulating dynamic and
composite objects,-as well as managing and maintaining semantically related information. Even
though existing prototypes propose significantly different functionalities, it is now widely
recognized that schema evolution is an important requirement for many applications.

An analysis of various schema change operations is given, as well as an overview of other relevant
issues. Prototypes systems are then compared with respect to these issues. Some systems provide
extensive functionalities, including the management and versioning of composite objects, while
other sometimes just ignore some of the capabilities described here. Further, results indicate that if
most systems provide some form of schema evolution, very few support adequate propagation
mechanisms to make the changes effective on the object instances.

A proposal is made that enables a prototype object-oriented knowledge base system called Sherpa
to fully support schema change operations and control their impact on the object instances. It is
based on a dynamic inheritance and classification scheme that propagates any schema change
operation on all the classes involved and on the corresponding instances. The method provides for
both immediate or deffered update. It also fully supports top-down as well as bottom-up design of
composite objects. As such, Sherpa should support a wide variety of engineering applications.

The approach implemented is based on an extended notion of object class, called relevant classes,
which takes systematically into account the partial completeness of the objects.

Propagation is performed by characterizing the modifications in terms of the relevant classes only,
and grouping the changes to simultaneously update the instances belonging to the same relevant
classes. It therefore avoids characterizing and propagating the changes by enumerating all instances
individually.

This approach is an extension of techniques used in artificial intelligence for knowledge
representation. It extends classification mechanisms with a dynamic capability which adequately
supports evolving class definitions. It is expected that this approach will provide an effective
methodology for managing dynamically evolving schemas in object-oriented database and
knowledge base systems.
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APPENDIX
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Figure 24. Some relevant classes for the class AIRCRAFT.
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